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Welcome to lecture 35. So, contrary to what I said last time it won’t be actually possible 
to start on abstraction today so I will complete whatever I had to do on type checking in 
the context of contexts and type inferencing and type checking with contexts. It is 
something that we had not specified last time. We have just assumed somehow that 
information was available in some form especially for the “while language”.  
 
The implicit assumption is that just as in the run time case we assume that there was a 
notion of a state, we are never starting with an undefined state and the notion of state that 
we assumed there in the run time system was that there was a variable to value mapping 
available for every variable. Since there are no declarations in the while language as we 
have defined it the implicit assumption is that there is a variable to type binding 
implicitly available at the start and given that it is always there.  
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Since there are no declarations we were forced to assume that there is an infinite 
collection of variables, all of them had some value assigned to them in the run time 
environment. Similarly now we will assume that in the case of “while” we have an 
infinite collection of variables and they all have some type associated with them, may be 
one of the base types. So with those assumptions in mind we actually gave these simple 
rules for type checking and one reason for giving such type checking rules is that they are 
very elementary and lets dispose off expressions and get on to context get on to contexts 



so that we get to know how exactly type inferencing is done, how type inferencing and 
type checking are related and so on. 
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Therefore we assume somehow that a context or in type information is available for the 
basic elements in the language namely variables and if there are constants then constants 
too are available and we had these basic type checking rules so that if you can somehow 
infer that e1 is of type tou1 and e2 is of type tou2 then for any binary operation e1 binary 
operation e2 is of type tou3 where tou1, tou2 and tou3 are listed through these tables. As 
far as commands were concerned commands do not have a type. However, commands are 



made up of expressions so we have to type check commands in a way which guarantees 
syntactically that a command is somehow well formed out of the right kinds of 
expressions. So with commands since they are just state transformers we just assume a 
predicate called well-formed.  
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So the type checking rules for the assignment command that you should assign to a 
variable only a value expression of the same type and that you recursively go through the 
commands based on the structure of the command and you type check complex 
commands in terms of the type checking rules for the simpler commands. Therefore, if 
any of these components does not type check is not well formed for some reason then the 
whole command is ill formed, then the whole command does not type check. 
 
Similarly, for the rest of the complex commands the one extra type checking rule we 
require is that you actually have Boolean conditions and not arbitrary expressions. So 
now let’s actually look at it in the context of a functional programming language with 
declarations. If we have an imperative command structure the problem will become too 
complicated. Essentially this is to illustrate the use of contexts where you do not have an 
infinite collection of variables you have only finite collections of variables available at 
any instant and there are declarations which specify the types in which case how type 
inferencing is done. 
 
So if you were to extend this language to include a language of commands essentially the 
type checking or type inferencing for the declarations and expressions would proceed in 
the same way and in addition the commands would have to be well-formed by 
appropriate rules. So we will not worry about commands so we will just look at a simple 
functional language which is like ML if you like that follows a similar syntax.  
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Therefore we have these declarations, you can have a declaration of this form, in ML it 
would be val x equals something. In ML also you don’t always need to give the type tou 
but that’s because ML is not a type checking system and more than a type checking 
system it’s a type inferencing system. So, if the type of E is clear then what ML will do is 
it will automatically assign that type to this variable x. Therefore right now we will 
assume that declarations are all well typed which means we are actually imposing Pascal 
like declaration discipline in the language for the present moment and then you can of 
course compose declarations in the usual fashion and just for variety I have added an 
extra form of an ML type expression the “if then else” which is an important form and 
from the “if then else” it is also easy to derive options where you have options on the 
structure, options on pattern matching and so on. 
 
So we have this expression with a declaration in it and what holds for this expression 
with the declaration in it also holds in case you extend this to commands for commands 
with declarations in them. So Pascal like declarations are very easily taken care of and 
then of course you have these literal constants. In the case of declarations the moment 
you bring in declarations you are bringing in bound variables or free variables, the notion 
of free variables becomes important and we have this definition of free and defined 
variables. So the base case is something of this form, the only defined variable here is x 
and every variable that’s free in e is free in this entire declaration and when you compose 
declarations you get similar structurally defined sets of defined variables and free 
variables.  
 
