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Welcome to lecture 32. So today I will briefly go through what I did the last time and 
pick up from there on the simply typed lambda calculus. We just looked at what’s wrong 
with the untyped lambda calculus. Firstly there is a type confusion often you do not know 
whether you are applying K to the argument or not for example. You might be asking is 
zero true so then are you applying K or true to zero and one may be.   
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So there is some type confusion but that is not so serious. A slightly more serious 
problem is that constructors and deconstructors are not inverses which mean that if you 
apply deconstructors onto some arbitrary term which is not explicitly constructed through 
a constructor then you might get some result and you will not know whether the result is 
wrong. That is one thing. One thing is to find out who the culprits are? 
One possible thing is to actually look at this very general purpose language definition and 
see whether everything in it is really meaningful. May be what one should do is may be 
one should restrict the language somehow so that only really meaningful things are 
actually used and this is something that is quite natural even in our natural languages. 
Therefore one thing is that one of the reasons for meaninglessness if you were to actually 
apply this lambda calculus as a calculus of functions to some data type applied 
somewhere then one thing that really does not seem to make much sense and which 
mathematicians over thousands of years have agreed upon is for a function to apply to 
itself or for something like this. So what happens with things this is that they complicate 



matters in more ways than one. One thing is that they do not actually seem to mean 
much.  
 
Secondly, if you remember, with such replicating combinators you could have other 
replicating combinators. For example, I could define a combinator like this which will 
just keep making three copies somehow applying them or like this which will make four 
copies and somehow apply them pair-wise and so on and so forth. 
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There is an infinite number of such combinators that one can form. And the thing is that it 
does not seem like we can actually give a decent meaning to all of them. So one 
possibility is to actually try to restrict the language so that somehow you get only 
meaningful combinators meaningful lambda expressions which really have the potential 
for being functions which can be applied in a general fashion on may be some data types 
or some other symbol positioning system and thereby get a decent model of computation. 
Another thing is of course that because of the non-deterministic nature of beta reduction 
even if you were to try to extract a meaning the meaning does not seem to be intrinsic it 
seems to be computation dependent. 
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So one example that I gave before was of this, if you take this combinator K and apply it 
to x and omega in this fashion then you have a one step beta normal form which is just x 
or you can do an infinite number of steps reducing this omega to itself. The omega 
reducing to itself is only the simplest of complications. If instead of this omega if I have 
actually took this other combinator which replicates things three times then I will get an 
explosive computation where no two terms are identical. Let me call that little omega. 
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Let me say that little omega is this then I could take this combinator like this and then if I 
try to do Kx and little omega what will happen is I will get Kx omega omega omega 



applied to itself. So if you take omega applied to it what you get is omega omega omega 
and this can go in various directions depending on how you want to do the application. 
All of them will just keep multiplying copies of this little omega. So when you take this 
Kx omega omega then there is one normal form which is directly obtained otherwise you 
get these explosive computations where Kx will be preceding each other. And all these 
do not seem to really have some meaning. Therefore one possibility is to actually try to 
get rid of them. So one other complication they come up with is that they yield infinite 
computations even when there are actually beta normal forms. Therefore let us go back to 
our basic Mathematics and we have a simple typing scheme of this form.  
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Remember that we have to look at values and functions as far as possible equally. There 
is an important result in the theory of computation which says that there is no general 
algorithm to decide whether two given functions are the same or not. But there is an 
algorithm to decide whether two given values are the same. However, not withstanding 
that as far as possible we would like to give them equal status. So one possibility is to 
unify the notation in this fashion and actually put a check on the construction of terms so 
that they are well-typed. 
 
