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Let us look at abstracts namely functional and procedural abstracts and today I will try to 
define the meanings of abstracts. The age old fundamental question still remains for 
which we will only partly answer today. What’s in a name? We have an abstract. 
 
We still have not answered the question what really is an abstract. So today we will 
answer it. I know a lot of people who read Agatha Christie books who after the initial 
chapter when the murder is committed you go to the last chapter where the murder is 
solved and then they start reading the rest of the book. So let’s do the same thing. So we 
have done the initial chapter of this chilling suspense and now there is this chilling 
suspense.  
 
Thus the next question is who did it?  
In our case it’s rather who had done it, in our case we say what’s in an abstract, what is 
an abstract? 
And amazingly the answer is that it is an applied lambda abstraction, applied or pure 
depends on the rest of the application and we will define the notion of a closure and we 
will try to define the meaning of abstracts. Therefore any abstract especially 
parameterized ones are really going to be just lambda abstractions. So the distinction 
between an abstract and an abstraction then becomes negligible. In functional settings 
these things are always easier to define so we will look at the semantics of ML like 
functions.  
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So let us look at functions. Whatever we did we only considered mostly values and I will 
make the assumption that it suffices to consider unary functions and there is a view point 
in which every function is a unary function not obtained by [c…..3:18] it is just that any 
n-ary function can be regarded as a unary function applied to an n tuple construction. In 
fact in that sense the conventional mathematical notation for a function is also really that. 
This is really f as a unary function applied to an n tuple so we do not lose too much by 
considering all functions to be essentially unary functions so there is an important aspect 
of a n tuple construction before you actually apply the function but even otherwise 
whether carried or not carried we can think of all functions as being unary. 
 
Then what happens is with this it also makes it more convenient and less messy to talk 
about functions, their parameters and so on. So let us look at the syntax of functions. 
Now that we have done something about type checking what I will do is I will define the 
syntax. So essentially there are just two constructs we have to worry about. One is 
function declarations so f is a function symbol with a parameter x of type tou0 and E is an 
expression of type tou1. And if you remove this type information then essentially it is like 
a ML declaration of a function.  
 
And of course even in ML if the type inferencing has to succeed always you might have 
to put at least some type information somewhere in order to make sure that these 
operations inside E are meaningful. So we will we will assume that we have we have a 
fully typed information. Then of course the function call is just f applied to some 
expression E. This is a sort of ML syntax. So we will mainly consider non recursive 
functions. The extension to recursive functions is quite simple if you clean up the syntax 
a bit.  
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Then as with all declarations and expressions we have to look at what are the free 
variables of a declaration. So the free variables of a declaration are just all the free 
variables of E except of course x which is a parameter of f. Thus if it is non recursive 
then that’s really what it is, if it is recursive what it means is that you will have to use 
some form of disambiguation to make sure that f is not included in the free variables of E. 
Remember that functions are also values and there is a great unity operating all that. So, 
if you have some way of recognizing that it is a recursive definition then what it means is 
that you will have to remove F also from the free variables of E. 
 
In the case of ML what happens is the question of whether if f occurs in E the question of 
whether it is recursive or that f actually refers to some previous declaration of f is 
resolved in ML by a very simple mechanism. It takes the innermost reference and decides 
on that. So it looks through this and if there is an f here then it assumes that it must be a 
recursive definition. Hence, ML has a very simplistic view of that in which case in actual 
ML programs this distinction between non-recursive and recursive is not very syntactic it 
is rather implied being direct. But many languages like Camel for example which is 
really a variant of ML explicitly requires that if you intend a function to be recursive 
then.  
 
