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Welcome to lecture 34. So today we will do some backward integration. We have already 
done the hardest parts of type checking. So we will just try to integrate it with whatever 
we already know about programming with our simple, functional and imperative 
programming languages. So always keep in mind that it is possible often to do some 
static type checking that is at compile time. When you come to general programming 
languages the question asked is what type checking is.  
 
In the case of lambda calculus our type checking was entirely governed by the fact that 
all lambda abstractions are unary functions therefore you had to do the type checking 
essentially only for unary functions. Since all other kinds of functions were carried forms 
in the lambda calculus certain issues were overlooked. So essentially in its most general 
form in an applied lambda calculus or in a programming language type checking is just 
the fact that you have to check that each operation in the program receives the 
appropriate number of arguments of the appropriate types and in the appropriate order.  
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Appropriate number of arguments was automatically taken care of in the lambda calculus 
by the fact that it took arguments one at a time each and as and when an argument was 
obtained it would have to type check. Appropriate types were automatically taken care of 
in the rules for type checking in the lambda calculus. In the appropriate order was also 
automatically taken care of. 



 
However, in any applied lambda calculus where there could be n-ary functions n-ary 
operations what it means is that you will have to check all these things. For example if 
the operation is not commutative or it is over a multi sorted structure then it all the 
arguments should come at appropriate times and should come in the appropriate order 
and they should be all of appropriate types. And the question is of course why you 
require type checking. Probably the most direct answer is to answer the question what 
actually happens without type checking. 
 
We already have an idea of what happens in the untyped lambda calculus. What happens 
there is that any lambda term might be applied to any other lambda term and the result is 
actually a lambda term but you may not always be able to interpret it. And essentially the 
same thing happens in hardware. Whatever may be the operation and whatever may be 
the arguments the underlying hardware which is totally untyped, of course the difference 
with the lambda calculus is that the hardware is of course all of untyped data, bit strings if 
you like, the hardware always produces some result when types are not with respect to. 
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So, for example you could do integer addition on two arguments one of them 
representing a character and another representing a set. And what actually happens is 
since the hardware is untyped rather memory locations are untyped, registers are untyped 
they are just bit strings so what can happen is that you will get something but the problem 
is that you wont be able to interpret the result. In fact the result of one type violation 
might actually be carried forward as an argument for another operation and so on and so 
forth. It will continue to produce more and more meaningless results till the entire 
computation actually fails. and of course this “fails” is a judgmental word the hardware 
does not know anything as “failed” and question of whether it has failed or not really 
depends upon your interpretation. So it will produce something and it will be very hard 
for the programmer to actually detect what exactly went wrong. 



 
Therefore the question of failure is not something that might be immediately detectable 
too. It is something that might come out years and years after the software has been sold 
for a phenomenal price to some unsuspecting customer who actually believed that it 
worked till something happened. 
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It is true that you cannot get rid of all programming errors in any full proof fashion ever. 
What you can do at most is to introduce checks and one important check wherefore is 
type checking. Since the underlying hardware is untyped it is a good idea to introduce 
type checking among other things. So, type checking actually is a much more general 
term. For example, when you look at array bounds checking in programming languages 
that is also a part of type checking because the index set for the array is a sub range type 
and therefore you have to do type checking. So type checking is a fairly general word to 
catch a whole lot of issues not necessarily all. 
 
Another unfortunate thing is that type errors are very common even among experienced 
programmers which means that early detection if you can detect it early then you can 
save a great deal of time and effort in wasted execution and in debugging. Even though 
what it means is that there is going to be a greater overhead on the compilation. it is often 
better to detect it early so that the production runs are not compromised.  
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The entire burden of detecting type errors or type violations and type violations include 
things like array, bounds, checks and so on and so forth is entirely on the programmer 
during its debugging phase. So early detection implies that what we would like to do is 
actually detect it at compile time and this is called static type checking. So static type 
checking means that you do the detection of part violations as far as possible during 
compilation or translation time. So what this means is that compilation is slowed down 
but it also puts in other things. For the typed lambda calculi you can do the type checking 
during translation time always but it is not in general possible for all features of 
programming languages.  
 
