
Principles of Programming Languages
Prof: S. Arun Kumar

Department of Computer Science and Engineering
Indian Institute of Technology

Delhi

Lecture no 28
Lecture Title: Data as Functions

Welcome to lecture 28. We will briefly recapitulate whatever we have done in the λ calculus and
then I will talk about data as functions. Let us just briefly go through the pure calculus. We have
the syntax given a count-ably infinite set of variable symbols. Every variable symbol is a λ term.
The λ abstraction is a λ term and the λ application is also a λ term.

(Refer Slide Time: 00:48)

We have the usual notion of free variables. The closed λ terms which have no free variables are
called combinators. We will be looking at some important combinators and the operational
semantics of β reduction is as follows.

(Refer Slide Time: 01:18)

The main rule is that of finding an application and replacing the bound variable in the body by
the operand which simulates function application and there is the notion of syntactic substitution
which we have rigorously defined before.

(Refer Slide Time: 01:48)

We can take the reflexive transitive closure of the β reduction and obtain a many step
β reduction by these rules, just to make clear what our notion of free variable substitutions are.
As I said for our β redex we require the notion of free variable substitutions which somehow has
to be very carefully defined.

(Refer Slide Time: 02:16)

We will take this as a definition, though it is not completely algorithmic. It is possible to give
this definition entirely in terms of free variables without worrying about these bound variables
and then make it algorithmic but then that is harder to understand. We will follow the simpler
route here.

(Refer Slide Time: 02:54)

 (Refer Slide Time: 03:12)

We also looked at some strange kinds of things which normally do not happen with functions.
For example, we saw that functions may be applied to themselves something that is otherwise
unheard of and actually it does make sense for a function to be applied to itself. On the other
hand it also does not make any sense for certain functions to be applied to themselves because
they lead to infinite-non terminating computations and so one has to be careful.

(Refer Slide Time: 03:53)

We will see that self application by itself has to be banned and then we also looked at
α conversion which is essential somehow for readability and for doing a β conversion without

creating collisions or confusions. This definition of α conversion uses the definition of free
variable substitution and also this α conversion includes the syntactic identity.

(Refer Slide Time: 05:03)

L is α convertible to itself. We will take z to be a fresh variable different from any in this. Again
it is possible to redefine α conversion such that it is only necessary to look at free variables in
certain bodies. This is the notion of α conversion. The α conversion basically tells you that two
terms which are different only in terms of bound variables are essentially the same. They are
almost syntactically identical and that you really cannot distinguish them on the basis of any
meaning or operational semantics. We will include α conversion in our definition of β equality.
The new β equality is defined as follows: if L is α convertible to M then L is β = N and if L
goes in a many step β reduction to M then L is β = M.
If L is β = M then M is β = L.
If L is β = M and M is β = N then L is β = N.

(Refer Slide Time: 05:42)

These three were the original rules which really tell you about the reflexive transitive closure of a
many step β reduction. This is a new one which says that every now and then while doing
β reductions we might feel compelled to rename some bound variables therefore convert α to
another term which is not syntactically identical but which is α equivalent and we will claim
that they are both β equal. So, our reflexive transitive closure actually includes α convertibility
too. Now we do not need to worry too much about α conversion which adds to the confusion and
does not add anything new to the meanings of terms.

Now getting back to the title of this lecture namely data as functions it is important to realize that
there are essentially several models of computation. When we get back to this data as functions if
you go through an architecture course firstly, it tells you that there is really no difference
between program and data. Program and data both have the same representation namely various
kinds of bit representations and they have the same representation. So, it is a matter of
interpretation whether some bit string is a program instruction or a piece of data.

The whole idea of the Von Neumann architecture which is what you study in most architecture
courses is really that there is nothing fundamentally different between programs and data.
Programs are not any different from data. It is a matter of interpretation. You can interpret
certain bit strings either as data or as instructions. So, there is no difference between data and
control and the important feature about any architecture course would be that all control and all
programs are represented in the form of data in the sense that the machine instructions are all
expressed in some bit strings; your jump instructions are bit strings and so they are all coded into
data. All control is coded as data and data is coded as itself. The whole point is that depending on
convenience very often you logically partition areas of memories into a data segment and a code
segment and you interpret whatever is in the code segment as control and whatever is in the data
segment as data. But it is largely a matter of interpretation and there is no essential difference
between the two.