Similarly, put a restriction that lambda abstraction must be a function that is in some 
sense ready to be applied and the lambda abstraction is actually something that somebody 
should have discovered probably long ago since Mathematicians are using such notations.  
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This kind of a typing scheme leads us to firstly a language of types which allows higher 
order functions.  
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Hence for example we could start with a finite collection or even an infinite collection of 
base types if you allow various kinds of pattern formations like this. And for simplicity 
let us assume that we have a finite collection of base types and we could define a 
language of type constructions. This language allows us to construct functions of the 
form int to int, int to bool, bool to int, bool to bool, int to int the whole thing going to int 
to int, int to int going to bool and so on and so forth. It allows all these kinds of 



constructions. And one easy thing to prove is that every type is really of this form. This 
can be proved by induction on the production rules of this grammar on types. So what we 
will do is put this typing on top of the lambda calculus somehow. So one thing is that we 
will define the simply typed lambda calculus as one in which types of variables the bound 
variables are specified. 
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And if you look at a complete program as one which has absolutely no free variables, free 
variables will only appear only in sub programs. Similarly if you take a complete lambda 
expression as a function then there should be no free variables all the variables should be 
bound. Hence only sub terms can have free variables. And of course this notation is 
analogous to our standard set notation where actually this is like a typing constraint.  
 
For example, if you define the set of all numbers which are even, even does not make any 
sense with real numbers or complex numbers and so on and so forth. So it makes sense 
with naturals so you put a typed constraint on the numbers. This is a very common 
practice and we just follow that practice and construct the simply typed lambda calculus 
with this two level syntax. One level of syntax is for the typed language using the base 
types and the other level syntax is for the actual lambda expressions. 
 
Now the important thing is I can actually determine the types of various lambda 
expressions statically. Thus we will define a context as a collection of variable to type 
bindings and we will call this a static environment. The reason for calling it static is that 
whatever we are going to do something that can be determined at compile time it does not 
require run time checks. Whether a certain lambda expression has “a good type” is 
something that can be determined by a compiler without executing the program. That is 
why the word static is mentioned here. In anything to do with programming languages 
and compilers if the word static is used it means it is something that can be done before 
execution at translation time or at compile time. If it is an interpreted language it is still 



translated, you can do it before execution. Whatever can be done before execution is said 
to be static otherwise whatever can be done only at run time is dynamic. So we can 
construct a collection of such bindings and essentially this context is what constitutes the 
symbol table.  
 
The symbol table that a compiler constructs has this context as an essential part of this 
symbol table, the types of the various identifiers and so on and so forth. So an essential 
part of the feature of the symbol table is really a static environment as opposed to a 
dynamic environment which is the activation record, stack and so on and so forth. So an 
essential part of the symbol table is really type checking and it is all something that can 
be done at compile time without actually running the program. So whatever we do is 
something that can be done at compile time. So let us look at the type environment and 
we can give actually inference rules of this form. 
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We should look at type inferencing of course in a structurally inductive fashion going 
down the syntax tree somehow. When you go down this syntax tree even if you started 
out with a program which had no free variables when you look at sub expressions and the 
sub programs they are bound free variables in that context. So we will assume that there 
exists a context so for a fully defined program for a full program especially a program 
which does not use library routines and so on and so forth a complete program actually 
starts with an empty type environment just like often it starts execution in an empty 
environment with an empty activation record environment. So during the process of 
compilation you will be collecting a lot of type information about the variables. So 
whenever there is a reference to a variable you look into your type environment. If the 
type environment has a type specified for it then that is the type of this variable. 
 
Essentially you just access the symbol table and see whether that variable was already 
declared and if it was declared in all languages which insist on declarations preceding use 



then there must be type information unless it is a forward reference in which case it has to 
be back patched later. But in general the symbol table should contain the type 
information if declaration precedes use. Of course there are implicit declarations and so 
on. Most of them are otherwise algorithmic aspects which have nothing to do with the 
system of typing. 
 
Now we would say that this application is well-typed and actually has a type tou only 
provided L has a type sigma arrow tou for some sigma and m has a type sigma. 
Essentially what we are looking at are something acclaimed in Mathematics to domain 
and range information, domain and co-domain information. If there is a function from 
natural numbers to natural numbers then it has to get an argument only which is a natural 
number. So you insist that all applications are meaningful only if the argument to an 
application the operand is of a type that is consistent with the domain of the operator. 
And if it is so then you can infer the result, the result is whatever you get in the co-
domain, it is as simple as that.  
 