You should put a reserved world called “rec” in front of the definition of the function. 
Thus for example if you have a definition like this; f(x) is equal to if x is equal to 0 then 0 
else f(x -1) plus 1 so if you have a definition like this in the case of ML it automatically 
takes this to be a recursive function. On the other hand, this might be a part of ML 
session in which you may have previously declared f to be of type explicit. Now what 
ML does is it just basically disregards this and all occurrences of f here refer to this most 
recent syntactic occurrence as part of the interpretation.  
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However, Camel is very much like ML has a very similar syntax and is based on the 
same kind of system, type inferencing and so on. It actually specifies that if you do not 
include a reserved word rec here so this “rec” is a reserved word which is supposed to 
indicate that a function is recursive. Then if you actually include this reserved word “rec” 
here only then Camel will take this f to be a recursive call to the same function. If this 
“rec” were not there then what would happen is Camel would be looking in the 
environment for a previous declaration of f and would use that as the meaning of this f. 
 
In some sense in ML things are very implicit, even though the designers of ML were 
among the first to point out that there is a ambiguity in programming languages in which 
most programming languages do not use this reserved word called “rec” or some kind of 
a syntactic tile which makes it clear whether the function or a procedure is recursive. In 
spite of that they actually have this implicit binding mechanism which binds this f to this 
whereas in Camel it actually has to be made explicit by means of this reserved word rec. 
In that sense Camel is somewhat more explicit and perhaps better because we do not 
really know what kinds of ambiguities the lack of this recursive keyword can create. We 
already know how it can create problems in Pascal functions for example. For the present 
let us assume that these are non-recursive things.  
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The only difference in our semantics if it becomes recursive is that you have to have a y 
combinator or some form of recursion combinator just like we found for “while loops” 
otherwise the difference between recursive and non-recursive is really a question of 
identifying what are the free variables and what are the defined variables. 
 
If E is non recursive then can f be a free variable? 
If f occurs in E it is yes. 
 
Let us be explicit, let us take Camel like syntax where if you intend it to be recursive then 
you give this keyword “rec” otherwise you do not give the keyword “rec”. So if you do 
not give this keyword “rec” here then what it means is that the elaboration of this 
expression means that your environment the environment in which this expression is 
going to be evaluated should already have some definition for f. If it does not have a 
definition for f what a Camel interpreter will do is it will say that f is an undefined 
variable. This is the non-recursive case.  
 
In the recursive case this reserved word “rec” will actually help it to identify that 
therefore within the scope of this definition all occurrences of f are the same as this 
occurrence of f and since f is a defined variable here it is not a free variable. All this is 
not explicit in ML it is implicit. It is not necessary to have the same type of x in both the 
functions. But if we do not give this recursive “rec” then this f of x is going to be bound 
to the first function and if the type of x here and the x here are different then you are 
going to be at a type error. Therefore, if you do not intend it to be recursive and you 
actually intend this f to refer to something that is already available in the environment 
then the type checking problem has to be satisfactorily addressed. 
 
Hence essentially all the variables in E except x are free. Thus the way I am looking at it 
now is that the free variables of rec f x of type tou0 the whole function of type1 is equal 



to E is equal to all the free variables of E minus x and f. And if f were not recursive then 
any occurrence of f in E refers to some previous binding so that f is a free variable of E, it 
is as simple as that. Therefore what it means is that if you did not have the keyword the 
reserved word “rec” when f could be both a free variable and a defined variable of this 
definition so the defined variable of this definition is just the symbol f. This is as far as 
definitions are concerned. And in the case of a function call the free variables are called 
to f with an actual parameter which is an expression E which is just f union the free 
variables of E.   
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Firstly we have to look at the static semantics or functions of these definitions. As usual a 
type environment over a set of variables or a set of identifiers is just some identifier to 
type binding. Previously the types we had were just base types like integer and bool and 
so on and so forth. But of course after having spent so much of time on the typed lambda 
calculus it is clear that now our types actually expand out. In addition to the base types 
you have all the type constructions that are possible either in the simply typed lambda 
calculus depending upon what your language is or the polymorphic lambda calculus 
depending upon what your language is. Essentially it includes something more than just 
the base type. It includes all kinds of functions that you can create on base types.  
 