So the question is whether x can occur in e in the first declaration. Now, the way 
declarations work in ML is that the x that occurs in e is a different x previously declared 
in some outer scope from the x that is now being re-declared, that x is still free so it is 
still a free variable of this declaration. If you have taken all x’s in e let us assume you 
give them a different color and in the free variable set it will be of that color whereas in 



the defined variable set it will be of this color. So these natural static scoping rules apply 
and any free occurrence of x in this refers to an x declared in some outer scope and it 
derives its type also just as it derives value from that outer scope it also derives its type 
from that outer scope where the declaration for x occurs. And d1 semicolon d2 similarly 
has all these defined variables.  
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The free variables of d1 semicolon d2 are that, anything that’s free in d1 is free in d1 
semicolon d2 and whatever is declared in d1 could be used in d2 so anything that’s free in 
d2 except that those that have been declared in d1 this union constitutes the free variables 
of this declaration. Similar things apply here for d1 and d2. Of course there is a 
disjointness condition for d1 and d2 the same name cannot be declared in both d one and 
d two that disjointness condition is made clear in rules of inference. 
 
In the case of the nested declarations a nested declaration really refers to the declaration 
d2 which might be very complex so you might require additional names to abstract out 
some of the sub expressions and give them new names. So you have the declaration d1 to 
aid essentially what is required is the declaration d2. The only defined variables in this 
declaration are those that are defined in d two and the free variables in this are all those 
variables that are free in d1 and as usual the variables that are declared in d one might be 
used in the declaration d2 so the free variables of d2 excepting those that have been 
declared in d1 this union (Refer Slide Time: 12:23) actually constitutes the free variables 
of this declaration. For all other expressions that we have already seen before the notion 
of free variables remains unchanged and in the case of this let expression we need to 
specify free variables and declare defined variables in declarations in order to enable a 
definition for the let construct essentially. So, all these machineries are precisely for this 
so the free variables in this are exactly the free variables in e.  
 



Of course the free variables in e could include some variables that have been declared in 
d so remove those because they get bound union the declaration d involves expressions 
which contain variables previously declared in the scope in which this let construct 
occurs or in some outer scope in which this let construct occurs so the free variables of d 
are also free in this expression.  
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Here of course it is very trivial it is just the union of all the free variables that occur in 
each of these expressions. Now we are going away from infinite collections of variables. 
Since we have declarations we can restrict ourselves to actually the variables or the 
names or the identifiers that you actually have in your program. You don’t need to 
assume an assignment of types or of values to the infinite collections of identifiers that 
you have. So we have the notion of a type environment or what we have called in the 
lambda calculus a context. So a type environment or a context over some finite collection 
V of variables now this would be a finite collection is just a variable to types binding. 
This “types” is meant to denote whatever types that are generated through some context 
free grammar in the language of types. 
 
When we say variables they are not really value variables they could be identifiers which 
denotes functions a higher order function but for the present we will just restrict ourselves 
to this as to whatever “types” means. So, in the type environment a given set of variables 
is just a set of all possible contexts that you can define. There are no type variables there 
are only value variables but we have a set of types generated by some context free 
grammar. 
 
In fact for most of the examples here this word “types” will denote only the base types, 
type variables are really required when you are dealing with polymorphism but we have 
already dealt with polymorphism and we are doing a backward integration into lower 
levels so lets restrict ourselves to this for the moment. Hence, just as in the case of our 



environments we require the notion of a temporary updation on this static environment. 
Static environment is another word that is used interchangeably with context and type 
environment, a temporary updation of the type environment. Given that capital gamma 
and delta are both contexts over some specified sets of variables this updation of gamma 
by delta is such that for every identifier x the type of x is given by delta if x is a defined 
variable of delta.  
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If x is somehow a defined variable of delta what I have done is I have stealthily extended 
the notion of defined variables from syntax to the contexts. so essentially if you think of a 
context as a collection of this form (Refer Slide Time:17:41) may be z of type int arrow 
int or some such thing if you consider a context to be a collection of this form then the 
defined variables are x, y, z etc. So I have actually done that without explicitly 
mentioning it so we have the concept of what are all the defined variables in a context so 
this updation is such that if x does not occur in the defined variables of delta then the type 
of x is whatever is given by gamma. 
 