For example, it is only possible where you have statically created data that means through 
the mechanism of explicit declarations, declarations either before or after use but 
declarations which clearly create places for data. So dynamically created data cannot be 
for example statically type checked. So any kinds of pointer mechanism, list mechanisms 
the data of which changes during run time require dynamic type checking. 
 
For example, for most Pascal data structures which are static they have explicit 
declarations which give the full size of each piece of data. Whatever is stored in the 
activation stack is something that can be statically type checked. Whatever is going to be 
stored in the heap is something that will have to be dynamically type checked. So an 
early type checking strategy means that as far as possible whatever declarations are there 
they can be type checked. You do the type checking at compile time to say one execution 
time.  
 
For dynamic data structures of course you require dynamic or run time type checking and 
this is something for example which Pascal actually has in the run time descriptor for 
heaped data. Of course all these implies that you can do static type checking only for 
statically created data and it is possible only where bindings are static where bindings are 



determined at compile time. If there are bindings which are determined at run time then 
for example in languages like LISP and APL and SNOBOL what happens is that you 
cannot do type checking at translation time. 
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So normally what happens is that all this type information is really the information that is 
stored in the symbol table during the process of translation. Thus, type information is 
usually some sort of attribute which is part of the compilation process and that is how it is 
implemented and so on. On the other hand, if you look at dynamic type checking it is 
really something that has to be performed for each operation just before it is executed. 
 
As I said from the point of view of the hardware an operation can always be executed and 
it will always give you some result. But if you want to ensure that type violations do not 
occur then what it means is that you will have to perform this type checking before each 
operation is actually executed. So there has to be a code generated for checking. So what 
it means is before you execute an operation just check that the number of arguments that 
are required for that operation available, each argument is of the right type and they are 
available in the right order. That is really all that it means. But the point is that a program 
is full of little, little, little operations and what it means is that during execution you will 
have to do this checking before executing each operation and that can slow down 
executions considered.  
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However, what it does is it allows a sort of flexibility in language design. It does not 
force you to do early binding, static binding etc. The kind of flexibility also means 
possible abuse that is an important thing to realize. Any kind of flexibility could also 
imply potential abuse which means that no declarations may be required in some of these 
languages which allow for a flexible typing mechanism whose type checking is done only 
at run time. 
 
More importantly what can happen is that the types of variables may never remain static 
throughout the scope. Actually the types of variables may change during execution 
according to some perceived need. But there is a price to pay for these things and what it 
means is that you cannot take a print out of the program and expect to try to debug it to 
see what is wrong. If such programs fail for some reason or give you unexpected results 
what it means is that you will have to sit constantly with the debugger and try to 
determine what exactly is wrong with the program. 
 
So especially the type variables changing during execution can be very confusing for 
very large software and even for software which is just as large as compiler can be very 
confusing and debugging can be very hard. Of course the other kind of flexibility abuse 
that it allows is that it frees the programmer from typing concerns but it makes debugging 
extremely difficult.  
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The extra overhead that it adds when you have dynamic type checking is that of course 
you could take the attitude that I do not require any type checking it is too slow forget 
about it no type checking but that means that there could be strange type violations that 
might occur and they might all actually produce results which on the surface look 
meaningful. But if you want to do some type violation detection and if you decide to 
delay it to run time then what it means is that you will have to also tag every object with 
some type information to enable this kind of type checking attractor. So one thing of 
course is that it often means a certain amount of increase in space which may or may not 
be negligible but what it more often does is that it actually slows down execution. 
 
Therefore, most languages do some form of type checking because even when you look 
at them as just forms of the untyped lambda calculus still they use operations of the 
underlying hardware and there are representational differences and so on and so forth so 
in the underlying domain t to which they are applied they do some elementary type 
checking. But when you do these things dynamically what it means is that you are going 
to considerably slow down execution so that is an extra overhead. Thus type checking 
really is something that is not an absolute essential for programming but it is a desirable 
thing to have in your translator or in your run time system. 
 
