
Principles of Programming Languages
Dr. S. Arun Kumar

Department of Computer Science & Engineering
Indian Institute of Technology, Delhi

Lecture - 35
Contexts

Welcome to lecture 35. So, contrary to what I said last time it won’t be actually possible
to start on abstraction today so I will complete whatever I had to do on type checking in
the context of contexts and type inferencing and type checking with contexts. It is
something that we had not specified last time. We have just assumed somehow that
information was available in some form especially for the “while language”.

The implicit assumption is that just as in the run time case we assume that there was a
notion of a state, we are never starting with an undefined state and the notion of state that
we assumed there in the run time system was that there was a variable to value mapping
available for every variable. Since there are no declarations in the while language as we
have defined it the implicit assumption is that there is a variable to type binding
implicitly available at the start and given that it is always there.

(Refer Slide Time: 1:41)

Since there are no declarations we were forced to assume that there is an infinite
collection of variables, all of them had some value assigned to them in the run time
environment. Similarly now we will assume that in the case of “while” we have an
infinite collection of variables and they all have some type associated with them, may be
one of the base types. So with those assumptions in mind we actually gave these simple
rules for type checking and one reason for giving such type checking rules is that they are
very elementary and lets dispose off expressions and get on to context get on to contexts

so that we get to know how exactly type inferencing is done, how type inferencing and
type checking are related and so on.

(Refer Slide Time: 2:33)

 (Refer Slide Time: 3:37)

Therefore we assume somehow that a context or in type information is available for the
basic elements in the language namely variables and if there are constants then constants
too are available and we had these basic type checking rules so that if you can somehow
infer that e1 is of type tou1 and e2 is of type tou2 then for any binary operation e1 binary
operation e2 is of type tou3 where tou1, tou2 and tou3 are listed through these tables. As
far as commands were concerned commands do not have a type. However, commands are

made up of expressions so we have to type check commands in a way which guarantees
syntactically that a command is somehow well formed out of the right kinds of
expressions. So with commands since they are just state transformers we just assume a
predicate called well-formed.

(Refer Slide Time: 4:18)

So the type checking rules for the assignment command that you should assign to a
variable only a value expression of the same type and that you recursively go through the
commands based on the structure of the command and you type check complex
commands in terms of the type checking rules for the simpler commands. Therefore, if
any of these components does not type check is not well formed for some reason then the
whole command is ill formed, then the whole command does not type check.

Similarly, for the rest of the complex commands the one extra type checking rule we
require is that you actually have Boolean conditions and not arbitrary expressions. So
now let’s actually look at it in the context of a functional programming language with
declarations. If we have an imperative command structure the problem will become too
complicated. Essentially this is to illustrate the use of contexts where you do not have an
infinite collection of variables you have only finite collections of variables available at
any instant and there are declarations which specify the types in which case how type
inferencing is done.

So if you were to extend this language to include a language of commands essentially the
type checking or type inferencing for the declarations and expressions would proceed in
the same way and in addition the commands would have to be well-formed by
appropriate rules. So we will not worry about commands so we will just look at a simple
functional language which is like ML if you like that follows a similar syntax.

(Refer Slide Time: 6:24)

Therefore we have these declarations, you can have a declaration of this form, in ML it
would be val x equals something. In ML also you don’t always need to give the type tou
but that’s because ML is not a type checking system and more than a type checking
system it’s a type inferencing system. So, if the type of E is clear then what ML will do is
it will automatically assign that type to this variable x. Therefore right now we will
assume that declarations are all well typed which means we are actually imposing Pascal
like declaration discipline in the language for the present moment and then you can of
course compose declarations in the usual fashion and just for variety I have added an
extra form of an ML type expression the “if then else” which is an important form and
from the “if then else” it is also easy to derive options where you have options on the
structure, options on pattern matching and so on.