Gamma is a context, delta is a context and gamma updated with delta is a new context 
and how is this new context defined? It’s defined in terms of the contexts gamma and 
delta as follows: for any identifier x in the collections of variables over which gamma and 
delta are defined the type of x is what you are interested in a context and in the type of x 
whatever is the type of x in delta if x occurs as a defined variable in delta. If x does not 
occur as a defined variable in delta then the type of x is whatever in the context gamma. 
So this takes into account redefinition of a variable. 
 
So how do we process declarations for type checking? 
We have the rules of inference which are very similar to the rules that we had for 
dynamic semantics in the presence of run time environments. We are considering a 
collection of variables v and essentially this context gamma has this collection of 



variables v as defined variables. With this assumption of the types of the variables given 
in gamma if you can somehow infer that the expression e is of type tou then this 
declaration of x is well typed and what it means is that this declaration creates a new little 
context just like we had new little environments this creates a new little context which 
consists of a type binding type for x and that type binding type for x is tou. 
 
So the type of x is tou and it creates this new thing. So this rule actually does not do any 
inferencing it does only type checking. So it creates this little environment only if e has 
somehow been inferred to be of type tou otherwise this rule is not applicable which 
means that your declaration does not type check. The same kind of default rules that we 
had for the dynamic environments also apply here, what is not specified is not allowed. 
Hence if e were of some other type some type other than tou then what it means is that 
this rule does not apply because this declaration does not type check. 
 
Therefore, no new little context is created and essentially the translation stops right there, 
no further translation takes place. Remember that this is something that happens at 
translation time as opposed to our run time environment. In the run time environment if 
none of the rules apply then what you can say is that essentially the execution stops there, 
it aborts and it does not give you any results. Similarly the translation stops here if 
something does not type check.  
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Declarations produce little type environments. In the context gamma which means 
somehow all the free variables in d one have type bindings in gamma. Assume that all the 
free variables in d1 have type bindings in gamma then since each of those declarations in 
d1 may be something like this for example each of them create a collection of bindings.  
 
Assume that we can somehow create a collection of little type environment which creates 
the bindings for all the defined variables in d1. Since the defined variables of d1 could be 



free in d2 in this updated environment where delta one is the little environment created by 
processing d1, it might contain some new variables v1 so in this updated type 
environment if you can infer that d2 creates a little context delta two then in the original 
context gamma these declarations d1;d2 actually creates the little environment delta1 
updated by delta2. Note that this allows for the fact that the same variable might occur in 
both d1 and d2. This is not allowed in languages like Pascal but it’s certainly allowed in 
ML. So what happens is that within this in the context of this composite declaration the 
most recent declaration of that identifier is what is used throughout and the same thing 
also happens in the run time environment. 
 
The value of the most recent declaration of the identifier is what takes effect. This is how 
contexts are created and now for the other two declaration mechanisms we have this. 
Here we have this disjointness condition on this side that the declared variables of d1 and 
d2 should be disjoint and given that they are going to be disjoint both d1 and d2 are type 
evaluated in the same context gamma within which they occur and if each of them 
produces a new type environment delta1 and delta2 respectively then this composite 
declaration produces a new type environment delta1 union delta2 and this disjointness 
condition ensures that delta1 and delta2 are also disjoint and so the same variable does not 
occur in both.  
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Finally for the “within construct” as I said d1 is used in order to essentially create the 
environment d2 the type environment defined by d2 and of course the defined variables of 
d1 might occur within d2 as free variables. So we first process d1 in the context gamma 
and let’s assume that it creates a little environment delta1 with a new collection of 
variables v1. Now in this updated type environment gamma delta1 process d2 to obtain a 
new little type environment delta2 and the net result of this declaration is to create this 
new type environment delta2. 
 