And if you are considering a polymorphic case it also includes all type variables and type 
constructors including the “for all quantifier” on type variables. So whatever can be 
defined from the base types using the typed language of the polymorphic lambda calculus 
is included in this. And of course since our functional language is an applied language is 
an applied lambda calculus essentially all the types of the underlined application and so 
on and the higher types created by the lambda abstractions on those applications are all 
included in this type. That is how you get higher order functions from a simple 
application.  
 



Let us just go through the type definitions. If e is of type tou1 then this definition of this 
function f with x as a parameter of type tou0 the type checking rule is just this, you 
should make sure that the body of the definition is of the same type tou1 as given in the 
declaration. And then this definition creates a little type environment which associates 
with f the type tou0 arrow tou1. Essentially the function takes an argument of type tou0 
and gives you a result of type tou1 whatever tou0 and tou1 might be, they might be 
polymorphic types, they might be monotypes, they might just be base types or whatever 
that is representable.  
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And then in the case of a function call of course the type checking is that, if your static 
type environment gives you the type of f as being something of the form type tou0 arrow 
tou1 then this function call type checks only provided the argument to the function call is 
of type tou0. So, if the argument to the function call is of type tou0 then this function call 
is of type tou1 and it type checks. So, essentially that’s the type checking for function 
calls.  
 
You just have to evaluate the type of argument. remember that all this is done at 
translation time, it has got nothing to do with executions, it is all done at translation time 
so essentially you look at the expression from the static environment that you have 
already created when you are looking at this expression you evaluate the type of this 
expression and if this expression has a type tou0 and your environment assuming a 
declaration before used strategy your environment already has created for f the type 
binding tou0 arrow tou1 then this function call type checks but otherwise it does not.  
 
Why have I written that as a side condition? 
Side conditions are usually of this form that in the main premises and the hypothesis we 
only use what is directly relevant to the syntax of that phrase. Side conditions are all the 



information that could somehow be gathered or have been gathered earlier through some 
definitions or some declarations or through applications of other rules.  
 
Given the type environment gamma as an assumption this is a piece of information that is 
inside gamma and is not part of the current syntactic phrase of our rules. So the current 
syntactic phrase is just f applied to e which has one sub expression e so the premise has to 
be in terms of just that e. So given this assumption gamma if you can prove this is the 
provability symbol that e has type tou0, e green, remember my coding that green is a part 
of the programming language, blue is something else some other pieces of information, 
derivations inferred information and so on and so forth.  
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Given this type context gamma if you have inferred that this expression e is of type tou0 
then you can infer that this call f(e1) is of type tou1 provided inside this gamma you have 
this binding for f that it is of type tou0 arrow tou1 that’s how all our rules are being going 
and that’s how side conditions are given. The premises and the conclusion of any rule 
consist of just the syntactic subexpressions of the phrase that is under consideration. So 
let us look at the dynamic semantics.  
 
Of course in a dynamic semantics what we often do is we transform the syntactic phrase. 
It is part of the symbol manipulation of the run time. So, in the dynamic semantics we 
have the notion of a run time environment rho which of course is a binding from 
identifiers to values and now values take on a new meaning.  
 
Values are not just values in the base types of your language, values include also values 
of higher types constructed through various functions. So this value is now a loaded 
word, as I said functions are also values, functions of functions are also values and all 
higher order functions are values. And of course looking at it the other way from the 
lambda calculus everything is a function whether it’s a value or function. So these values 



include all these values of higher types that you might have starting from the construction 
of your base types. 
 
