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Welcome to lecture 33. So I will just briefly recapitulate what we did about 
monomorphism and then go on to polymorphism today. So we defined the language of 
this simply type lambda calculus where there is a notion of some base types and the 
construction of the construction of higher types from the base types. And these base types 
which for simplicity I took to be integer and Boolean are really what might be called type 
constants. When you give something the name integer in the domain of types it is a 
constant. Now the significance of that will become evident slightly later but it is 
important to remember that they are type constants. So you can construct complex types 
using the simple language that we gave for constructing higher types from these type 
constants.   
 
(Refer Slide Time: 1:36) 
 

 
 
So essentially what it means is that all your types will be of the form, if int and bool are 
your base types then you will have types of this form int arrow int, int arrow bool may be 
you could have for example higher types like int arrow int arrow bull arrow bool and so 
on. What I mean is all your type expressions are going to be of this form, all your type 
expressions will have the names of the base types always occurring in it and there is 
nothing else to it. 
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Then we gave type influencing system for this from which you can prove that every 
combinator therefore or every lambda expression in the simply type lambda calculus 
actually has a unique type based on the type expression based on these inference rules. 
So, given that a variable has a certain type, a variable could have a higher type also 
remember that, we are treating functions and values all as equal objects.  
 
For example, this x could be of type int arrow int which denotes that it is a function from 
integers to integers and you could infer therefore the types of all the lambda expressions 
in the language which are typable and if they are not typable then of course it does not 
belong to the simply type lambda calculus.  
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The beta reduction is of course modified to take typing into account so that only if you 
have a lambda abstraction which is typable and something arrow something as sigma 
arrow tou and you have an operand which is of type sigma assuming that these types can 
be inferred therefore they are well-type terms and then you can perform a beta reduction 
and get a value of type tou. We looked at some of the examples dealing with the identity 
functions.  
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What we noticed at this point is that every combinator is useful functions because every 
combinator has a unique type which is built up from the base types. Therefore for what 



used to be typeless combinators which could be applied anywhere in the untype lambda 
calculus for each one of them you have several copies depending on the type of 
application. So even a simple identity function has an incarnation for integers, has an 
incarnation for Booleans, has an incarnation for all functions from integers to Booleans 
so for every tou that you can think about there is a separate identity function Itou and this 
is because of the unique typing feature of this simply type lambda calculus. So, for each 
type tou the analog of the combinator C in the untype lambda calculus when you move it 
into the simply type lambda calculus for each type tou you will get a combinator C tou 
which respects that typing.  
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Of course we ask this question whether we are actually being too harsh by using a simple 
typing scheme. And one thing of course is that these simple typing schemes were used in 
some of the older programming languages like Pascal and Modula and so on and so forth. 
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And of course there are some questions; we actually went through the computations of 
twice applied to itself and so on and we found that some of them could actually be given 
a meaning. So, not all self application really is meaningless. And secondly the point is 
that if you take any combinator C is really too tedious to have so many different copies of 
it for each, you have a combinator C tou for each possible tou, the combinator could be 
some complex program. So it is really too tedious to have something like this. when we 
think of an identity function what we are actually implying is that it is a higher order 
function which given a function of any type tou returns you the same function actually 
but returns you a result of the type tou. So the identity function regardless of the type for 
which it is meant actually is one really a higher order function which could be 
parameterized on the type.  
 
