
Principles of Programming Languages
Dr. S. Arun Kumar

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture - 37
Procedures

Welcome to lecture 37. We will continue with procedural abstraction.

(Refer Slide Time: 00:36)

As I said, one thing is that the whole purpose of abstraction is that you can take any
semantically meaningful syntactic category and you can use it as a body of an abstract
and an important part of using it as a body of an abstract is to give it a name. So
essentially when Shakespeare asked what’s in a name the answer should have been an
abstract but he apparently didn’t get that.

(Refer Slide Time: 01:02)

You have various kinds of abstracts. We have partly seen what expression abstracts are,
then you have procedural abstracts which are commands, command abstracts and then
you have definition or declaration abstracts as in Modula, ML, C ++, Simula, Small talk
etc. Therefore the most important features of an abstract are really its name. Of course we
have to answer the question what exactly is an abstract, that’s an important semantic
issue that we have not yet addressed and of course the parameters to capture, similarity of
computations and so on and so forth.

(Refer Slide Time: 01:50)

Then you have a type checkable body which is elaborated whenever the name is so it is to
be called with appropriate parameters. We were concentrating on control abstraction and
what I say for control abstraction namely procedures more or less also holds for these
expression abstracts where the expression abstracts denotes functions.

(Refer Slide Time: 02:28)

Now let us look at the form of control abstraction that we have got which is basically like
functions in Pascal or procedures which change state in some fashion. Of course when it
comes to these kinds of abstracts normally there are two kinds of scope rules that you
might use. one that we have been using mostly in languages like Scheme, ML and Pascal,
C, Aida, Algol sixty most of the languages are compiled rather than interpreted though of
course the ML environment is an interpretive environment but most languages which are
compiled prefer to use a static scoping mechanism which means that it is easier to debug
and look at non-local references from the text of the program rather than from the run
time environment. So the bindings are all compile time or the identifiers are all statically
bound and d in the case of dynamic scoping what it means is that non-local references as
in this case where you have a chain of calls assuming this large program P has two
procedures P1 and P2 which are at the same level of nesting and independent of each
other and within P2 there is a call to this independent procedure P1 and within P1 there is
a call to its own nested procedure P11 which has a non-local reference.

So if it were a statically scoped language this non-local reference would refer to a binding
occurrence that occurs in the innermost textually enclosing block. On the other hand in a
dynamically scoped language this reference would actually depend on this calling
sequence and would refer to the most recent invocation of a block which actually
contains a binding occurrence. So that would be the difference between static and
dynamically scoped languages. And the reason I said that dynamic scoping is mostly used
in an interpreter style rather than in a compiled style is basically because of the run time
environment.

(Refer Slide Time: 05:16)

Let us look at this program executed at some control point here after this chain of calls.
So if you look at the run time stack of this program the activation records actually look
like this. Firstly of course you have a global environment this is sort of normal since no
program usually works without a global environment you usually require some global
environment which contains standard IO procedures may be libraries and so on and so
forth so let us assume that there is a global environment in which every program
executes. and of course then there is this call to procedure P1 there is this program P
which has a pink border or a purple border if you like so the activation record for this
program P has a local declaration of a variable x and it has the procedures P1 and P2
declared locally.

Therefore in the process of compiling what would actually happen is this P1 and P2
would refer to the jump addresses to the code segments of the appropriate procedures. so
the fact that P1 and P2 are local to the program P means that you have to somehow create
a jump address the address of the code segment and then P1 and P2 could have
parameters so in any call within P to P1 and P2 you will have to type check parameters.
So a part of this would also be some information on kinds of parameters in the order in
which they appear and basically their types so that any call to P1 or P2 when you are
actually compiling this main program should type check. In the run time environment this
P1 and P2 would refer mainly to the code segments of P1 and P2 where the jump
addresses are or where the codes start from.

Hence from within P of course there is a call to P2 which is this green block and so there
is an activation record for P2, P21 is of course nested within P2 so there has to be some
address to its code segment and there is a local variable x and there are of course
parameters but this is the main program so it doesn’t have any parameters.