So we have this expression with a declaration in it and what holds for this expression
with the declaration in it also holds in case you extend this to commands for commands
with declarations in them. So Pascal like declarations are very easily taken care of and
then of course you have these literal constants. In the case of declarations the moment
you bring in declarations you are bringing in bound variables or free variables, the notion
of free variables becomes important and we have this definition of free and defined
variables. So the base case is something of this form, the only defined variable here is x
and every variable that’s free in e is free in this entire declaration and when you compose
declarations you get similar structurally defined sets of defined variables and free
variables.

So the question is whether x can occur in e in the first declaration. Now, the way
declarations work in ML is that the x that occurs in e is a different x previously declared
in some outer scope from the x that is now being re-declared, that x is still free so it is
still a free variable of this declaration. If you have taken all x’s in e let us assume you
give them a different color and in the free variable set it will be of that color whereas in

the defined variable set it will be of this color. So these natural static scoping rules apply
and any free occurrence of x in this refers to an x declared in some outer scope and it
derives its type also just as it derives value from that outer scope it also derives its type
from that outer scope where the declaration for x occurs. And d1 semicolon d2 similarly
has all these defined variables.

(Refer Slide Time: 10:32)

The free variables of d1 semicolon d2 are that, anything that’s free in d1 is free in d1
semicolon d2 and whatever is declared in d1 could be used in d2 so anything that’s free in
d2 except that those that have been declared in d1 this union constitutes the free variables
of this declaration. Similar things apply here for d1 and d2. Of course there is a
disjointness condition for d1 and d2 the same name cannot be declared in both d one and
d two that disjointness condition is made clear in rules of inference.

In the case of the nested declarations a nested declaration really refers to the declaration
d2 which might be very complex so you might require additional names to abstract out
some of the sub expressions and give them new names. So you have the declaration d1 to
aid essentially what is required is the declaration d2. The only defined variables in this
declaration are those that are defined in d two and the free variables in this are all those
variables that are free in d1 and as usual the variables that are declared in d one might be
used in the declaration d2 so the free variables of d2 excepting those that have been
declared in d1 this union (Refer Slide Time: 12:23) actually constitutes the free variables
of this declaration. For all other expressions that we have already seen before the notion
of free variables remains unchanged and in the case of this let expression we need to
specify free variables and declare defined variables in declarations in order to enable a
definition for the let construct essentially. So, all these machineries are precisely for this
so the free variables in this are exactly the free variables in e.

Of course the free variables in e could include some variables that have been declared in
d so remove those because they get bound union the declaration d involves expressions
which contain variables previously declared in the scope in which this let construct
occurs or in some outer scope in which this let construct occurs so the free variables of d
are also free in this expression.

(Refer Slide Time: 13:28)

Here of course it is very trivial it is just the union of all the free variables that occur in
each of these expressions. Now we are going away from infinite collections of variables.
Since we have declarations we can restrict ourselves to actually the variables or the
names or the identifiers that you actually have in your program. You don’t need to
assume an assignment of types or of values to the infinite collections of identifiers that
you have. So we have the notion of a type environment or what we have called in the
lambda calculus a context. So a type environment or a context over some finite collection
V of variables now this would be a finite collection is just a variable to types binding.
This “types” is meant to denote whatever types that are generated through some context
free grammar in the language of types.

When we say variables they are not really value variables they could be identifiers which
denotes functions a higher order function but for the present we will just restrict ourselves
to this as to whatever “types” means. So, in the type environment a given set of variables
is just a set of all possible contexts that you can define. There are no type variables there
are only value variables but we have a set of types generated by some context free
grammar.

In fact for most of the examples here this word “types” will denote only the base types,
type variables are really required when you are dealing with polymorphism but we have
already dealt with polymorphism and we are doing a backward integration into lower
levels so lets restrict ourselves to this for the moment. Hence, just as in the case of our

environments we require the notion of a temporary updation on this static environment.
Static environment is another word that is used interchangeably with context and type
environment, a temporary updation of the type environment. Given that capital gamma
and delta are both contexts over some specified sets of variables this updation of gamma
by delta is such that for every identifier x the type of x is given by delta if x is a defined
variable of delta.