So we can talk about I the identity combinator I being parameterized on a type tou and 
the result should be Itou which is the appropriate combinator for values of type tou. By 
values I also include functions. It can be even called as a parameterized typing. So what 
we should be able to do is we should be able to take this identity call a general identity 
function I and parameterize it on the subscript and that is what polymorphism is about. 
Then we have an identity function which actually takes a type itself as a parameter and 
then specializes to that type. And as we saw there are lots of functions which we use in 
all our M L programming and so on which really are of that type; the head and tail 
functions, the cons function, the map function they are all in that sense polymorphic in 
the sense that the actual function is not very crucially dependent on the underlying base 
type from which your data type is constructed.  
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The function remains more or less unchanged except for the type for all possible kinds of 
arguments that you might get or at least for a class of possible arguments. For example, 
you cannot apply cons between two integers but there is a class of arguments namely 
integers and integer lists, Booleans and Boolean lists, may be integer to integer functions 
and lists of integer to integer functions and so on. There is a class of objects for which 
cons is going to have essentially the same representation and our intuitive meaning of 
cons is just that given some argument of type tou and given another argument of a list of 
elements of type tou you should be able to perform a cons. The implementation or the 
meaning should not significantly vary with variations in the underlying type tou. So the 
monomorphism actually has this real problem that you cannot adequately parameterize. 
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Hence we generalize monomorphic types so that they give us this general flexibility. That 
means in addition to these type constants which are the base types we also allow for type 
variables and that is intuitively even like how we look at the simple function like the 
identity function. Thus what we are saying by a general identity function is that for any 
type t and for any value or function x which is of type t the identity combinator It when 
applied to x is some how beta equivalent, actually it should beta reduce in many steps 
may be to x itself. Now what we can do is if you look at the lambda abstraction as we 
have looked at it I told you the analog of the lambda abstraction which sets the lambda 
abstraction also has its analog with universally quantified objects and this is essentially a 
universal quantification.  
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So if you look at a lambda term, let us look at the identity combinatory, what we are 
essentially saying by this bound variable x is that for any x return back the value of x. In 
the case of sets what we were saying is if you had a predicate here let us say p dependent 
on x then for any x such that the predicate p(x) is true. So the set notation, the lambda 
abstraction and universal quantification are all very similar and we will use this fact.  
 
So if you were to actually read whatever we have been saying now a good way to read it 
is as if it is a universally quantified object. For each type t and for any value or function x 
of time t It(x) should be beta equal to x. So what we did is that we stopped with this 
abstraction here in our simply type lambda calculus we just translated this abstraction 
into the combinator It. But if we go beyond this abstraction and also into this abstraction 
then what you get is a general combinator I. You can read this is for any t and for any x 
of type t return x. The universal quantifier and the predicate logic is really like lambda 
abstraction but I am just using the universal quantifier.  
 
So the generalized identity combinator that we are really looking for really has a type 
which is given by a universally quantified type variable. Here you have got a case where 
there is a variable which is bound by this universal quantifier. Again this is like a local 
declaration, this is like a predicate if you like but this local declaration clearly specifies 
that the identity combinator has a type such that for any type t it has a functionality t 
arrow t where I do not really care what value you give this t. If you are generalizing from 
monomorphic types then what you can say is that this variable t may take any value from 
the monomorphic types defined by the language of types.  
 
For example, this t could be a value like int, could be bool, could be int arrow bool, it 
could be int arrow int arrow bool and so on and so forth. Any of the types that we have so 
far defined in our simple type structure could be a value for t and that identity combinator 
will appropriately take those values t. We started out with variables and constants way 



back in the Paleolithic period where constants and variables really took values from 
underlying domain of values. Then we got unnamed functions which are also variables. 
We generalized thee notion of variables to untype functions where the functions could 
take values from function spaces and underlying domain which is function spaces. Now 
we are going further and we are taking the domains themselves, types are really those 
domains and those domains are fixed so far and now we are generalizing them we are 
saying you take a variable which takes values which are the naming of particular 
domains. 
 
The domain int arrow int could be a particular value of this variable t and this is like a 
universal quantification so if this lambda abstraction is like a universal quantification 
then lambda application or a beta redex is like universal instantiation. You have studied 
this quantifier elimination in introduction rules so lambda abstraction […17:20] 
quantifier introduction and beta reduction is quantifier elimination or universal 
instantiation. So you can instantiate the t here by any particular type constant that you 
like or any type expression which is built up only from type constants.  
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So you can talk of type variables which actually take values and those values are type 
expressions built up from type constants and that is what polymorphism is about. So this 
is what is known as a parametric polymorphism and this is the polymorphism that is 
present in ML. Let us look at the function twice. So the reason twice is meaningful then, 
is really that it is a function of this form. If you look at the definition of twice I can say 
that for any type t for any function f of type t arrow t and for any value or function x of 
type t twice applied to f applied to x should be beta equal to f applied to f applied to x.  
This is the basic fact we know about twice and now go back upwards and do the 
abstraction. So what you get is f applied to f applied to x, you perform the abstraction on 
x to be of type t then you perform the abstraction on f to be of type t arrow t and so far it 
is really like the simply type lambda calculus. And then actually we have yet another 



abstraction a universal quantification over the type t. So this essentially says for every 
type t and for every function f which has a type t arrow t and for any argument x which 
has a type t return the result f applied to f applied to x. 
 