If you look at values originally we had just this, if you go back to some of the age old 
semantics that we gave we had only the natural numbers. But of course we showed how 
you could construct other structured constants from this and we also include what are 
called closures. 
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The other structured constants could be records, tuples, lists etc and these base values 
could be something other than int2 it could have int and bool and real and character and 
so on and so forth. But in addition we will have this thing called closures. A closure is 
really nothing more than a lambda abstraction. So let us look at the semantics now. So, 
given a run time environment rho over a collection of identifiers V and a type 
environment V as you might also have to do run time type checking in certain cases now 
we will look at the semantics in terms of both a run time environment and a static 
environment or a context gamma and both the run time environment and the context are 
over the same set of variables. So a basic constraint which has to be satisfied by these two 
environments is this that the run time environment should somehow be type consistent 
with the static environment.    
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Unfortunately there is a plethora of colons here and colons are a very highly overloaded 
operator. This colon here is a new symbol which essentially says that the run time 
environment over V is type checked by the context gamma over V provided this colon is 
a colon that I always use (Refer Slide Time: 29:59) when I write a logical predicate with 
quantifiers, it is something that separates the variables inside a quantifier bound to a 
quantifier. This colon is the colon of the type. So what we are saying here is this. The run 
time environment is type checked by the type environment gamma provided every 
variable in the run time environment has a value which is given by rho V applied to that 
variable and that value should have the same type that gamma gives it. 
 
This is the constraint that we are always going to work under. This ensures that things 
also run time type check if necessary. So this new colon is really an extension of this old 
colon. These dark blue colons are really essentially the same. This colon is over particular 
variables or values, this colon is over collections of variables or values, it is just an 
extension from single variables or values to collections of variables and values. So these 
two dark blue colons, the left one is actually an extension of the right one. (Refer Slide 
Time: 31:35) This light blue colon of course is just a part of my symbolism for writing 
predicates and there is nothing more to it. This is the basic constraint under which we can 
define the semantics. So let us look at function definitions.  
 
What happens at execution time? 
I have removed this V as a subscript given a run time environment rho implicitly over 
some collection of identifiers V such that it type checks with the type environment 
gamma which is again over the same set of identifiers V, this is a function definition 
which goes so this is a function declaration. So it creates a new little environment and 
that new little environment is a run time environment. All identifiers have actual values 
and what is the value of the function f in this new little environment, it is a lambda 
abstraction over some expression containing e such that this huge expression is of type 



tou1. Therefore one constraint of course is that this tou1 and tou0 are specified here. Now 
what does this huge expression does?  
 
What are the kinds of variables that are there in e?  
Here e could have bound variables namely x since we are considering only unary 
functions e could have x as a bound variable, e could be a ML like expression so it could 
have let and local and so on and so forth and more and more declarations in it which are 
all bound variables. 
 
Let us assume for simplicity now that e is non recursive so it has no occurrence of f then 
what are the other identifiers that could be there in e? Those are all the non-local 
references. So e has to be evaluated assuming that all those non-local references have 
values given currently by the environment rho. Hence now I want to look at this function 
declaration in isolation. I am saying that this function has a value which is given by 
lambda x which is the argument of this function so essentially parameters are going to be 
bound variables in a lambda abstraction. So if you have several parameters then there are 
going to be that many lambda abstractions either in a single lambda abstraction over a 
tuple or that many carried lambda abstractions. The two things are isomorphic. 
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But since we are considering unary functions for the present for simplicity so it’s a 
lambda abstraction over x and the expression that it has cannot just be e because e has too 
many free variables which are essentially non-local references. So e could have all kinds 
of bound variables in it in addition it could have some non-local references which have 
values in the current environment given by rho. Essentially if I want to specify this 
function declaration in isolation that means if I want to remove it from its current ML 
session, this is a function declaration that’s part of a larger ML program.  
 



And now if I want to take this function declaration out of that ML session and put it in a 
separate ML program as a stand alone ML program by itself then I should in the current 
ML session extract the values of all the free identifiers that occur in e assign them the 
same values and then I am ready to take this definition out and look at it in isolation and 
this is what that has. For all the free identifiers in e extract their values as given in the 
current environment and create fresh “let” declarations which give you those values in 
the current environment. 
 
So essentially what I am saying is if I have a simple ML session in which I first defined 
val y is equal to 3 and then now I define a function f x of type integer and let us say this 
is also of type integer and be completely explicit and this is equal to just x plus y for 
simplicity I am not considering any non-local references then what I am saying is what is 
the meaning of this function, this function has a meaning in this current environment and 
what is the meaning of this function, the meaning of this function is the same as replacing 
this by a new lambda abstraction x of type int such that “let” the only non-local reference 
here is y let y is equal to 3 in x plus y. So essentially that is what happens.  
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It is a closure because now there are going to be no free variables in this lambda 
abstraction. The lambda abstraction that you now get is a completely closed lambda 
expression with no free variables. That’s why it is called a closure.  
 