(Refer Slide Time: 17:00)

If x is somehow a defined variable of delta what I have done is I have stealthily extended
the notion of defined variables from syntax to the contexts. so essentially if you think of a
context as a collection of this form (Refer Slide Time:17:41) may be z of type int arrow
int or some such thing if you consider a context to be a collection of this form then the
defined variables are x, y, z etc. So I have actually done that without explicitly
mentioning it so we have the concept of what are all the defined variables in a context so
this updation is such that if x does not occur in the defined variables of delta then the type
of x is whatever is given by gamma.

Gamma is a context, delta is a context and gamma updated with delta is a new context
and how is this new context defined? It’s defined in terms of the contexts gamma and
delta as follows: for any identifier x in the collections of variables over which gamma and
delta are defined the type of x is what you are interested in a context and in the type of x
whatever is the type of x in delta if x occurs as a defined variable in delta. If x does not
occur as a defined variable in delta then the type of x is whatever in the context gamma.
So this takes into account redefinition of a variable.

So how do we process declarations for type checking?
We have the rules of inference which are very similar to the rules that we had for
dynamic semantics in the presence of run time environments. We are considering a
collection of variables v and essentially this context gamma has this collection of

variables v as defined variables. With this assumption of the types of the variables given
in gamma if you can somehow infer that the expression e is of type tou then this
declaration of x is well typed and what it means is that this declaration creates a new little
context just like we had new little environments this creates a new little context which
consists of a type binding type for x and that type binding type for x is tou.

So the type of x is tou and it creates this new thing. So this rule actually does not do any
inferencing it does only type checking. So it creates this little environment only if e has
somehow been inferred to be of type tou otherwise this rule is not applicable which
means that your declaration does not type check. The same kind of default rules that we
had for the dynamic environments also apply here, what is not specified is not allowed.
Hence if e were of some other type some type other than tou then what it means is that
this rule does not apply because this declaration does not type check.

Therefore, no new little context is created and essentially the translation stops right there,
no further translation takes place. Remember that this is something that happens at
translation time as opposed to our run time environment. In the run time environment if
none of the rules apply then what you can say is that essentially the execution stops there,
it aborts and it does not give you any results. Similarly the translation stops here if
something does not type check.

(Refer Slide Time: 23:18)

Declarations produce little type environments. In the context gamma which means
somehow all the free variables in d one have type bindings in gamma. Assume that all the
free variables in d1 have type bindings in gamma then since each of those declarations in
d1 may be something like this for example each of them create a collection of bindings.

Assume that we can somehow create a collection of little type environment which creates
the bindings for all the defined variables in d1. Since the defined variables of d1 could be

free in d2 in this updated environment where delta one is the little environment created by
processing d1, it might contain some new variables v1 so in this updated type
environment if you can infer that d2 creates a little context delta two then in the original
context gamma these declarations d1;d2 actually creates the little environment delta1
updated by delta2. Note that this allows for the fact that the same variable might occur in
both d1 and d2. This is not allowed in languages like Pascal but it’s certainly allowed in
ML. So what happens is that within this in the context of this composite declaration the
most recent declaration of that identifier is what is used throughout and the same thing
also happens in the run time environment.

The value of the most recent declaration of the identifier is what takes effect. This is how
contexts are created and now for the other two declaration mechanisms we have this.
Here we have this disjointness condition on this side that the declared variables of d1 and
d2 should be disjoint and given that they are going to be disjoint both d1 and d2 are type
evaluated in the same context gamma within which they occur and if each of them
produces a new type environment delta1 and delta2 respectively then this composite
declaration produces a new type environment delta1 union delta2 and this disjointness
condition ensures that delta1 and delta2 are also disjoint and so the same variable does not
occur in both.

(Refer Slide Time: 26:46)

Finally for the “within construct” as I said d1 is used in order to essentially create the
environment d2 the type environment defined by d2 and of course the defined variables of
d1 might occur within d2 as free variables. So we first process d1 in the context gamma
and let’s assume that it creates a little environment delta1 with a new collection of
variables v1. Now in this updated type environment gamma delta1 process d2 to obtain a
new little type environment delta2 and the net result of this declaration is to create this
new type environment delta2.