So what is the type of twice?  
The point is now that now we have two kinds of beta reductions. If lambda expressions 
are really like universally quantified predicates then beta reduction is like universal 
instantiation, then an universal instantiation is like beta reduction which means when you 
universally quantify on types and instantiate those types you get a form of beta reduction 
also for types in addition to the beta reduction that you have already for the lambda 
expressions. As you can see things can get a little airy at this point.  
 
We have variables, we have type variables, we have constants if you are applying the 
lambda calculus onto some domain and you will also have type constants and then you 
can have instantiations of those variables, instantiations of those values, instantiation of 
value variables, instantiations of type variables by type expressions, by expressions of the 
application and you will be inferring types so types and values also look essentially the 
same. You are going to have a beta reduction for quantified type expressions which is 
like another lambda expression. Only this lambda abstraction is on types and it is not on 
values. And of course values are the same as functions whatever may be the order but 
types are different. But still types also follow essentially the same discipline of 
quantification, of application, beta reduction, universal generalization, universal 
instantiation, quantifier elimination, quantifier introduction and everything.  
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I will just assume that you already know the inference rules, you can get the inference 
rules by analogy. Thus by structural induction on the inference rules that are predictable 
now you can actually infer the type of twice in this fashion. So given that f is of type t 
arrow t and x is of type t, f applied to x will be of type t, f applied to f applied to x will be 



of type t too because of this f is of type t arrow t and fx is of type t therefore f applied to 
fx will be of type t then when you perform the abstraction over x I am doing this bottom 
up of course but that is always easier to understand. This is not necessarily how the 
machine will do it, how your compiler will do it.  
 
Note that all these have to be done by the compiler. So it will do it by a structural 
induction you can assume for practical purposes it will be doing it by recursive descent 
parsing method as part of the parsing process, before the code generation you do the type 
determination in order to decide whether the code has to be generated at all so you will 
do it in a recursive descent parsing fashion and come up. Then this abstraction gives you 
this type, then the abstraction over f gives you this type and the abstraction over t gives 
you this type. So essentially what we are saying is that functions like twice which are 
actually meaningful they are meaningful even under self application because when twice 
is applied to twice, and since twice is polymorphic its type is universally quantified.  
 
We can always choose a type for the operand twice and generalize it so that the operator 
twice has a higher type than the operand twice. This is in fact what normally in 
Mathematics. When you apply one function to another the operator always has a higher 
type than the operand. Since twice this polymorphic this twice when you apply twice to 
itself this is the operator twice and this is the operand twice. The operator twice is of a 
much higher type than the operand twice.  
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So if you assign to twice a type tou that type tou would be an expression of this form 
universally quantified, a universally quantified type expression of this form then if this 
has a type tou where tou is some for all sigma such that, here it must be t arrow t goes to t 
arrow t (Refer Slide Time: 26:38) so for all sigma if this twice has the type for all sigma 
sigma arrow sigma arrow sigma arrow sigma then the result of applying this twice to this 
twice should give you an element of type tou. Then this twice has a type which is really 



given by tou arrow tou arrow tou arrow tou on application. Treated in general it has the 
type and that tou arrow tou arrow tou arrow tou has to come out as a particular case of 
this sigma by a suitable substitution process. 
 
Essentially an expression is polymorphic if it can actually have different types depending 
on the context in which it is applied. Therefore the application of “twice to twice” is 
meaningful provided the operator twice has a higher type that is compatible with the 
twice of the operand. A particular case of this is something that you can see in any 
standard book on polymorphism or programming languages. So what we will do is let us 
formalize these notions. So we have the language of what I might call polytypes.  
 