In the case of theλ calculus, Church showed that programs and data are no different or functions
and data are no different and that all data are functions and that is a reversal part of the
fundamentals of architecture. There is no difference between programs and data or control and
data. In this case it is functions and data and all data can be represented as functions.

So far we have not only looked at the pure λ calculus but also what might be called the pure un-
typed λ calculus. Firstly, we must realize that in theory it is not really necessary to have to apply
the λ calculus to have an applied λ calculus. In theory it means that our application like taking
the pure λ syntax and applying it on to Peano arithmetic is not essential. You can get rid of
Peano arithmetic completely. Since all data are going to be represent-able as functions, Peano
arithmetic can also be represented as functions. So, it is possible to work with just the pure
λ calculus. You do not need to apply it. It is a matter of taste whether you want to apply it or not
but largely if you look at functional programming languages they are all applied λ calculi but
they are all applied λ calculi for reasons of efficiency.

The trend in the last 50 years of the existence of computers has been that you should be able to
exploit speed of hardware. Hardware is very fast and anything that is programmed in hardware is
likely to be very fast. Instead of actually coding up all data structures as functions it is more
efficient to use the underlying data structuring capabilities of your machine hardware. You want
the power of the λ calculus which means higher order functions but you do not want to work
with a pure λ calculus simply because even though the pure λ calculus can represent all the data
you require, it is going to be extremely slow. So, you apply it on to an existing virtual machine
whose operations are likely to be very fast.

The underlying hardware is going to be very fast and it is getting faster everyday. So, it makes a
lot of sense not to try to code everything in the pure λ calculus but to use the underlying data
representations of the underlying hardware and code only what is very difficult to do with the
underlying data representations. Remember that the whole Von Neumann thesis is not that you
cannot write higher order functions in hardware but it is just that it is extremely hard and
complex to do it. So, you exploit the hardware to the hilt, for example, the integer arithmetic is
very fast on hardware. No amount of simulation using list is going to get you that speed.
Whatever is programmed in hardware or at most firmware is likely to be 5 to 10 times faster than
the best algorithms you can write in software.

It is a good pragmatic reason to use only the applied λ calculi which is why all functional
languages are applied λ calculi. They provide this excellent structuring facility for higher order
functions but even though the pure calculus can structure data just as well as data itself, it makes
a lot of sense to apply it on to an existing virtual machine and get the benefit of the structuring
mechanism of the λ calculus coupled with the speed of the underlying virtual machine. That is
really the main reason why all functional programming languages can just be regarded as applied
λ calculi. But as a matter of academic interest it is a good idea to know that it goes in parallel
with what you learn in an architecture course. In an architecture course essentially you learn the
representation of all data and functions as data. If an architecture course has to be summarized in
one sentence it is just a representation of all data and functions as data. It is a good idea to look at

the pure λ calculus theoretically at least to be able to program all the data themselves as
functions and so it provides a parallel.

First, let us go through some of the important combinators that we will see. Then we can look at
numbers and data structuring facilities. The three most important combinators are these. What is
a combinator? A combinator is a closed λ expression. It has no free variables. Closed
λ expressions provide the capability as they have the status of full programs to which data can be
supplied and they can be executed. This I is the identity function. You apply it to any object and
you get that object. Since we are talking about that n type λ calculus, that object may be a value
object or it might be another function. This combinator ‘I’ is polymorphic in the sense that there
is nothing specified about this type of X. Whether this type of X is a value object or a function
object or a higher order function you can apply this ‘I’ to any function and you should get back
the function. Let us suppose that you are using this ‘I’ in an applied λ calculus in which you have
a function from some domain A to some co-domain B. In the function f A → B when I is
applied to f then ‘I’ acquires the status of having a type and A → B goes to A → B.

If you look at an object X say in integers and you apply I to X then ‘I’ is a function of the type
integers to integers. On the other hand if you took a function f from integers to integers and you
apply ‘I’ to f you get back f. Then ‘I’ really has the status of having the type integers to integers.
That means it takes a function ‘integers to integers’ and gives you another function which is
integers to integers and that is actually the same. You can take any function of any type and ‘I’
applied to that function will give you back the same function. In each case if you have a function
f which goes from some type A to some type B then ‘I’ applied to f is equal to f and therefore I
has the status of being from A applied to B → A applied to B. : () ()I A B A B→ → → . ‘I’ is
polymorphic in the sense that depending on the argument, it has a varying personality. If the
argument is a plain integer then ‘I’ has this personality of a function from integers to integers. If
it is a plain Boolean then ‘I’ has a personality which is like Booleans to Booleans. If ‘I’ is
applied to a function from integers to integers or integers to Booleans then ‘I’ takes a personality
which is of a type of integers to integers to integers to integers or integers to Booleans to integers
to Booleans.