The attitude towards types has actually varied tremendously from the early programming 
languages. But more and more the feeling has come that really type checking is 
something that should be performed at sometime before execution which means either 
static or dynamic mainly to detect errors in large software. So what has happened 
historically is that the early languages like FORTRAN had really no type except integers 
and reals. But more and more typing information has been gathered. So for example with 
Pascal you get a fairly rigid form of static type checking with certain amount of dynamic 
type checking to ensure that array accesses are not violated, array boundaries are not 



violated and to ensure that heaped data is whenever is created and destroyed is of the 
appropriate type. 
 
In C for example there is an automatic possibility of casting one type into another which 
is a form of type cohesion which is quite acceptable in many cases. You explicitly want 
to cohere certain types. But if you look at C ++ again the rigidity of a Pascal typing 
system has come which means that we have realized somehow that an early detection of 
type errors is some how important to reduce debugging time to reduce overheads of run 
time type checking. Hence a large amount of C++ type checking is actually static.  
 
However, because C ++ is a super set of C and every C program should be compliable 
and executable in a C ++ environment is the basic principle. This means that the various 
kinds of abuse that you can do in C are also possible in C ++ without any problems. So 
type abuse that you can do in C is also possible in C ++. But if you were to restrict your 
C ++ usage to just the standard libraries that are available with the C ++ and just the C ++ 
constructs that are new then what you will find is that there is a tremendous amount of 
static type checking. This is one of the reasons why compilation in C ++ is considerably 
slower than that in C. They actually do a tremendous amount of static type checking to 
ensure somehow that type violations do not occur. 
 
But the typing overhead that C ++ carries with it is the fact that it has got a very type 
flexible language sub language which is open to enormous amount of abuse. So let us 
carry forward our type inferencing mechanisms or rather carry backward type inferencing 
mechanisms because we have done the hardest part of type checking. We know how to 
type check higher order functions. What we do not know is how to type check the 
underlined data. Hence let us finish that.  
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So let us assume some elementary base types for the present. I will just take the while 
programming language just to give you a flavor of how type checking can be defined in a 
structural inductive fashion so that what it means is that you can actually do a early type 
checking in many cases especially for a statically scoped language.  
 
A statically scoped language means that with the binding is early, the bindings are also 
static and so type checking can also be done static, memory allocation can be done 
statically for all except the dynamic data structures so the type checking can also be done 
statically with relocatable addresses and so on. Therefore we will just assume that our 
collection of types which is actually if you go back to the lambda calculus what it means 
is that we are talking about the collection of base types. So it is just integers and Booleans 
and then we will use some symbol conventions. 
 
I am changing one thing, I am using I am using this dark brown t to denote one of the 
Boolean values true or false and t is of type bool. Then of course I am using m and n as 
integer values. 
 
Even though I claim that the underlying hardware is largely untyped very many 
architectures came up during the 70s and 80s which actually did a tagging an automatic 
hardware tagging of memory locations to do elementary type checking in a speedy 
fashion. What it means is that they would actually tag the memory locations to be either 
floating point or integer or Boolean or character, they would just use these four basic tags 
and all other type checking especially for example of higher order functions and so on 
was the compiler’s responsibility. So they did use some form of either tagging or a 
separation of the elementary data types somehow to enable at least basic type checking to 
be performed, it is not a very sophisticated type checking. Of course we will have things 
like integer variables may be we will also have Boolean variables etc.  
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For the moment we will just assume that the there is some way of determining types for 
the most basic constructs in the language which means variables. I am not actually 
explicitly introducing declarations here but ideally what you would do is you would 
introduce declarations and that would be the explicit way of determining the types of 
variables at compile time and using them somehow to do the type checking for the rest of 
the program. 
 