Now let us see the language of polytypes as opposed to the language of monotypes which 
is what we did in the simply typed lambda calculus where firstly you assume an infinite 
collection of type variables and a collection of type constants and these type constants 
usually consist of the base types which you are going to start of with. So let us say integer 
and Boolean and then firstly we build up the monotypes in the same fashion that we did 
for the simply type lambda calculus. If b is a base type then b is also a monotype and if 
tou 1 and tou 2 are monotypes then tou 1 arrow tou 2 is a monotype. In addition you 
allow type variables also to be regarded as monotypes.  
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So type variables actually are going to denote particular instances of monotypes. Then we 
build our polytypes like this. any monotype is also a polytype and any polytype 
quantified over a free type variable, the notion of free and bound variables is as before 
over type expressions, if pi is some type then any type variable that occurs in pi is a free 
type variable and you can quantify over type variables and then that variable becomes 
bound. This is how we construct polytypes.  
 



If you just extend this argument further we could also construct super polytypes by a 
similar grammar. Given that pi is a polytype you could define an infinite collection of 
super type variables, a collection of polytpes over polytypes and then super polytypes 
being defined in a similar fashion. The type hierarchy actually can add infinite upwards 
though lowest part of the type hierarchy is the monotypes and below the monotypes of 
course are values and functions. Let us limit ourselves to the type hierarchy at two levels. 
There is just type variables and type variables can take values only from monotypes and 
monotypes was whatever that were defined in the simply type lambda calculus. Then you 
can construct a polytype by quantifying over the monotypes. We are quantifying over the 
type variables. 
 
So the polymorphic lambda calculus is defined in this fashion. (Refer Slide Time: 32:22) 
So we have the usual syntax of the simply typed lambda calculus. remember that this is a 
monotype, remember that the simply typed lambda calculus was very nice in the sense 
that it gave you everything that could be statically type determinable, it could type check 
statically but the only problem was that the simply typed lambda calculus could not 
account for generalized combinators like I or twice which are polymorphic. I is of course 
very general, twice is not so general, twice will type check only for certain classes of 
argument types. For example, you cannot give twice a value from the base type, it will 
not type check. 
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For example, you cannot apply twice on an integer. Twice can be applied only to another 
function which means it should have a type of the form some t1 arrow t2. It could only 
apply to another object which has a type t1 arrow t2. It cannot apply to just a base type 
but it has to apply to a function. But that is essentially like the way we write sets. Let us 
take this x such that x is even and then it satisfies some other property. You can take 
subsets of the naturals and write generalized set definitions. So functions like twice are 
polymorphic in the sense that they do not range over the entire type hierarchy whereas 



the combinator I actually ranges over the entire type hierarchy. You can give it a value, a 
function, a type variable or anything and the identity combinator will just give back 
whatever you ask, whatever you gave it. But the twice requires an argument which has a 
type of a certain form that it should be explicitly a function form, it cannot be a value 
form. Not only that it should explicitly be a function form and it cannot be a function 
form of type t1 arrow t2 where t1 and t2 are completely different. It has to have a type t1 
arrow t1.          
 
For all instantiations of t1 such that you have functions from t1 arrow t1 the twice can be 
applied that is the type of twice. That is what is obvious from the definition of the 
function abstraction in twice. So now what we have is in addition to the monotypes we 
have the type abstraction on lambda terms. So this is the type abstraction which I pointed 
out and this is actually an application of a monotype of presumably a lambda term which 
takes a type as a parameter. So if this lambda term were the polymorphic combinator I 
you could give it any monotype as an argument and it will specialize to that particular I 
tou. 
 