And in the case of a lambda abstraction you insist that it has to be a function because it 
has a bound variable which is somehow going to be replaced by a beta reduction to a 
function application which means a lambda abstraction should actually represent a 
function. Its type must be something which contains an arrow, it cannot just be a base 
type. A lambda abstraction cannot be a base type, you cannot have a lambda abstraction 
which is of type int. It has to be a function from something to something.  
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However, if you go about things in a structurally inductive fashion assume that the body 
of the lambda abstraction has a type tou and if x has been declared as being of type sigma 
then this lambda abstraction represents a function which goes from sigma to tou which 
takes arguments in sigma and gives you results in tou. The important thing about all this 
is that there are no executions involved, it is all something that can be done by a 



compiler. That is why most of the typing information is done at compile time. There is 
absolutely nothing at run time that is necessary for such things. 
 
The static environment is very much like the dynamic environment. you are doing 
temporary updations because you will have newer and newer declarations with bound 
variables being re-declared, you will have newer declarations may be for the same 
identifiers so you have to temporarily update your environment so that you know what is 
local and what is global and these things are all meant to be local so the static scoping 
rules are in force. So you require this temporary updation because of static scoping rules. 
These rules actually tell you what a well-typed term is. So we would say a term is well-
typed in a context gamma provided it is possible to infer its type by the application of 
rules T1, T2, T3 a finite number of types. 
 
Remember that these are rules and they have to be applied only a finite number of times 
otherwise your compilation will be a non-terminating process. If it requires an infinitary 
proof then your compilation itself is going to be non-terminating forget about executions 
even your compilation is going to be non-terminating which you do not want. So the next 
question is have we actually achieved the purpose, have we banned combinators like 
delta?  
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So let us look at delta itself and try to see whether by applying these rules T1, T2, T3 we 
can actually infer a type or what actually happens. Let us assume given an arbitrary 
context gamma. So supposing delta was of a type since it is a lambda abstraction it could 
quite well be of a type sigma arrow tou for some sigma and tou in terms of the base types. 
But delta could be of types sigma arrow tou if and only if the body of delta which is x 
applied to x is of type tou.  
 



Now x applied to x could be of type tou only if this x was of type rho arrow tou and this x 
was of type rho otherwise how would the application be meaningful. So what you are 
embarking on is going down as deeply as possible in order to infer a type. You are trying 
desperately hard to give delta a type and the conditions the constraints you are getting are 
these. So I can infer a type for delta only provided I have x of type rho arrow tou and x of 
type rho both in the same static environment. Now this thing is possible only if this sigma 
is equal to rho arrow tou and sigma equals rho.  
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After all it is possible that these things look deceptively different but they might be 
actually solvable as being equal. How do you know they are not solvable? But when you 
do this, when you get it in this form what you see is that, when you do the substitution 
essentially what you are trying to do is you are trying to unify these two terms in order to 
find a solution in fact a most general unifier. So when you try to do this what happens is 
that you just keep expanding out infinitely. 
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This keeps on expanding in this fashion infinitely and your tou has not yet been fixed to a 
base type int or bool as specified in our language type such that every type that is valid is 
something which will have a last thing which is a base type. You have not yet been able 
to infer what the base type tou is which you are getting every time in every unfolding of 
this equation. Therefore this inference is going to go on infinitely. So without an infinite 
proof one cannot infer a type for data. And of course even after an infinite proof I do not 
know what the type is. This is impossible, here it is really to be read as something that 
whatever may be its type it is not inferable in a finite proof.  
 
The point about unification of course is that I went about it rather in a simplistic manner 
but the unification algorithm is deterministic and it will clearly point out that this is 
impossible, equating these two is actually impossible. Any unification algorithm will be 
able to point that out. So it won’t even go out through an unfolding and it wont even look 
upon that as a recursive definition which is to be unfolded. It will look upon that as an 
equation which is to be solved by a most general unifier and it is impossible to get the 
most general unifier because the disagreement sets are such that one is the subset of 
another. So when the disagreement sets are like that then you know that you are not going 
to be able to solve it and that is how a unifier would actually look at it. So it is actually 
compile time feasible to detect that delta cannot have a type assigned it is not necessary 
to go through an infinite unfolding process. But logically speaking from the point of view 
of rules what it really means is that you cannot infer in a finite proof the type of delta. 
That is how the simply typed lambda calculus goes. Therefore we will just look upon the 
language now that the grammar for the types itself puts the appropriate restriction, the 
inference rules put the restriction on the kind of terms which can be executed.  
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So what it means is that if you put in a typing inferences engine with a unification 
algorithm in your compiler the compiler will just throw out all those terms and say 
impossible, the type cannot be determined. Therefore it will not even permit execution; it 
will not generate code to execute. So we will just look upon the simply typed lambda 
terms as all the well-typed terms generated by the two level grammar type and the 
lambda calculus. Of course we just have to complete a few formalities. We have to define 
what beta reduction is and we should define beta reduction in such a way that it is well-
typed. 
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If now this portion is not part of the language but this is what the compiler has inferred 
whatever is in light blue is really part of the language of the simply typed lambda 
calculus but by an application of the rules of inference assuming that L is a term of type 
tou what your type inference system will produce is that this lambda abstraction is of type 
sigma arrow tou and then only if the argument that you give to this application is of type 
sigma will it actually perform a beta reduction. So whatever is in dark blue here is really 
something that is actually not part of the language but something that is part of your type 
inferencing system that is again a part of your compiler or translator for the language. 
 