So now we have seen how actually declarations create contexts and now the type 
checking becomes quite easy. Thus we can look at type checking with contexts. Hence if 
you assume you have given context gamma which means the collection of variable to 
identifier to type bindings then that is the context we will carry throughout. In the case of 
these integers and so on and so forth assume that there is some syntactic mechanism by 
which even without explicitly specifying it may be you can infer the type or in other 
cases you might actually require an explicit declaration of this form. So in either case any 
constants that are their types are obtained by pattern matching of the forms. For any free 
variable its type is really whatever is defined in the context and for these Boolean 
variables we have the same old rules except that they are all in the presence of a context.  
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Therefore we have this trivial type checking rules; e1 is of type tou1 e2 is of type tou2 
then e1 circle e2 is of type tou3 where again of course the type tou1, tou2 and tou3 are as 
defined by these tables here for integers and booleans. So what it means is you carry 
forward these tables for type checking here and lastly the ”if then else” should ensure that 
an ML type inferencing actually means that, in the case of commands as I said well 
formedness is enough, there is no question of command having a type. But in the case of 
“if then else” used in an expression language since the whole expression denotes a value 
it denotes a value of a certain type which means both arms of this conditional should have 
the same type. The result of this expression is going to be either the result of evaluating e 
one or the result of evaluating e0 depending on whether e is true or false.  
 
Therefore, essentially this whole expression is of some type tou which means that its 
eventual value that it returns in execution will be a value of type tou provided each of 
these arms e1 and e0 is of the same type tou, of course this has to be a Boolean otherwise 
it is not a condition at all. So, if this is a Boolean and each of the arms is of the same type 
which is not necessarily ensured in “if then else” in a typeless language, in an untyped 
language what can happen is that this e1 and e0 could be of different types and the result 



of this if e then e1 else e0 may not be compile time determinable as a type. It could 
actually have different types and at run time after the evaluation of Booleans when you 
get the value you will also get its type. But in an ML type environment where we insist 
ML is strongly typed in the sense that at translation time the type of every expression is 
determined. 
 
 Then this expression must have a type and it can have that type only if both e1 and e0 are 
of the same type so that is how the “if then else” works here. As far as let expressions are 
concerned you have a declaration which creates a little type environment delta then you 
evaluate the type of this expression in the context of this new type environment delta. So 
you look at it in this updated context, determine the type of this expression where of 
course the side condition is that this delta might use new identifiers so this v prime is the 
set of all defined identifiers in the declaration d then in the context gamma the type of 
this let expression is really the type of this expression e.  
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So, in a completely closed program just as you started with an empty run time 
environment you will start with an empty type environment and as you go through the 
declarations you will be building up contexts. As you go into inner and inner scopes your 
context will keep getting updated. As you exit scopes your context will also keep 
shrinking just like the run time environment keeps shrinking as you exit more and more 
calls till at the end where again you are left with an empty environment and that’s at run 
time and this is at compile time which is the only difference. 
 
Since it is at run time it specifies values and this is at compile time so it specifies only 
types. This is an interesting analogy between the structure of typing and the structure of 
the run time environment. There are other very interesting analogies too. Let’s briefly 
look at typing. I initially said that typing is an important concept because it allows you to 
save on badly typed run time executions. So if you do type checking you can throw out a 



program early in the game without even bothering to execute it. And it is been noticed 
that even experienced programmers may type mistakes and so it’s a good idea to have 
type checking or type inferencing. So the difference between type checking and type 
inferencing is clearly this. Actually they both are very closely related.  
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So if you look at languages like ML and CAML what happens is that in any ML session 
or a CAML session you might be declaring a large number of identifiers. One does not 
necessarily need to think of an ML program as a one complete whole, after all the fact 
that you can go through an interactive session means that you can keep changing things 
so as a result in a really long session you will be using a large number of identifiers, some 
of them useful and some of them useless as time goes on.  
 