In the case of I of course this tou could be anything in the monotypes. In the case of twice 
this tou would have to be of the form sigma arrow sigma where sigma arrow sigma is 
constructable from the base types through the monotype context free grammar. So this is 
actually an application of a lambda term to a monotype so as to specialise that 
combinator for that particular type. Here since this was in Ravi Shetty’s book I decided to 
add this construct also. 
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So here is a let expression and wherever I have written tou it is a monotype. That means 
it is a restricted part of the type grammar that we have got, tou is a monotype means that 
it comes from the language of types in the simply typed lambda calculus but with the 
added construction that you could have variables instead of actual expressions built up of 



type constants. But now we can take a polytype so if x is supposed to be a polytype then 
this whole let construct is a lambda application in which all free occurences of x in this 
will be replaced by this I should type check.  
 
Essentially the most important additions are really this, the new type application in the 
type abstraction, this type application means that there is a beta reduction for types and 
this is the construction of more complex functions which are polymorphic from the 
polytypes themselves. So this is actually a form of lambda application as you will be able 
to see and when you are given the rules it should become clear. 
 
For the moment let go off this or rather let us keep this because i am going to give an 
example which illustrates this. 
 
It is a very nice example again drawn from Ravi Shetty’s book. Let us take twice so I 
have this expression which is really let twice which is defined in this fashion, twices of 
type this it is polymorphic as you can see because it has the universal quantifier over type 
variables so it is not a monotype. So consider the polymorphic function twice whose 
definition is given by this in the expression twice int successor, successor is a standard 
successor function written in the lambda calculus. We will assume applying it on 
integers.  
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So for any x the succesor of x is as defined by Peano Arithmetic. So now what we are 
saying here is apply first twice on to integers. That means particularize twice to integer 
functions that mean functions from integers to integers. So what you get when you apply 
twice to integers is a new function which is particularized to all functions of the 
monotype integer to integer. Apply that function on to the successor the result of which 
has to be applying successor twice on to whatever is the argument. So the result of this 
application is to particularize twice to the type int arrow int and having particularized 



twice to int arrow int you apply it now to successor which is a function from int arrow int 
so it is perfectly understandable so it is type compatible.  
 
Since successor is lambda x x prime where x prime is going to be int and therefore this 
lambda abstraction gives successor of the type int arrow int so this twice applied to int 
gives me a function int arrow int arrow int arrow int which applied to a function 
successor which is of type int arrow int gives me a result which is a function of type int 
arrow int which given the argument zero gives me a value in int. So essentially it will 
give the value two which seems however big the mess is to get into just in order to get the 
value two but in principle it is a powerful operation. So I have just showed how the beta 
reduction works for particularizing. So the beta reduction for polymorphic types is to 
really particularize that function for a certain type or instantiate the universal quantifier in 
the type to a particular kind. This twice applied to int is actually what I have written, if 
you follow the notation that I used before it is actually twice particularized to int so really 
I would have given the subscript int arrow int arrow int arrow int.  
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So this twice works only on functions of the form int arrow int. Of course there is a 
possibility that I could have applied twice on a type variable too. That variable may have 
been quantified somewhere later, I can have nested quantifiers for all s, for all t and so on 
and so forth then that variable might get its typed value because of the instantiation of a 
quantifier that exists somewhere in the outer scope. 
 
And if I look at this restricted sub term then it would be twice with the subscript t arrow t 
arrow t arrow t where t should get its value instantiated somehow later. Now you 
understand why beta reduction is really important: 
Checking whether membership in a set is really a form of beta reduction, 
Applying functions is really a form of beta reduction, 
Universal instantiation is really a form of beta reduction and  



Constructing sets by abstraction is really a form of lambda abstraction. Constructing 
quantified predicates is really a form of lambda abstraction. Constructing types is really a 
form of lambda abstraction. So applying types and instantiating them is also a form of 
beta reduction.  
 
Hence beta reduction in computation is really the most fundamental concept which has 
probably evolved over the last forty years. Almost anything that is constructive; by 
constructive anything that is computationally relevant has beta reduction appearing in 
some form or the other. Parameter passing and procedures is a form of beta reduction. 
Whether the parameters are passed by value or by reference or by name they are all forms 
of beta reduction and now types are also forms of beta reduction. 
 