So the actual terms are those that are given in light blue. So, given an application of the 
form lambda x: sigma bar L applied to M and assuming that the type inferencing system 
can assign these types to them through the application of rules T1 to T3 then a beta 
reduction is possible which will give you a term of type tou. And what we can do is we 
can carry these definitions forward just as we did before. You can define a many step 
beta reduction, equality on beta.  
 
Now, when you do equality on beta it is guaranteed that you can never equalize two 
terms which do not have the same type. After all they should both be beta reducible to a 
common term so all the terms in your beta reduction should have the same type, all the 
steps in your beta reduction should have the same type. That is implicitly guaranteed 
once you go through a type inferencing system. And the interesting thing is that since 
delta and omega are not well-typed and they are thrown out by a type inferencing system 
you are also not going to get these horrible infinite beta computations. 
 
Actually there is a caveat there that does not mean that with a type inferencing system 
you can guarantee that every program terminates, you cannot guarantee that every 
program is an algorithm. It is only guaranteed for the typed lambda calculus with base 
types which are not actually applied some things like numbers. The moment you bring in 
numbers we can really sit together and design a really lousy definition which will run for 
ever. But the thing is if you remove functions or numbers and you look at only the simply 
typed lambda calculus with this beta reduction with all these replicating terms out there 
are going to be no infinite beta reductions.  
 
Infinite computations do come in the moment you apply it on to some other domain like 
numbers. But by just using this base types int and bool or whatever as patterns and not 
actually using any integers or Booleans just looking at the lambda terms without actually 
doing number computations, not bringing in Peano Arithmetic and things like that just 
use these int and bool as patterns for possible values just look at pure lambda terms there 
will be no infinite computations because you have outlawed all these kinds of terms 
which have the potential for replication.  
 
In the typed lambda calculus what it means is that then beta reduction is strongly 
normalizable they are always guaranteed. Coupled with the fact beta reduction is Church-
Rosser what it also means is that there are unique normal forms. If something is Church-
Rosser and it has two different terms then they should be able to meet at a common term 
by the diamond property which means you will have a unique normal form. Because if 



you have two different distinct normal forms which are not mutually alpha convertible 
then by the Church-Rosser property it says that there is a common computation which 
they should both meet. So you cannot have two distinct normal forms. These are some of 
the nice properties that come out of type checking and type inferencing. 
 
(Refer Slide Time: 32:11) 
 

 
 
Let us look at what we have done. So one thing is that when you do simple types the type 
inferencing can be done entirely at compile time or translation time. In the case of 
interpreted languages it can be done at translation time before you actually perform any 
kind of executions. The second thing is that there are no replicating or self applicative 
combinators in this new language and therefore those horrible infinite computations are 
outlawed and the type inferencing is done by structural induction which in practical terms 
and in terms of a parser and so on means that you will do it through a recursive descent 
parsing technique. If your compiler has implemented by a recursive descent parsing 
technique then you will do it through that. If it is some other parser like a table driven 
parser or something then in the table you can also incorporate these rules for the 
appropriate productions. 
 
Therefore all these horrible combinators which complicate life are removed on the basis 
that they are really meaningless things and they are really complicating life. since they 
cannot be typed the unification algorithm within the type inferencing system which is 
within the compiler will actually produce a failure so the type inferencing system will 
actually produce a failure because of that and the compiler can just throw these programs 
out without generating code. 
 