So now we have seen how actually declarations create contexts and now the type
checking becomes quite easy. Thus we can look at type checking with contexts. Hence if
you assume you have given context gamma which means the collection of variable to
identifier to type bindings then that is the context we will carry throughout. In the case of
these integers and so on and so forth assume that there is some syntactic mechanism by
which even without explicitly specifying it may be you can infer the type or in other
cases you might actually require an explicit declaration of this form. So in either case any
constants that are their types are obtained by pattern matching of the forms. For any free
variable its type is really whatever is defined in the context and for these Boolean
variables we have the same old rules except that they are all in the presence of a context.

(Refer Slide Time: 29:29)

Therefore we have this trivial type checking rules; e1 is of type tou1 e2 is of type tou2
then e1 circle e2 is of type tou3 where again of course the type tou1, tou2 and tou3 are as
defined by these tables here for integers and booleans. So what it means is you carry
forward these tables for type checking here and lastly the ”if then else” should ensure that
an ML type inferencing actually means that, in the case of commands as I said well
formedness is enough, there is no question of command having a type. But in the case of
“if then else” used in an expression language since the whole expression denotes a value
it denotes a value of a certain type which means both arms of this conditional should have
the same type. The result of this expression is going to be either the result of evaluating e
one or the result of evaluating e0 depending on whether e is true or false.

Therefore, essentially this whole expression is of some type tou which means that its
eventual value that it returns in execution will be a value of type tou provided each of
these arms e1 and e0 is of the same type tou, of course this has to be a Boolean otherwise
it is not a condition at all. So, if this is a Boolean and each of the arms is of the same type
which is not necessarily ensured in “if then else” in a typeless language, in an untyped
language what can happen is that this e1 and e0 could be of different types and the result

of this if e then e1 else e0 may not be compile time determinable as a type. It could
actually have different types and at run time after the evaluation of Booleans when you
get the value you will also get its type. But in an ML type environment where we insist
ML is strongly typed in the sense that at translation time the type of every expression is
determined.

 Then this expression must have a type and it can have that type only if both e1 and e0 are
of the same type so that is how the “if then else” works here. As far as let expressions are
concerned you have a declaration which creates a little type environment delta then you
evaluate the type of this expression in the context of this new type environment delta. So
you look at it in this updated context, determine the type of this expression where of
course the side condition is that this delta might use new identifiers so this v prime is the
set of all defined identifiers in the declaration d then in the context gamma the type of
this let expression is really the type of this expression e.

(Refer Slide Time: 34:04)

So, in a completely closed program just as you started with an empty run time
environment you will start with an empty type environment and as you go through the
declarations you will be building up contexts. As you go into inner and inner scopes your
context will keep getting updated. As you exit scopes your context will also keep
shrinking just like the run time environment keeps shrinking as you exit more and more
calls till at the end where again you are left with an empty environment and that’s at run
time and this is at compile time which is the only difference.

Since it is at run time it specifies values and this is at compile time so it specifies only
types. This is an interesting analogy between the structure of typing and the structure of
the run time environment. There are other very interesting analogies too. Let’s briefly
look at typing. I initially said that typing is an important concept because it allows you to
save on badly typed run time executions. So if you do type checking you can throw out a

program early in the game without even bothering to execute it. And it is been noticed
that even experienced programmers may type mistakes and so it’s a good idea to have
type checking or type inferencing. So the difference between type checking and type
inferencing is clearly this. Actually they both are very closely related.

(Refer Slide Time: 35:47)

So if you look at languages like ML and CAML what happens is that in any ML session
or a CAML session you might be declaring a large number of identifiers. One does not
necessarily need to think of an ML program as a one complete whole, after all the fact
that you can go through an interactive session means that you can keep changing things
so as a result in a really long session you will be using a large number of identifiers, some
of them useful and some of them useless as time goes on.