Now whatever may be the case what ML or CAML requires is only that you specify just 
enough type information so that the ML typing system can deduce what is called the 
principal type. Forget about the word principal for the moment, it can deduce the type of 
the expression. That is why it is not necessary for every new identifier to introduce the 
declaration like you do in Pascal. You can keep introducing new identifiers and as long as 
the ML type system accepts them and assigns them a type you are playing safe. So it 
actually does a form of deduction and this deduction is a form of equation solving using 
unification. So we will look at a small example of that but essentially it does deductions 
so it does type inferencing from very little type information.  
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It means that you require having very few explicit type specifications for identifiers and 
the types of all other identifiers and expressions are inferred. Especially since ML uses 
pattern matching the use of pattern matching means firstly that it can use unification to do 
type inferencing, secondly it means that since pattern matching is also a facility in the 
language, it means that programmers are going to use a large number of identifiers and 
they don’t all have to be explicitly declared. So ML actually infers the type of every 
identifier and then type checking the expressions is no problem. Hence type checking and 
type inferencing go on at the same time. And further for identifiers which do not have 
explicit base type definitions, for example I can define this function let’s say head for a 
list in ML as normally I would so head of, I am incomplete pattern matching so I will just 
define this pattern h cons t and I will say that this is equal to h.  
 
Now the point about ML is that there are at least three new identifiers; one is head, 
another is h and another is t. the types of none of them have been explicitly specified 
except that I use this reserved word fun and therefore it is clear that this head is not 
actually a base type, that is all it specifies but this application says that, this head is 
actually a unary function let us assume that there is some precedence so for example if I 
don’t assume precedence then I put this brackets so all that you can really look at and 
infer from here is that head must be a unary function of, from this cons you actually infer 
that which applies on lists of some kind, I don’t know lists of what kind but if that list 
satisfies this pattern h cons t then I return h. So what ML does is it actually assigns a type 
variable.  
 
Since the types of h and t are not explicitly specified so ML says that this function is 
really a function from some alpha list where alpha is to the type alpha where alpha is a 
type variable. And since ML is polymorphic what it means is you can for example apply 
head to the list consisting of 1, 2, 3 and from the very syntax of this ML gathers that this 
is of type int list and it actually tries to apply head to this and sees whether it can do it. 



And it can apply head to this only if it can equalize this alpha list with int list. Again it 
uses its own pattern matching facility and infers that alpha therefore must be int here and 
for this particular context it assigns head. It assigns alpha the value of int. This is like a 
trivial equation solving. 
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What is the value of alpha such that alpha list equals int list, the value of alpha is int. It is 
the most elementary form of equation solving. It gives you this and then it actually types 
check this, so this is int. If alpha is int then this type checks. So you could for example 
apply this head again to something else like true, false and then it actually does this alpha 
list equals to this so it knows it is a bool list and then it does ad equation solving and for 
this application it does the type checking.  
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But ML actually is capable of very complicated type checking, type inferencing, equation 
solving with the unification so it uses all these words like list as function constructors in 
the unification algorithm. Arrow is also a function constructor in the unification 
algorithm. The base types may be the int bool real or whatever there is a type language 
but all other things are function constructors over which unification has to be performed.  
 
For example, you could have alpha arrow alpha list. You could have a list of functions so 
arrow, list and even the record constructor, the tuple constructor, the star for the tuple 
type constructor are all function symbols to be applied to be used in a unification 
algorithm. So, for example list is a postfix, this constructor (Refer Slide Time: 44:20) is a 
postfix function constructor over the language of types. This arrow is an infix constructor 
over the language of types, the star is an infix constructor over the language of types and 
it uses all these and runs the unification algorithm to do equation solving and having done 
the equation solving and having inferred the values of all these variables not all variables 
will, if I stop my ML session here alpha will not have an explicit value it is still a type 
variable. But the point is that it assigns a principal type. That means it finds the most 
general unifier of that set of equations.  
 
The most general unifier is usually not expressed in terms of a monotype always. I use 
head over lists of functions of type alpha arrow, alpha and so on and so forth then that 
alpha is never actually given an explicit base type definition in the language of types. It 
remains always a type variable. So it generates new type variables and does unification 
and finally has a list of type variables in terms of which all other type variables are 
expressed.  
 