The reason we have to look at all abstractions as closures also has a pragmatic basis and 
that is when you look at a function or procedure as an abstraction then what you are 
trying to say is that it is something that stands by itself. I can take that function from you 
for the same purpose for which you defined that abstraction for a similar computation and 
I can call that which means I can pull it out of your program or from a library of 
programs and use it somehow. The only problem that is created is then there are non-
local references.  



How do I resolve those non-local references?  
If you had non-local references in your function I extract all the values that are expected 
at that time and use them only then I am guaranteed that it will work right and that’s 
essentially what I am doing by this closure. Therefore an abstraction is really that, I mean 
an abstract is really an abstraction in that sense. And that is in fact the purpose of an 
abstraction too. It is something that should stand out in isolation.  
 
Unfortunately we have a lot of environmental variables and so on and so forth which 
prevent us from taking it directly. So in order to give an abstraction a meaning in 
isolation you have to also include the information that of whatever is relevant from the 
environment should go into the meaning of the abstraction and that’s really all that we 
have to do. So let us look at function calls. That’s the function definition then as a closure 
of function definition it stands out by itself as the lambda abstraction. 
 
What is a function call?  
A function call is just this. If a function definition is a lambda abstraction then a function 
call is just an application for that lambda abstraction so it’s a beta reduction. And of 
course in a ML like language we don’t directly have beta reduction but we have beta 
reductions in another form that is in the form of “lets”. So if you look at “let” carefully it 
is really like an application. If you look at the semantics of “let” what we gave as the 
semantics was that you create a new little environment where this x has this value and 
then in that environment you evaluate e which means that all free occurrences of x in e 
will take that value from the new little environment that is created. But that’s another way 
of saying forget about this x replace x completely by the expression that it denotes and 
keep the environment the same do not create a new little environment.  
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So our semantics of “let” could have been alternately written out as a pure form of beta 
reduction with no notion of an environment. In a purely functional language we could 



actually do that. Every variable can be replaced by its body and often out of context. But 
in imperative language because of the possibility of side effects and because of the fact 
that there is a huge amount of environment that really needs to be maintained it is 
necessary to keep that environment information somehow.  
 
But otherwise in a pure ML like language that we are defining we could have defined 
without an environment by just using the notion of a substitution which makes a “let” 
construct in ML just a beta reduction. A “let” construction in ML is just a beta redex so 
let x is equal to e0 in e is just lambda xe applied to e0. So this let actually is just like an 
applied lambda abstraction assume that there are no local references in e then this would 
be just and we wouldn’t require any environments, you could actually do syntactic 
replacements. But we require environments because there are re-declarations of variables 
and so on and so forth so it is more convenient to use. But essentially a “let” construct is 
just a lambda is just a beta redex so a function call is just a beta reduction. Since a 
function is just a lambda abstraction a function applied to some argument is just the 
lambda abstraction applied to that argument it is just a beta reduction. So the kind of 
mechanism that we have been looking at so far really is what is known as call-by-value.  
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Therefore essentially what we are doing in call-by-value, I am redoing that function call I 
can rewrite that function call more explicitly in this fashion so that it models our further 
discussion on parameter passing. The function is called with an expression e0 then you 
evaluate e0 in the expression language. So essentially you don’t touch the function till 
you have evaluated e0 completely and e0 has finally got reduced to some value m.  
 
Now here again this m could be any higher order value, it could be a function value or 
whatever, it could be anything. But I am using m in order to keep it uniform with 
whatever we have done before as a hard value that is somehow available. Then the 
application of f/e0 is just the application of f on m which means that it is just this “let” 



construct where f is just this lambda abstraction and of course here again I have to worry 
about those non-local references and so on and so forth so there is a “let” inside “let”. Do 
not take this e very seriously as this e might have non-local references which means again 
you will have to write this kind of an expression (Refer Slide Time: 47:22) so may be I 
will just give it a different name. I will just give it the name e1 where e1 is equal to let rho 
over the non-local references in e where of course the function definition is of the form 
f(x); tou0 is equal to e. 
 