Therefore the simply typed lambda calculus that we have looked at basically starts with 
the assumption that no term which contains either self application or a form of replication 
can be well-typed. Therefore anything that is built up on top of self applicative or 
replicating terms cannot be well-typed. After all by structural induction unless you can 



type the innermost terms you cannot type the outermost terms. So if this omega and delta 
and so on are embedded deep inside a huge lambda term your recursive descent parser 
will go up to the omega lambda and keep coming up from the recursion and produce a 
failure. The other nice thing is once you have put in a typed discipline you cannot apply 
arbitrary deconstructors to arbitrary objects then your constructors and deconstructors 
will actually be inverses.  
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So a deconstructor will be applicable only if its argument is something of a corresponding 
constructor type and the constructor will be applicable to whatever only provided the 
elementary objects from which it constructs are of the appropriate types. Then once you 
have constructed these things you can keep applying these constructors and 
deconstructors as long as your compiler allows then you are guaranteed that they are 
meaningful. Now let us look at beta normal forms. 
 
In beta normal forms there are no infinite computations unless you actually give really 
lousy definitions. All computations at least of the pure simply typed lambda calculus 
have a guarantee to terminate, computations of the applied lambda calculus in fact any 
calculus which incorporates natural numbers as a data type means that it has a potential 
for infinite computations. So only in the simply typed lambda calculus is it guaranteed 
that there are going to be no infinite computations. The moment you give these 
definitions over an applied term the moment you give bad recursive definitions you are 
going to get infinite computations. Then since beta is Church-Rosser unique normal 
forms exist and you can always find them for the pure simply typed lambda calculus. 
Now let us look at what is the simply typed lambda calculus term look like. What are 
some of the meaningful terms? 
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Let us look at some of the simple combinators. We cannot use terms like omega and delta 
but we can use some simple things like K, you could use the identity you could use S etc. 
So let us look at the identity function over these two base types integers and bool so the 
identity function in the simply typed lambda calculus over integers will look like this and 
your type inferencing system when it goes down it collects this information that x is of 
type int and then when it gets down to this free variable x it gets the information from the 
context that it is of type int then when it comes up again since it is a lambda abstraction it 
pronounces this to be of type int arrow int. So the identity function is an integer identity 
function. Basically what it does is if you give an integer argument to it will return back 
the same integer argument.  
 
But the point about this is supposing you give a Boolean argument to it then it will throw 
it out because it is of a wrong type and it does not satisfy the conditions of the beta 
reduction. Remember that even if you use the lambda calculus representation of numbers 
and Booleans you will have to include type information on all the bound variables there. 
So you cannot give a Boolean argument to this function and expect to get any answer. It 
will not type check, the beta reduction cannot be enabled because it expects an argument 
of type integer and you are giving it an argument of type Boolean and it will throw it out. 
The good thing about that is you cannot for example ask questions like whether zero is 
true.  
 
So what does it mean?  
Supposing you want an identity function on Booleans what it means is you will have to 
have a different combinator like this. What applies to the identity function also applies to 
other complicated functions but the point is that they should all be well-typed. But now 
what if I want an identity higher order function which takes a lower order function and 
returns me the same function? 



In general, what if I want a combinator which transforms one higher order function into 
another higher order function? Like derivatives for example the derivatives are higher 
order function which takes a function and gives you another function.  
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So, here I am taking identity as an example but it could be any of those functions. The 
point is that they are not going to be type checked unless the arguments and the functions 
are of appropriate type. supposing you take a higher order function for which you want a 
higher order identity function but you cannot take any arbitrary higher order function, let 
us say you take a higher order function of type int arrow int then you have to have a 
special identity function for int arrow int if you have a function from int to bool then you 
require a special identity function from int to bool. 
 
Therefore, for example this combinator accepts only arguments of the form which have 
the type it arrow bool. This is a higher order higher order function which accepts another 
function whose type is int arrow bool and gives you back the same function. So if you 
want int arrow int you will require another combinator if you want int arrow bool arrow 
int arrow bool then you will require yet another combinator and so on and so forth.  
 