 
 
 



(Refer Slide Time: 47:16) 
 

 
 
If it is a simply typed language then what it means is that at the end of something this 
alpha should have an expression, alpha should solve to an equation of the form int arrow 
int or something in terms of the base types, it should be an expression, it should be a type 
expression in terms of the base types but if it is polymorphic I just leave it as a variable 
and I do the type checking assuming that all the type variables that I have got have 
somehow been expressed in terms of some minimal set of type variables and base types 
in the type language. 
 
So let us quickly look at this example. If you do not give these declarations, there are lots 
of identifiers here h, h2::t “sorted” there is no declaration for any of them. But there is a 
declaration for this h1 and this declaration is required because you are going to use a less 
than or equal to relation and this less than or equal to relation is not defined over all types 
it is not a polymorphic relation it is a relation that is defined in the ML environment only 
for integers, reals, may be characters for example it is not defined on strings.  
 
In your own environment you might have defined something like a less than or equal to 
for some other data types but then you are still being absolutely specific about it. So this 
less than or equal to is not a relation that is freely available over all types and therefore 
the only way ML can type check this is if it knows which less than or equal to are you 
using then this declaration actually explicitly specifies and determines the type of the 
entire thing. 
 
For example, from this declaration it follows that this has to be an int list and therefore h 
two has to be an int, therefore t has to be an int list. Therefore this empty list is the empty 
list of int lists and this h therefore must be an int list and this nil is also the empty int list 
and then of course then this less than or equal to type checks for integers, it doesn’t type 
check for many other types and this whole thing is a Boolean so “sorted” has a type 
which is int list to bool.  
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So the programmers are lazy and would like the convenience of not explicitly specifying 
types. But then when they do not explicitly specify type they also make type mistakes. So 
the best way to combine convenience with typing is to do type inferencing which is what 
ML does. The other extreme of course is something like Pascal which does only type 
checking. They expect that every identifier has an explicit type specified and after that 
they only do type checking they do not do any type inferencing. The type inferencing is 
restricted to expressions but then that is for checking consistency and that kind of type 
checking can be done trivially by just matching parities and so on, it doesn’t really 
require a sophisticated collection of type constructors to do it.  
 
Therefore, languages like Pascal do only type checking and actually even though I have 
written no inferencing they actually do some inferencing, after all expressions come 
without predefined types. Every expression is not type defined by the program. They do 
that amount of type inferencing which is already given by the rules and they do the type 
checking essentially to maintain consistency of types. Essentially that’s how type 
checking goes on. So type checking and type inferencing go together. If every identifier 
has been explicitly declared then you require to do only type checking but you use the 
same set of inference rules for both.  
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If not every identifier is declared then you have to do type inferencing. In that example of 
sorted if you do not explicitly specify somewhere that it is an integer list, either in an 
implied form or in an explicit form if you do not specify in some place by which the 
inferencing system can determine what is the type then it automatically gives you a 
message unresolved type or some such type or ambiguous type unable to resolve type. So 
both ML and Pascal are actually statically typed languages in the sense that the types are 
determined at compile time, that’s what static means.  
 
Actually Pascal is quite strong but I have written weak here for a specific reason and that 
has to do with variant records where you can do type mismatches. But otherwise both ML 
and Pascal are strongly typed. Pascal has other weaknesses also like for example in 
procedures which have functions as parameters, the types are not clearly determined and 
they are not determinable really at compile time except at the call but more or less Pascal 
is strongly typed most types are determinable.  
 
APL and Snobol and so on do not actually have a notion of compilation, they are very 
highly interactive so they have a very weak dynamic type checking facility. Just before 
the operation is applied in the execution they actually check the consistency of the types 
and see if the operation can be applied. LISP and scheme are mostly untyped except for 
the underlined base types for which type tags are already available in the hardware or in 
the for through firmware or through assembly or some such thing. That is how typing 
goes.  
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