Strictly speaking main programs also have parameters which usually refer to something
in the library routines like a Pascal program actually refers to the files that it is going to
access but let us assume that there are no such things. So a procedure usually has some
parameters, it has local variables may be locally defined procedures the address of whose
code segment you require to maintain and then from P2 there is a call to P2 so there is an
activation record for P1 which is similar and from P1 there is a call to P11 so there has to
be an activation record for P11. So the typical run time environment when you reach this
control point is that there are four activation records calling chains of length four besides
the global environment.

(Refer Slide Time: 09:26)

Therefore now what happens is this. Every time the moment you stop executing P11,
supposing the execution of P11 is completed then what happens is you are back in the
environment of P1 which means, here this is the current environment pointer so you have
to know at each stage what is the new environment pointer that you have to jump to when
you exit this scope during execution. So when the scope P11 is exited during execution
then this top blue block should go and your current environment pointer should point to
the bottom of this.

So the fact that you are creating a new little environment at each stage means that you
have to have what is known as a return point which will return you to the new current
environment pointer each time you exit a block at execution time. During execution the
moment the block P11 is exited you require a return pointer which gives you the base
address of the previous activation record. Thus this RP is called the return pointer and
whether your language is a dynamically scoped language or a statically scoped language
you require these return pointers each time. So what is called the dynamic chain which is
really the calling sequence?
If you remember the calling sequence, so this is really the dynamic chain.

So there is a calling sequence so you have a dynamic chain which points from P11 to P1,
P1 to P2, P2 to P and P to the global environment if necessary which is not shown here.
So essentially you require this dynamic chain which is maintained at execution time.

Now, in a language that is interpreted it is easier to implement a dynamic scoping
mechanism, for the present let us assume that this is not there. In a language that is
dynamically scoped what it means is that every time you see a full phrase you translate it
and execute it before you look at the next syntactic phrase. Now what happens is
supposing you see this phrase containing this non-local reference this blue reference to x
then when you have to translate it you have to check out whether you can just traverse
down the dynamic chain to find out the first reference where x was actually declared or
where x has a binding occurrence.

Since translation and execution both take place simultaneously at the same time
essentially most of the basic information about identifiers and their bindings and so on
will still have to be maintained in a symbol table at run time. Since there is no compile
time each phrase is textually read translated code is created and executed. So whenever
you read a new non-local reference you don’t know anything about it till you traverse
down the dynamic chain. Either you have it in the current environment or you have it in
the previous environment or you have it in the previous environment whichever comes
first you just bind it to that. so under the dynamic scoping rule or dynamic bindings that
means all the translation is done at execution time there is no separate compilation phase
then what happens is with just this dynamic chain the innermost enclosing invocation
which contains a declaration of that non-local reference can be found by just traversing
down this chain and searching through the subsequent activation records.

Hence, if you have a non-local reference what makes it a non-local reference is just the
fact that there is absolutely nothing corresponding to this activation record which
contains a declaration of x or a specification of its type. So what do you do is you go
through the previous invocation which is P1. You check whether in the activation record
of P1 is there some identifier with a declaration for x. If there is not then you just traverse
down from the return pointer of P1 to the previous thing and check and you will find may
be there is an x declared here. Remember that all the symbol table information, identifier,
name, its type and everything since it is interpreted has to be stored somewhere at run
time. Thus an identifier with a certain name is possible at run time provided you do
everything at run time.

In a compiled language identifiers and names no longer exist after compilation and they
all have been translated into addresses so there is no question of string matching
identifiers and so on and so forth. In a dynamically scoped environment you just keep
traversing down this dynamic chain in order to find the most recent binding occurrence
that was encountered in the chain of calls. So this dynamic chain serves the entire
purpose which is the reason early implementations of LISP and APL wanted to make it
interpretive, it is also an easier thing to write or actually use this dynamic scoping
mechanism. But what it means textually when debugging a program is that you cannot

look at an abstract you cannot look at a procedural abstract in isolation and hope to get
anything out of its non-local references.