Now let us just see a structurally inductive definition of type checking without worrying 
too much how the base types are determined as they could be determined in several ways. 
I previously defined two expression languages an integer expression language and a 
Boolean expression language and then a language of commands. In fact what I did was I 
did the type separation in the syntax so what I will do now is I will mix up the syntax of 
expressions, one cannot mix up the syntax of expressions with commands but one can 
mix up the syntax of Boolean and integer and expressions and see how type checking can 
be done.  
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We will assume that these binary operators are available and I will go ahead and also 
look for equality as being either between integers or Booleans. These operations are 
integer operations, (Refer Slide Time: 2:45) this is the only other Boolean binary 
operation. It is enough to have one representative of each kind actually otherwise more 
than anything else it becomes boring and repetitive. So we will just assume that this is a 
sweet of operations and we will define the language and we will define what is known as 
a static semantics. 
 
So our expression language somehow consists of all these expressions. So essentially t is 
the truth value, m is an integer may be so somehow let us assume that we can distinguish 
between t and m, x is a variable it could be a Boolean variable or an integer variable then 
(Refer Slide Time: 27:52) this is a binary operation on expressions it could be any of the 



binary operations we have seen and there is a unary operation the only unary operation in 
expressions. The commands remain as they are, there is nothing much to do with 
commands. 
 
The only thing that I have done now is from the previous incarnation of the “while 
language” is that I have collapsed the Boolean expression language and the arithmetic 
expression language into a single language which is just one set of production rules partly 
to ensure that we can actually do the type checking and it is not necessary to separate 
them very early at the level of syntax. It is possible to do the type checking and separate 
out what is well typed from what is not well typed. 
 
As far as commands are concerned expressions denote values so they have a type. Hence 
depending on what value it is supposed to be written it will have a type whereas when 
you are looking at commands the commands just change state. So commands really do 
not have a type except that we should ensure that the underlying expressions are well 
typed and we should ensure for example here since there is no separation between 
Boolean and arithmetic expressions you should ensure that you only have a Boolean 
expression here and similarly for the “while”. So commands themselves will not have a 
type, we will just assume that there is a unary predicate of well formed-ness which allows 
us to check whether a command is properly formed expressions of the appropriate type. 
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And of course a command at the top does not type check or rather it is not well typed. A 
standard thing is to say that when something is well typed you say that it type checks. A 
command does not type check if any of these arms do not type check or if this is for 
example not a Boolean expression, this might type check to an integer expression in 
which case of course the command is not well formed. So these are the elementary 
considerations which we will use for type checking. And principally we have to somehow 



be able to extract information about when an expression is a Boolean expression and 
when it is an integer expression.  
 
Now we will assume some of the base types or either representation distinction or 
actually may be through some declarations somewhere. There is somehow some way of 
distinguishing the base types which may not be entirely true on a bare machine. So how 
does one type check expressions? 
Let us take the unary operation. E is a Boolean expression where those type axioms like 
m is of type int and t is of type bool and so on that is already available and if E is of type 
bool then nought e must be of type bool. 
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The point is that this can be done in a recursive descent fashion. And after the kind of 
complicated things we have done all this actually looks really trivial except that it seems 
more and more essential in programming languages to do this kind of type checking as 
early as possible even though it appears to be totally trivial. 
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So, for any binary operation what I am going to have is that if e1 is of type tou1 and e2 is 
of type tou2 then e1 binary operation e2 is of type tou3 except that now I have to worry 
about what tou1 tou2 and tou3 are. I have circled tou1 in brown, tou two in sky blue and 
tou3 in red and now this rule is subject to these tables which actually give you the type 
rules.  
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So if you take the arithmetic operations plus minus and star so what happens is an 
arithmetic operation type checks so tou3 has to be integer only if each of e1 and e2 is of 
type integer. So here is where the type checks in all other cases there is a type error. So 



this is the only non error type otherwise there is always some type error and this is 
compile time detector. Therefore, if you look at equality of course either you are 
comparing two Booleans or you are comparing two integers in all other cases there is a 
type error. And in the case of or it is only when the two operations are Boolean that you 
actually type check in all other cases you have, or is meant to be a Boolean operation so 
that is all. Hence all those are there is to type check once you have dealt with 
polymorphism and so on and so forth. The hardest parts of type checking are really type 
checking higher order functions for which you require the kind of heavy inference rules 
that we had for the typed lambda calculus. 
 