There is infinite number of such types because it is a context free grammar on the 
language of types. Starting from even from a finite set of base types I can construct an 
infinite number of types. This means that even for simple function like the identity 
function I require an infinite number of identity functions in order that my type checking 
actually works. what we looked on as in the untyped lambda calculus if you look at all 
the combinators which can some how be ascribed types with the type system so for every 
combinator C for which you can ascribe a type there are actually infinite number of typed 
versions of that combinator and only the appropriate typed version should be applied to 
the appropriate argument.  
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If you had a combinator C like the combinator K in the untyped lambda calculus for all 
types sigma and tou for which K is a valid combinator to be applied on type sigma and 
tou you will require new combinators one for each sigma tou combination. So each 
combinatory of the untyped lambda calculus is going to be multiplied an infinite number 
of times to cater to each of the infinite number of types that are now generated. Hence 
what happens is that in most programming languages the statically typed languages like 
Pascal and Modula actually use this simple typing scheme for their functions and 
procedures and people claim that C uses it but C has a lot of dangerous things which also 
do not use it. For example this returning void in a function is not something that is really 
statically typable, it is actually an untyped form which is why you can do a lot of 
manipulation of types using those voids and using pointers in C. But for whatever is 
actually declared C does use the simple typing scheme that we have seen in the lambda 
calculus.  
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Therefore languages like LISP do allow integers and so on and so forth as types but 
mostly LISP is really an untyped language. If you remove all the data types from LISP 
and look upon pure LISP as a version of the lambda calculus then it is really untyped. 
There is absolutely no type checking mechanism, there is no type inferencing mechanism 
and there is no worry about whether you are applying some combinator to some argument 
which you should not be applying. So it is mostly untyped, once you have the typed data 
the underlying data type is well-typed then that typing often works for most of our run 
time environment. As long as the values are from those data types the typing works 
mainly because of the representation.  
 
The representations are nicely ensured on the machine which ensures that you get 
reasonable values. And what holds is LISP also holds for scheme and C with its void 
construct is actually going into the untyped territory of the lambda calculus. So most of 
these untyped languages simply do not bother about typing though it is an important way 
of catching bugs at a very early stage and it is becoming more and more important. 
Though I have not yet spoken about name functions and procedures I have spoken about 
unnamed functions and unnamed blocks so far but essentially if you take all those blocks 
and give them a name you get your named functions and procedures and of course you 
should allow parameterization.  
 
So what we started out in the simply typed lambda calculus was that its self application is 
really meaningless and no self respecting mathematician will use self application. But 
long time ago we actually looked at this combinator twice. And if you remember what we 
did was, a version of twice for the simply typed lambda calculus would be something like 
this, for the bound variables I have to specify types so I have done that otherwise I have 
made no other changes in the definition of twice. Because of the typing constraint since x 
is applied to y I have to give x a type of something arrow sigma but since x is applied to 



that the result of that I have given it a type sigma arrow sigma and via type sigma so that 
it is well-typed. So this is actually a well-typed expression. 
 
Now the point is what about twice twice? 
We had actually looked at this application also. The moment you put these type 
constraints on the simply typed lambda calculus twice twice is no longer well-typed. If 
you remember the fact that each of these sigma is something of the form arrow arrow 
arrow arrow arrow which ends up in a bool or an int you at once find that twice applied to 
twice is not well-typed. But we actually applied it and we got some nice result. 
 
The next question is we actually applied it and got some nice results so is twice applied to 
twice actually meaningful? Are we being too restrictive, is it becoming like a dictatorship 
to put in simple typing and will this allow things like this? 
When we apply twice to twice we actually got some results. You remember, we got the 
octupling function or whatever twice is applied several times all that made perfect sense. 
So what it means is that it means that all self applications need not necessarily be 
meaningless. It is true, you cannot apply a function from real numbers to real numbers to 
itself, it is not going to type. But there are enough functions like twice which look 
meaningful. 
 
What does twice do? 
It just takes any function as an argument and for any argument that function might have 
twice applies that function twice. This is really all it does which is perfectly meaningful. 
After all given a real number x and f is a function from real numbers to real numbers f 
applied to x is perfectly meaningful there is no problem with that. And what all I am 
doing by specifying twice is that I am saying you take any arbitrary function f on real 
numbers and apply it twice on whatever argument you get. I do not care what function on 
real numbers you are taking but whatever it is you just apply it twice and then give me 
the result.  
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Therefore twice is a nice higher order function and it is actually in some sense type 
independent and there are lots of such functions. The important question that actually 
arises as part of all these is what is MLs view on types, secondly there is another 
important question, I said you are going to have infinite copies of the identity function. 
 