The only way you can understand abstract is by essentially hand executing and producing
the appropriate calling chain by hand execution and then determining what would have
been that reference at that point what would have been the binding occurrence for that
non-local reference at any point. Interactive debugging may be easy but a planned
debugging of the text is usually quite hard with a dynamic binding mechanism. So most
languages like ML and Scheme which allow for compilation is because they actually
would like to encourage debugging from a text they implement what is known as a static
binding mechanism which means essentially that kind of binding mechanism that one
sees in Pascal. But then what does this mean?
This means that in the run time environment. What happens in a compile language?
This is specific to compile languages.

(Refer Slide Time: 19:26)

At compile time a symbol table is created and an address a relative address relative to
some base for each identifier is created. What is the translation of an identifier?
An identifier denotes a simple variable, it is just the replacement of that name by its
appropriate relative address with a reference to the scope in which it was bound. So, in
the process of compilation I can actually create an address for this with the depth of
nesting 1 and a relative address which basically says that this has been allocated so much
of memory so many bytes from the top of the base from where this scope would start in
activation record in the run time.

Now any non-local reference x here would therefore refer to just this address with the
appropriate nesting depth with the same relative address which is actually a reference to
this x.

Hence, as you read through as the compiler actually scans the token file and it encounters
this identifier x it just hashes on to some binding occurrence and translates this x by the
appropriate address. So the code that is actually executed only has relative addresses
which at execution time the bases will be filled up. As and when activation records are
created there will be a base address stored somewhere.

As you have seen in your PL0 compiler there is a base and the stack for the current
activation record and all addresses are relative to how much above that base should you
go before you reach this variable. So what this also means is that since you have
addresses which are related to a base in the case of the run time environment you have to
maintain the static structure of the program somehow you have to maintain for example
the fact that both P1 and P2 are nested within P so P1 is this red activation record it has a
pointer to the pink one and P2 is this green one which has a pointer to this pink one and
this blue P11 is nested within P1 so there is a pointer from the blue to the base of the red
so that now (Refer Slide Time: 09:26) if you can maintain this information then all non-
local references which have a nesting depth comma relative address given to them means
that you go down this appropriate chain rather than this chain you have a current nesting
depth of 2 and you have a non-local reference x which you have a current nesting depth
of 3 and P11 is at nesting depth 3 and you have a non-local reference which has been
translated as having nesting depth of 1 and has so and so address relative to that base of
that nesting depth 1. This means that you have to traverse down two steps and go up to
the appropriate translation above the relative address in order to access x. So this chain of
textual nestings is what has to be maintained in the run time if you have to have a
statically scoped language implemented especially a compiled language. So a typical
language with dynamic binding will just have a dynamic chain if it implements static
binding then it also has to have a static chain point which essentially captures the nesting
levels and the textual containments of the various blocks.

(Refer Slide Time: 23:54)

So, essentially the difference is that in a dynamically scoped language. The free or the
non-local identifiers are bound in the environments of invocations calling environments
at run time. Dynamic binding is much more easily implemented in interpreters you just
have to follow the return pointer chains.

(Refer Slide Time: 24:25) Here this SCP stands for Static Chain Pointer, this RP stands
for Return Pointer once this invocation is over what is going to be the current
environment pointer or what is going to be the new current activation record and what is
going to be its base address so that you get from here. So essentially when you exit this
block this return pointer the value in this location is going to be copied into the current
environment pointer, the value in this is just the address to this base and so your current
environment pointer will be pointing to this. And all addresses that you will be referring
to will refer to addresses which are anyway less than this. So you don’t need to explicitly
garbage collect it with further invocations. All the previous activation records which are
really not supposed to be active and that have been left behind as dead wood will get
overwritten.

The P1 and P2 are the pointers to the P1 and P2 in the main program and the reason why
we are elaborating P1 and P2 is that, under either a static or dynamic scoping mechanism
when you actually read P1 you will be actually creating its code segment somewhere and
it is going to be a pointer to that code segment. Mostly it is going to be a pointer to that
code segment. Very often if they are procedures with parameters what happens is that for
type checking purposes you don’t want to put all the information about parameters.