The red entries here are tou3, here this has to be a Boolean so this has to be a Boolean 
and otherwise it is actually extremely trivial. The really hard part is type checking higher 
order functions. And once you have declarations available to you, you carry the carry 
forward the type information in a static environment and you perform the type checking 
just like you had a dynamic environment in which you wrote rules for the execution. So 
you can look at PL0 compiler it essentially does similar forms of elementary type 
checking and in the case of commands all that we require is that we just have to go down 
deep into the command and in a recursive descent fashion we should just ensure that the 
commands are well formed. So I would say that command C is well formed, I will use the 
predicate wf(c) to indicate that a command type checks if it satisfies these rules. So the 
basic thing is that the assignment should be between things of compatible types. Now, in 
most programming languages you have type cohesion mechanisms. That means casting 
mechanisms so that you can either explicitly or implicitly cohere an integer value to be 
real value or truncate a real value in order to give you an integer value or whatever.  
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In many programming languages including Pascal actually the integer to real conversion 
is implicit. If the left hand side is real variable and there are integers on the right hand 
side then there is an implicit function which converts the integers to reals and then does 



the assignment. In languages like ML they have actually made it explicit which is 
actually a good idea in the sense that if it is explicit then you know that the programmer 
actually knows what he is doing whereas if it is implicit it is not clear whether the 
programmer is aware of what he is doing and extreme case is in the case of FORTRAN 
where you have the same symbol for division and the same symbol is used for integer 
division and real division and it is not clear when the programmer will make a mistake, 
when we will get a quotient which is a real number and especially with variables not 
necessarily being declared with symbolic conventions and so on. 
 
In FORTRAN it is actually a complete mess in terms of readability whereas the later 
languages actually allow for some form of implicit or explicit type cohesion. The type 
cohesion function let us assume its explicit is really a function from lets say integers to 
reals or reals to integers, truncation is a function from reals to integers and given an 
argument by the standard application rules of the lambda calculus you get an answer 
which is an integer and you can write out those rules for both implicit and explicit type 
cohesions. 
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And in the case of other commands you just follow the normal forms of structural 
induction. If these two commands individually type check then their sequencing also type 
checks. The “if then else” and the “while” just require this kind of checking their 
individual bodies have to type check and it should be ensured that the expression is a 
Boolean then the individual commands also type check. 
 
Therefore, type checking rules are usually quite trivial and it is because they are so trivial 
and can be done so simply you always recommend early preferably static type checking 
that will isolate errors early in the program, it is possible to do it most of the time except 
for dynamically created data, if you have a language in which you insist some 



declarations before use a large amount of the type checking can be done at compile time 
and errors can be pointed out. 
 
Hence it saves on execution time, it saves on having large run time descriptors, it saves 
on generating code to do the type checking at run time and it saves on execution time so 
more and more languages actually try to do type checking early. So the most recent 
languages actually do all the type checking and so type checking is one important reason 
why many languages have moved from dynamic binding mechanisms to static binding 
mechanisms because then you can do the type checking at compile time, at translation 
time and you do not need to wait for run time type checking. 
 
So the introduction of declarations brings in a certain amount of complication. Now let us 
look at a purely functional fragment an ML like functional fragment then what it means is 
that you will somehow have to make a distinction between what has been declared now 
and what was free, what could be re-declared now for example in a fresh declaration. So 
a typical typed declaration of a value could be like this and let us assume that the other 
expressions in the language are the same and there is this one extra construct a let 
construct. 
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Then of course we have the normal declaration mechanisms, the sequencing of 
declarations or rather if you like a pipelining of declarations, parallel evaluation of 
declarations or rather independence of declarations and nesting on the declarations. So 
now the only sort of complication it raises is to actually know what the free variables in 
an expression are, what are the bound variables etc. The moment you introduce 
declarations means that you have a concept of free variables and bound variables. You 
have a concept of a variable being re-declared to be of a different type therefore creating 
a whole in the scope and therefore it has to be taken into account during the type 
checking process. 