So the generics that you have in C ++ an Aida are really some very restricted form of 
beta reduction applied only to some base types. So far in terms of implemented 
programming languages the most sophisticated type system that has so far come up is the 
M L polymorphism which is completely statically determinable where polymorphic types 
are statically determinable which means they are determinable at translation time without 
going into executions. That is one of the reasons for studying M L because it is not just 
that it is a functional language but also that it has a very sophisticated type system. The 
most sophisticated type system in existence in an implemented programming language is 
in M L.  
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Actually by now you would have got a flavor of type inferencing rules that you should 
have and these are essentially those. Again given a type context gamma or a type 
environment gamma, and this x is free so the context does not contain x then it does not 
type check and you throw out that program, it is as simple as that. So whatever the 
context we can give for x is the type of x and this is the usual application of functions.  
 



If L is of type sigma arrow tou, by the way sigma and tou are monotypes, this is the 
monomorphic application and M is of type sigma which is again a monotype then L 
applied to M is of type tou. If with the assumption that x is of type sigma added to the 
context you can infer that L is of type tou then the lambda abstraction x sigma L has the 
type sigma arrow tou where again all these sigmas and tous are monotypes. So the type 
inferencing rules here are really like the type inferencing rules as the simply type lambda 
calculus and there is no difference. But what we require now are type inferencing for the 
polymorphic lambda calculus. 
 
If it is determinable that L has the polymorphic type for all t pi where pi could itself be 
another polymorphic type because you could have a sequence of quantifiers in nested 
quantifiers so pi could be a polymorphic type then given tou a monotype you cannot 
apply L to another polymorphic type but you can apply it to a monotype. That is applying 
L to a monotype means particularizing L to a certain type, applying L to a polymorphic 
type does not exist in our language so far. But as I said there is no reason to build up the 
type hierarchy, you have quantifiers over polymorphic type variables too then you would 
have a particular reason. There is actually a reason for doing that, when you go from to 
types higher than this it turns out that lot of problems of undesirability crop up. This is 
about the limit that we have currently reached. 
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So given that tou is a monotype you are particularizing the polymorphic lambda 
expression L so that an incarnation of it for the type tou is created by this application. 
That means this universal quantifier for all t has to be eliminated by instantiating t with 
the value tou and that s what this substitution does. So it takes pi and for all free 
occurences of t in pi it replaces those free occurences by the monotype tou. This is clearly 
a case of universal instantiation it is also a form of beta reduction for the types. So this is 
a type application or instantiation where pi is a polytype and tou is a monotype. So this is 



like universal instantiation so there should be a corresponding universal generalization or 
quantifier introduction rule and that is what this does. 
 
Given that in the context gamma you can show that L is of polytype pi then this 
abstraction over the types. Over the free variables t over the free type variables t in pi 
gives you a polymorphic lambda expression which has a type for all t pi. So this is type 
abstraction. It is very similar to the lambda abstraction. The only thing of course is that 
whenever we are talking about free variables whether its type variables or value variables 
and whenever we are talking about binding them we should ensure that there is no 
capture of free variables because of the binding you are creating. Because of the 
introduction of the quantifier you are binding this variable t and as a result there should 
not be any t in the context grammar already defined because if that t occurred in pi then 
that t would get captured by this quantifier.  
 
So the usual confusion of free variables, bound variables, alpha conversion with 
quantifiers and so on, of course alpha conversion also exists anywhere where there is 
binding or declaration if that is alpha conversion. So you have to do aplha conversion to a 
bound variable to ensure that there are no free variable captures. Hence, t should not be 
free in gamma that means t should not already have been declared in gamma and then the 
last role is just really a form of typed lambda application for the polymorphic case; if L is 
of type pi1 which is a polymorphic type and with the assumption that x is of type pi1 if 
you can infer that M is of type pi2 then this whole let expression really has the type of M 
because M is really the expression and the meaning of any let expression is the body of 
the expression which in this case is M so it has a type pi2. So, let expressions really are 
like applications because the semantics of a let expression is equivalent to substituting all 
free occurences of x in M by L. Therefore now you can go back and try to determine 
what the type of this is so you have really reached the highest levels that types can reach 
in a desirable fashion.                                
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