Basically what you want is type information and the order of the parameters. You may
not want them all to be all located here and since different procedures have different
numbers of parameters with different kinds of types what you might do is you might
standardize it to two pointers. One is address to a code segment and another is a pointer
to some place where the sequence of parameters and their types and whatever
information you might want to include about their types is maintained so that you can do
the type checking. So it is some record which basically allows you to find the code
segment of that procedure if you want.

(Refer Slide Time: 27:19)

So what it means is that under a static binding mechanism for a compiled language as you
compile as you read the token string after lexical analysis basically it’s a token string for
each block that you have created you actually maintain a nesting depth the addresses for
each of its variables, variables are going to be translated by the addresses so the symbol
table contains type information, address, size this that and such things.

Therefore at compile time you have this symbol tables for each of these and as you
textually read the program you actually create all this information that is essential. After
compiling P11 the moment you have exit P11 this part of the symbol table is no longer
necessary and you work with this part (Refer Slide Time: 28:22) especially when you are
reading the body of P1. And once you have finished reading the body of P1 then this part
also goes away and the next textually available thing is the procedure P2 so a new symbol
table for P2 is created like green in color and then within P2 there is a procedure P21
maybe black in color and as you read P21 you create another symbol table for P21, the
moment you exit P21 the symbol table for P21 is removed and you are left with symbol
table for P2, the moment you have finished generating the code for P2 which essentially
means you have finished reading it and generating code P2 goes away and then you are
back with just this which is the main body of P of the program and you can elaborate the
program.

The symbol table here should also contain some information saying that there are these
two procedures P1 and P2 because in the main body of P you can have calls to P1 and P2
which have to be somehow type checked. Similarly in P1 you should have some
reference to the procedure P11 because you can have cause to P11 and you would require
a type checking.

The way you would create addresses is that at every point in the symbol table you will
actually maintain what is the current nesting depth that you are looking at and for each

identifier essentially the current nesting depth is going to be equal to the length of the
static chain which is going to be maintained at run time. So any reference to a non-local
variable or even to a local variable will be the chain position and a relative address
corresponding to the base of that activation record.

(Refer Slide Time: 30:56)

So these static pointer chains will have to be explicitly created and maintained in order to
capture this innermost textually enclosing block information to resolve both local and
non-local references it is a uniform procedure.

Now let us get back to this diagram, if you look at the Static Chain Pointers if you look at
this there are actually two different Static Chain Pointers which of course meet at the
main program, they are two completely independent. One is this green single pointer
chain and the other is this double pointer chain. So at any point during the execution of
the program where I am assuming a statically scoped language the only references you
can have to identifiers are identifiers in the current activation record, identifiers in the
activation record immediately pointed by the Static Chain Pointer or identifiers of the
activation record pointed down by the Static Chain Pointer of this Static Chain Pointer.
Therefore what I mean is the only references you can have in this blue procedure are two
identifiers in the blue procedure, in the red procedure or in the pink procedure and you
cannot have any references to identifiers in the green procedure under a static binding
mechanism.

Now you can think of it if you just generalize this diagram you have lots and lots of
procedures P1 P2 P3 P4 P5 all at the same level and all of them having very deep levels
of nesting with more and more procedures embedded in them then your run time stack
when it is executing some piece of code in the innermost nesting of some procedure can
actually have a whole lot of Static Chain Pointers which are all independent except for
the fact that they meet at the main program.

You actually have a collection of disjoint chains they are not disjoint because they all
meet at the main program but otherwise they are all disjoint. So at any point you might
have a huge collection of static chains of which at any instant only one static chain is
really necessary for your access in order to access non-local references. You could have a
huge number of independent static chains but at any instant there is only one static chain
that is actually useful to you for executing that block.

Here the example is that there are two independent static chains and at this point this
static chain is the only thing that is necessary. If you consider a calling mechanism for
this same program such that you call P2 and from P2 there is a call to P21 and from P21
of course there could be a call to P1 and there could be a call to P11 then you would have
two independent static chains and depending on which block you are executing you
require only one of the static chains to be available for that block, that’s the only static
chain that is useful for that block and the moment you exit that block you might move
into a different block which is not textually nested which means you will require a
different static chain.