Hence with a language with declarations like this, what it means is that you have to give 
some structurally inductive definitions for what exactly is being declared and what 
exactly is free. 
 
So let us look at free and defined variables in a functional language. Somehow they do 
not use the word declaration they say it is a definition so I will use these two terms 
interchangeably. In an imperative language it is called a declaration. So the declared 
variable in an elementary value expression of this form is just x. The free variables in this 
definition are all the free variables of (e). So x itself could occur in e but we know from 
our run time semantics that, that x which might occur in e refers to an x that was 
previously declared and this is a re-declaration of x. So e may or may not contain x but 
whatever x it contains it is not the same x as this which is being freshly declared. 
 
And in the case of sequencing of declarations the declared variables are just the unions of 
the declared variables and free variables of d1;d2 are just the free variables of d1 union, of 
course you could use the variables that were declared in d1 in order to have the 
declarations in d2 that is in expressions within the declarations in d2 which means you 
just exclude those variables which were declared in d1 from the free variables of d2. Then 
in d1 and d2 there is a condition of disjointness that the same variable cannot be declared 
in both d1 and d2 and cannot be used. So the declared variables or the defined variables 
are just the unions of the individual defined variables in the declarations and the free 
variables are also just the union.  
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And in the case of nested declarations what you have is that in a nested declaration of the 
form d1 within d2 what you are actually declaring is only whatever is in d2. If you 
remember I said that since the declarations in d2 could be very complex you abstract out 
some of the sub expressions give them new names in d1 and use them but essentially at 
the end of this declaration only the environment created by d2 is available. So the 



declared variables of this declaration are just the variables of d2 and the free variables 
here of course are all the free variables of d1 union all the free variables of d2 which are 
not free in d1. 
 
All this of course is meant to define the notion of free variables in the expression 
language. So, for all other expressions the notion of free variables remains unchanged 
and what I mean by all other expressions is the expressions of the form e1 binary 
operation e2 or 0e and so on and so forth. 
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And in the case of a let construct what you have is just that the free variables of this 
(Refer Slide Time: 47:37) are just the free variables of e excluding all the free variables 
of e which have been declared in d and including all the free variables that are already in 
d. 
 
(Refer Slide Time: 48:12) d1 within d2 d minus declared variable d1.  
 
Now essentially we require just this much and this notion of free and declared variables is 
what is going to be used in processing declarations as a context.  
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So, if you remember what I said about contexts a context is just a collection of variable to 
type bindings. So, given a program for which you want to do static type checking all the 
free variables in the program should have types available in the context otherwise you 
cannot do type checking of the program. Of course a complete program does not have 
any free variables but inductively speaking if you go through a program segment within a 
larger program, let us say an expression is a particular program segment in a functional 
programming language then all the free variables in that expression should have bindings 
in the context and the bindings defined by that context are exactly what you require in 
order to do the type checking for these expressions.  
 
I have already pointed out that the notion of context is very similar to the notion of a run 
time environment, you use the same updation, you use the fact that you have to look up 
the run time environment each time in order to find values during run time but in the case 
of a context you have to look at the context in order to determine types, you cannot 
determine values necessarily because you are not running the program yet but you can 
determine types and it has exactly the same structure and you can reproduce using the 
notion of whatever is free and whatever is declared rules for type checking statically 
which are very similar to rules for type checking in the lambda calculus which are very 
similar in some sense to the run time environment mechanisms which we use. So this 
whole type checking since it is going to be done statically whatever we have done is 
supposed to be static this whole kind of semantics which deals not with values but with 
only types is called the static semantics for a programming language which is something I 
have delayed a lot in coming to but essentially if you were to look at in any modern 
treatment of programming languages there is syntax, pragmatics, static semantics and 
dynamic semantics. So whatever we have done using the environments row and so on 
represents the dynamic or run time environment and all that semantics is the dynamic 
semantics and a similar semantics that we define for type checking is static semantics. So 



a complete language document is really complete only if it defines the syntax, the static 
semantics and the dynamic semantics completely. 
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