Therefore here what are you doing in call-by-value is you are evaluating the argument 
completely and the function call is applied only after you have got a perfect value. So if 
the evaluation of this argument is in infinite computation what it means is that you can 
never return from this function call which is something we all have experienced. Thus 
that brings us essentially to what is known as to various parameter transmission 
mechanisms application in the lambda calculus, in functional languages and also other 
imperative languages. 
 
Therefore what happens in the lambda calculus? 
In the lambda calculus you have two mechanisms one is called the call-by-name. These 
are the two principle mechanisms which have applications also in other programming 
languages.  
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Hence what happens in the lambda calculus also happens in other programming 
languages to some extent. So, if you remember we considered this infinite computation 
and we said that because of replicating operators in the untyped lambda calculus you can 
get infinite computations. Even though by taking a different reduction route you could get 
a normal form. 
 



Now there is a theorem in the untyped lambda calculus that if you take the leftmost 
outermost beta redex always and reduce it and having reduced that you will get a new 
lambda expression. Again choose the leftmost outermost beta redex. That means don’t go 
deep inside to choose the redex. Look at the outermost levels of paranthesis to find the 
redex from left to right, read from left to right and do this. If you do a leftmost outermost 
reduction always which is deterministic remember that the lambda calculus operation 
semantics is not deterministic. But now if I make it deterministic by choosing always the 
leftmost outermost beta redex to be reduced then there is a theorem in the lambda 
calculus which I am not going to do is that if there is a beta normal form then this order 
of reduction is guaranteed to produce it. This is clearly a case of leftmost outermost beta 
reduction and this is called call-by-name.  
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Whereas if you have a call-by-value then you evaluate an operand completely and try to 
reduce it completely before actually doing a beta redex, you go deep inside. So 
essentially while you are reading the lambda expression you look at all the operands of 
beta redexes and try to reduce them.  
 
An operand of a beta redex could itself contain beta redexes inside which means you go 
inside and try to reduce the operands within there and so on and so forth. So you are 
actually going inwards but you are not going too deep in, in the sense that you are not 
going deep inside the lambda abstractions you are only going deep inside the operands in 
an attempt to first reduce the operands to their normal forms and then apply the beta 
reduction.  
 
Therefore, given an application of this form you wont go deep into L you will go deep 
into M you will want to reduce M. In order to reduce M you find out whether there are 
any beta redexes in which case you take their operands and try to reduce them and so on 
and so forth. So you always look at the operand of an application and try to reduce it first. 



That is really what we did in call-by-value. Given an application you take the operand 
and try to reduce it first and then do the application. Unfortunately in the untyped lambda 
calculus this can give you an infinite computation. So it is not guaranteed to produce 
normal forms even if they exist. 
 
We use call-by-value can converge faster. Once you have typed lambda calculi there are 
no infinite computations, normal forms are guaranteed so now call by name and call-by-
value should both yield the same results. But in a typed lambda calculus that is a 
polymorphic type you can have operators which are replicating. So, if you have a 
replicating operator L applied to an operand M then a call-by-name can produce lots of 
copies of M which means that you will have to reduce each of those copies of M 
individually later.  
 
On the other hand, if you decide to reduce M first itself and then you do the application 
even if L is a replicating operator you still have a normal form without doing extra 
reductions on copies of M. So it is also the easiest thing to implement a call-by-value 
reduction and it converges faster especially in the presence of replicating operators. That 
is why an untyped lambda calculus is completely of no use to man or beast because its 
semantics requires that you will have to always use a call-by-name implementation if you 
want to get normal forms. Therefore most functional languages use call-by-value. So we 
will start parameter passing in this context next time and we will look at other parameter 
mechanisms in imperative languages.                           
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