And in languages where there is a huge amount of side effects like most imperative
languages what it means is that instead of having a huge number of parameters for their
procedures lot of people tend to use a large number of globals. In that case for a really
complicated program what it means is that traversing down the static chain for each and
every non-local reference can become expensive and can slow down execution.

So at any point what happens is very often some speed up mechanisms are used and one
speed up mechanism is the use of a display. so a display is just a collection of high speed
registers some how organized logically in the form of a stack which we use in some order
and since out of a vast collection of disjoint static chains at any point you require only
one complete static chain pointing down up to the main program. These Static Chain
Pointer addresses are all stored in the display in a last in first out fashion. So the base
address of the pink block will be stored here and then the base address of the green is not
important, the base address of the red one would be stored here and the base address of
the blue one would be stored here.

(Refer Slide Time: 38:19)

As long you are executing this blue block these are the only base addresses you require in
order resolving non-local references pretty fast. you know the nesting level, textual
nesting level here is 3 if you find a non-local reference at nesting level 1 or some such
thing then all you have to do is look at the base address given here to down this display
stack and look at the relative address starting from this base address.

Just imagine if the stack actually grows and you have a reference to a global variable at
nesting level 20 that means you will be doing twenty hops down the static chain before
you can access that non-local variable and you don’t want to do the twenty hops, that
entire procedure or function might have no parameters nothing and it might just be doing
some task which is completely modifying global variables which means for each global
variable occurrence that is there either for modifying it or for reading its value for each of
those global variables you will have to make twenty hops down this static chain and then
find the address and either modify it or read the value, you don’t want to do that it can
slow down your execution tremendously. Thus by the use of this display what you can
actually do is you can just subtract nesting levels. From the current nesting level go to the
display to find the base address and find the relative address from that base. So
essentially what we are saying is that this pink actually contains the address of this base
address.

(Refer Slide Time: 40:23) This pink base the address of this base is actually given here
similarly the address of the red base is given here, the address of the blue base is given
here and these are the high speed registers which make accesses fast. Anyway that’s a
sort of an optimization or a speed up if you like it is nothing more than that. So the act of
naming essentially does this. What it means is that in the case of a dynamically scoped
language there are enough overheads just translating the phrases at run time and
accessing them. But you don’t have this extra overhead of a static chain. You just keep
following the return pointers which form the dynamic chain every time you want to get to

resolve a non-local reference. So there is an extra overhead with static binding but then
that extra overhead means that debugging your program is easy, it is possible to compile
programs use them for production runs whereas an interpreted programming language
basically means that you will be doing on the fly not really debugging you will be doing
only on the fly, redefining, on the fly development which may not be systematic which
could be quite adhoc so the extra overhead is worth it provided we can some how speed
up global accesses. And speeding up global accesses means using some method by which
pointer hopping can be saved somehow using a fast access.

Supposing you have got a nesting level of 60, 20 or something you may not have actually
that many registers but let us assume that you have cache which is a fairly high speed
memory mechanism then you can access the cache. But the point is that you are at a
nesting level of 16 you got a global variable at nesting level of 1 and you want to find out
its address you don’t have to do sixteen hops down the static chain but you just have to
go to the cache fifteen places down random access because this is going to be organized
as an array if you are going to organize it in cache.

(Refer Slide Time: 45:24)

 These are all just addresses so they are all uniform so you can actually randomly access
the corresponding base address go back to the run time stack to that base address and take
the relative address from that so your access speeds are substantially improved when you
use a display mechanism and hopefully your execution will improve.

What is the address of that x?
That x at compile time the x has been translated into something that gives the nesting
level and relative address from what ever is corresponding base. That’s the job you are
doing at compiling. While compiling what are you doing about non-local references?
You are replacing all identifiers by a nesting level cum relative address with respect to
the base of that block. So your main problem at run time is finding the base of the block,

your relative address is there and how do you find that they are the base of the block? It
so happens that the difference of the nesting levels is just going to be the length of the
Static Chain Pointer the number of hops down the static chain that you have to perform.
So, instead of doing that number of hops you actually organize that static chain itself as
an array in some high speed memory so that you can randomly access that. Therefore
each time when your static chain changes there is this extra overhead that the new static
chain will have to be copied out into this display.