Now whatever may be the case what ML or CAML requires is only that you specify just
enough type information so that the ML typing system can deduce what is called the
principal type. Forget about the word principal for the moment, it can deduce the type of
the expression. That is why it is not necessary for every new identifier to introduce the
declaration like you do in Pascal. You can keep introducing new identifiers and as long as
the ML type system accepts them and assigns them a type you are playing safe. So it
actually does a form of deduction and this deduction is a form of equation solving using
unification. So we will look at a small example of that but essentially it does deductions
so it does type inferencing from very little type information.

(Refer Slide Time: 37:47)

It means that you require having very few explicit type specifications for identifiers and
the types of all other identifiers and expressions are inferred. Especially since ML uses
pattern matching the use of pattern matching means firstly that it can use unification to do
type inferencing, secondly it means that since pattern matching is also a facility in the
language, it means that programmers are going to use a large number of identifiers and
they don’t all have to be explicitly declared. So ML actually infers the type of every
identifier and then type checking the expressions is no problem. Hence type checking and
type inferencing go on at the same time. And further for identifiers which do not have
explicit base type definitions, for example I can define this function let’s say head for a
list in ML as normally I would so head of, I am incomplete pattern matching so I will just
define this pattern h cons t and I will say that this is equal to h.

Now the point about ML is that there are at least three new identifiers; one is head,
another is h and another is t. the types of none of them have been explicitly specified
except that I use this reserved word fun and therefore it is clear that this head is not
actually a base type, that is all it specifies but this application says that, this head is
actually a unary function let us assume that there is some precedence so for example if I
don’t assume precedence then I put this brackets so all that you can really look at and
infer from here is that head must be a unary function of, from this cons you actually infer
that which applies on lists of some kind, I don’t know lists of what kind but if that list
satisfies this pattern h cons t then I return h. So what ML does is it actually assigns a type
variable.

Since the types of h and t are not explicitly specified so ML says that this function is
really a function from some alpha list where alpha is to the type alpha where alpha is a
type variable. And since ML is polymorphic what it means is you can for example apply
head to the list consisting of 1, 2, 3 and from the very syntax of this ML gathers that this
is of type int list and it actually tries to apply head to this and sees whether it can do it.

And it can apply head to this only if it can equalize this alpha list with int list. Again it
uses its own pattern matching facility and infers that alpha therefore must be int here and
for this particular context it assigns head. It assigns alpha the value of int. This is like a
trivial equation solving.

(Refer Slide Time: 42:11)

What is the value of alpha such that alpha list equals int list, the value of alpha is int. It is
the most elementary form of equation solving. It gives you this and then it actually types
check this, so this is int. If alpha is int then this type checks. So you could for example
apply this head again to something else like true, false and then it actually does this alpha
list equals to this so it knows it is a bool list and then it does ad equation solving and for
this application it does the type checking.

(Refer Slide Time: 43:03)

But ML actually is capable of very complicated type checking, type inferencing, equation
solving with the unification so it uses all these words like list as function constructors in
the unification algorithm. Arrow is also a function constructor in the unification
algorithm. The base types may be the int bool real or whatever there is a type language
but all other things are function constructors over which unification has to be performed.

For example, you could have alpha arrow alpha list. You could have a list of functions so
arrow, list and even the record constructor, the tuple constructor, the star for the tuple
type constructor are all function symbols to be applied to be used in a unification
algorithm. So, for example list is a postfix, this constructor (Refer Slide Time: 44:20) is a
postfix function constructor over the language of types. This arrow is an infix constructor
over the language of types, the star is an infix constructor over the language of types and
it uses all these and runs the unification algorithm to do equation solving and having done
the equation solving and having inferred the values of all these variables not all variables
will, if I stop my ML session here alpha will not have an explicit value it is still a type
variable. But the point is that it assigns a principal type. That means it finds the most
general unifier of that set of equations.