Just imagine, just in order to give you back what you gave me I require an infinite 
number of copies which check what type it is send it to the appropriate copy and then 
send you back the same thing. So what about the code that is going to be written for 
something like the identity function? Regardless of the type of the argument the code is 
going to remain identical. There is no difference at all. essentially what the code says is 
take it and give it back, that is really all that the code says, take it and give it back even 
without looking at it but your simple typing scheme actually puts a restriction it says take 
it look at it and only if it is compatible with you send it back otherwise do not. So I will 
require an array of infinite number of programs which do nothing but take and give back. 
And we actually got this problem for whole lot of programming problems.  
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For example, what about the cons of integer lists?  
Should the cons of integer lists be different from the cons for character lists? Should the 
cons for integer lists and character lists be really any different from cons for lists of 
integer lists or lists of character lists or lists of lists of integer lists, lists of lists of 
character lists and so on and so forth. Assuming that your base data type could have such 
an infinite collection then your simple typing only creates more problems, it creates 
tedium; you will have to create copies where only the type name is changed, whenever 
you get a new copy you will have to create a new program in which the type is changed. 
This is the problem with Pascal.  
 
For example, if you define stacks of integers you cannot use that program for stacks of 
characters, you cannot use the program for stacks of strings, you cannot use that program 
for stacks of records of something or the other though the actual stack operations pop, 
push and empty are going to be identical in all these cases. And the reason in Pascal and 
Modula and so on you cannot do it is because they use a simply typed scheme. A simple 
typing scheme which requires an infinite number of copies where only the types of the 
bound variables have to be changed whereas in LISP you do not require this because it is 
untyped, it does not care what type you get and that is essentially the difference between 
the typing in ML and LISP or ML and scheme because ML and scheme are both 
statically scoped languages they are easy to compare. In scheme you can do cons of for 
any kind of type but that is because all types are regarded as being just the same type as 
being type lists.  
 
The same cons is applicable to integer, integer star, integer lists, character star, character 
lists, integer list star, list of integer list and so on and so forth but that is because the cons 
in scheme is type lists and it is essentially like the untyped lambda calculus so it does not 
care what the argument is. In ML the cons is the same except that it is typed what is 
known as the polymorphic type. So you use the same code but now our base types are 



type constants, what you require are type variables which are going to be instantiated on 
demand. So type variables are required. What we are saying is that if you look at the cons 
operation then for all types as long as they are types of the form something list for all 
types T such that an argument is of type T and another argument is of type T list it is 
possible to do a cons of the object of type T with the list of type T list and I require the 
same piece of code, I require only one copy of cons for that I do not require an infinite 
number of copies. 
 
Therefore, we will look at the polymorphic lambda calculus where we actually move 
from the simply typed to the parametrically typed and this polymorphism is what is 
present in C + + and Aida as generics. For example, you define the stacks in Aida you 
use a typed variable which is not going to be instantiated and you write all the code for 
the stack operations pop, push, checking emptiness so on and the compiler compiles it 
you call this code for producing stacks of integers, stacks of characters, stacks of records 
whatever but at the call to this code the typed variable is initialized to integer, the typed 
variables are different from value variables so you have a notion of typed variables which 
are different from value variables which can be instantiated on a call. So you produce 
particular instances of the same code for the same type. 
 
the simplest implementation of course is that instead of you writing the code for integer 
stacks, real stacks, character stacks and so on you separately you write it as a generic 
package in Aida or C + + and the compiler will produce code for whatever type you are 
demanding those operations to be used. It will actually replicate the code by changing the 
typed variable and putting the base type that you are entering there. In fact this is what 
most of the Aida compilers do they actually replicate the entire code for that call. But it is 
also possible to use reentrant code, use the same code with the typed variable instantiated 
which is what the ML does. You can use reentrant code without actually generating new 
code. So we will talk about polymorphism in the next class.                      
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