For example, here the moment I exit this blue block on exiting this blue block I am not
going back to an activation record which is along the same static chain path. I am going
into an activation record which belongs to a different independent static chain. So the
extra overhead when I exit this blue block can come to this red block is that I have to
completely erase out my display and now before executing this red block before
continuing with my execution of this red block what I have to do is I have to copy out
this static chain into the display to enable quick accesses to non-local references in the
code segment of this red block.

(Refer Slide Time: 47:40)

In the worst case it could narrow down to actually traversing the thing. For example,
when you go from here to here it just works out to that but that’s not something that can
be really be guaranteed. You have to at least do one traversal down the appropriate static
chain fully before you can decide what to do and it is easy to do that blindly by just
copying out the display every time you exit the block and enter a new block. So when I
exit this blue block and come here I look at the Static Chain Pointer copy it out into a
display in a reverse fashion and then traverse this, copy out its Static Chain Pointer and
so on. But every time I exit a block and get back into some previous invocation I have to
do a complete traversal of the static chain at least once. But what I am claiming is that is
all you have to do then you can save on subsequent hops through a static chain by using a
display.

We are now looking at pragmatics before semantics because lot of the pragmatics is very
easy the act of naming has not significantly changed implementations. And in the case of
recursion it is even trivial. One important thing about naming I said was to provide a
form of abstraction and important feature of that kind of naming as a form of abstraction
is also that it allows you to call recursively automatically. For example in an unnamed
block except with explicit “go to” statement you cannot go back to the beginning of the
block from within the block but with naming you can automatically make recursive calls.
And the whole point about implementations are once you have organized your run time
stack in this fashion you should throw your mind back to the run time environment in
languages like Pascal and ML as opposed to run time environment in languages like
Fortran.

If you recall what we did in Fortran, in Fortran every block was independent of each
other and they were all statically allocated in memory and they all contained persistent
data. And any reference had an absolute static address. For example, if you were to take a
diagram in a Fortran like environment with static allocation what it means is that there is
going to be a pink block code segment cum data separate from red, P1 is going to be code
segment and data, P2 the question of nesting of course never arose so let us assume P11
and P21 do not exist, P2 would have code segment and data and they would all be fixed
for life that is for the lifetime of the program.

(Refer Slide Time: 50:04)

So what it meant was that all references whether local or non-local would have a fixed
absolute address which is relative to the address given at loading time of the program
relative to some base given at the loading time of the program. So what that means is that
you cannot have recursive calls because recursive calls means having different copies of
the same activation record with different values and so on and so forth. But the flip side
of the coin is that it is also very fast having fixed at all Fortran programs execute

extremely fast because they don’t have these complications of allocating fresh at run
time, de-allocating, traversing, pointers none of these so the executions are very fast. This
is one reason why scientific programs are still written in Fortran and the other important
reason of course is that lots of them were written in Fortran and people are feeling too
lazy to change it. But the moment you organize your run time environment as in the form
of stack with a dynamic allocation of memory of activation records and so on and so forth
you directly open up and make it flexible for the purpose of implementing recursion.

(Refer Slide Time: 53:34)

So what it means now is if there is a recursive call you have this program here then there
is another sub program here which is recursive then what it means is that your activation
record would really look like something like this. For over n calls to this subroutine what
you will have is essentially one activation record for the main program without a return
pointer, Static Chain Pointers and then you have several activations of this recursive call
with a Static Chain Pointer pointing here and a return pointer pointing here. And then let
us say that you are assuming the case when the recursion has been called thrice then you
will just duplicate these static pointers like this and your return pointers will be like this.

You can have several incarnations of the variables local references will be locally
resolved non-local references will go down the static change. When you exit one
invocation you automatically have from the return pointer the address of where the
invocation is that you have return to so there is absolutely no problem with the
implementation of recursion in this case. The next important question is what exactly we
mean by meanings when you have functions.

(Refer Slide Time: 53:49)

	Lecture - 37