The most general unifier is usually not expressed in terms of a monotype always. I use
head over lists of functions of type alpha arrow, alpha and so on and so forth then that
alpha is never actually given an explicit base type definition in the language of types. It
remains always a type variable. So it generates new type variables and does unification
and finally has a list of type variables in terms of which all other type variables are
expressed.

(Refer Slide Time: 47:16)

If it is a simply typed language then what it means is that at the end of something this
alpha should have an expression, alpha should solve to an equation of the form int arrow
int or something in terms of the base types, it should be an expression, it should be a type
expression in terms of the base types but if it is polymorphic I just leave it as a variable
and I do the type checking assuming that all the type variables that I have got have
somehow been expressed in terms of some minimal set of type variables and base types
in the type language.

So let us quickly look at this example. If you do not give these declarations, there are lots
of identifiers here h, h2::t “sorted” there is no declaration for any of them. But there is a
declaration for this h1 and this declaration is required because you are going to use a less
than or equal to relation and this less than or equal to relation is not defined over all types
it is not a polymorphic relation it is a relation that is defined in the ML environment only
for integers, reals, may be characters for example it is not defined on strings.

In your own environment you might have defined something like a less than or equal to
for some other data types but then you are still being absolutely specific about it. So this
less than or equal to is not a relation that is freely available over all types and therefore
the only way ML can type check this is if it knows which less than or equal to are you
using then this declaration actually explicitly specifies and determines the type of the
entire thing.

For example, from this declaration it follows that this has to be an int list and therefore h
two has to be an int, therefore t has to be an int list. Therefore this empty list is the empty
list of int lists and this h therefore must be an int list and this nil is also the empty int list
and then of course then this less than or equal to type checks for integers, it doesn’t type
check for many other types and this whole thing is a Boolean so “sorted” has a type
which is int list to bool.

(Refer Slide Time: 50:03)

So the programmers are lazy and would like the convenience of not explicitly specifying
types. But then when they do not explicitly specify type they also make type mistakes. So
the best way to combine convenience with typing is to do type inferencing which is what
ML does. The other extreme of course is something like Pascal which does only type
checking. They expect that every identifier has an explicit type specified and after that
they only do type checking they do not do any type inferencing. The type inferencing is
restricted to expressions but then that is for checking consistency and that kind of type
checking can be done trivially by just matching parities and so on, it doesn’t really
require a sophisticated collection of type constructors to do it.

Therefore, languages like Pascal do only type checking and actually even though I have
written no inferencing they actually do some inferencing, after all expressions come
without predefined types. Every expression is not type defined by the program. They do
that amount of type inferencing which is already given by the rules and they do the type
checking essentially to maintain consistency of types. Essentially that’s how type
checking goes on. So type checking and type inferencing go together. If every identifier
has been explicitly declared then you require to do only type checking but you use the
same set of inference rules for both.

(Refer Slide Time: 50:58)

If not every identifier is declared then you have to do type inferencing. In that example of
sorted if you do not explicitly specify somewhere that it is an integer list, either in an
implied form or in an explicit form if you do not specify in some place by which the
inferencing system can determine what is the type then it automatically gives you a
message unresolved type or some such type or ambiguous type unable to resolve type. So
both ML and Pascal are actually statically typed languages in the sense that the types are
determined at compile time, that’s what static means.

Actually Pascal is quite strong but I have written weak here for a specific reason and that
has to do with variant records where you can do type mismatches. But otherwise both ML
and Pascal are strongly typed. Pascal has other weaknesses also like for example in
procedures which have functions as parameters, the types are not clearly determined and
they are not determinable really at compile time except at the call but more or less Pascal
is strongly typed most types are determinable.

APL and Snobol and so on do not actually have a notion of compilation, they are very
highly interactive so they have a very weak dynamic type checking facility. Just before
the operation is applied in the execution they actually check the consistency of the types
and see if the operation can be applied. LISP and scheme are mostly untyped except for
the underlined base types for which type tags are already available in the hardware or in
the for through firmware or through assembly or some such thing. That is how typing
goes.

(Refer Slide Time: 52:04)

	Lecture - 35