(Refer Slide Time: 21:52)

In general instead of looking at these various types formed by constants just as I can talk of value
variables, I can talk of type variables, ‘ :I α→α ’. These types are what you see in your ML
interpreter. When you define a function it determines the type, if it can determine the type by
means of a constant that is if there is a distinguishing constant then you can look upon types
themselves as a language whose constants are things like int, bool, real etc. The functions are
arrow types formed of these. In the case of a combinator like I, it is saying that you take any
typeα . So, α is a variable over the types and I is a function then of typeα → α .

We will talk about polymorphism in a type λ calculus in a little bit of detail. A large part of it
still is a matter of fairly current research but there is quite a bit of material which is already quite
well known especially ML type inferencing etc. Similarly, you can assign most of the other
combinators a type in that way. Twice is also polymorphic in a similar fashion in the sense that I
can assign type variables to the type of twice and then I can try to solve for those type variables.
Solving entirely for type variables is expressing one type variable in terms of the other.

(Refer Slide Time: 24:24)

If I cannot do that as in the case of Ω (omega) combinator that I showed twice self application is
polymorphic whereas the Ω combinatory, defined this way; ([()][()])x xx x xxΩ ≡ | | is not
polymorphic. It is possible to do a type inferencing for twice but it is not really possible to do a
type inferencing forΩ . It is possible to assign some type variables and some type expression to
twice but it is not possible to do that for Ω and that is what distinguished just genuine self
application from merely polymorphic application. Let us look at combinators now. Just keep in
mind that we are starting at the beginning. In the beginning there is nothing. You are extracting
functions, values and everything from essentially a homogenous mass of nothingness.

Here is a combinator K. If you look at the combinator K, basically given two arguments X and Y
it returns the first argument. Then there is this combinator S which is actually very important.
For the three arguments X, Y and Z it is of the form X applied to Z the whole thing applied to Y
applied to Z. Its importance is really that with S and K you can program all other combinators
meaning, they are the absolute primitives that you require. With just these two constructs
essentially all functions that are programmable can be programmed.

(Refer Slide Time: 27:30)

It is a matter of study after you have finished your theory of computation course but till then you
just keep in mind that S and K are very important. This combinator just tells you about how to
compose functions together. Function composition is again polymorphic in the sense that
regardless of the domain in which you are, you can always compose unary functions. This is a
function composition. Then let us look at actual representation of data.

Firstly, let us look at truth values. The truth value ‘true’ is just the combinator K. Given two
functions X and Y it chooses the first one and that is true. False is just, choosing the second one
given two functions X and Y. I have given two objects X and Y. If you choose the second one
and that is false you can see the similarity. Here it is functional but in your architecture it is
really data based. You have only two possible values of data from which data is all formed 0 and
1. One of them is false and the other is true. It really does not matter which one you take.

We will just quickly look at the data structuring capability. We have to be able to define various
data structuring facilities. What are the data structuring facilities? They could be Cartesian
products, probably disjoint unions (but let us not think about disjoint unions now) and sequences.
We need to construct sequences. So, if you have got pairs, tuples and sequences you have
essentially got everything else that is required theoretically but is not required pragmatically. As
far as functions are concerned you have got them. It is the whole purpose of the λ calculus.

We will define a pairing function. I am following a convention now. I am using dark green for
combinators constructed from λ expressions. Do not get confused when I use a green square
bracket. Do not confuse it with the blue square bracket which is part of the λ calculus language.
Here, this is a pairing function which takes two arguments and this pairing function is just
defined by this combinator. In all our data structuring facilities we had essentially two kinds of
operations. One is the constructor operations, which allows you to construct complex data from
simpler data and the other is the deconstruction; how you get the simpler components from a
complex piece of data.

This is the constructor for pairing and this is the deconstructor. I will call the deconstructor this
and it means that if I have the λ expression P which is actually supposed to denote a pair of
elements which presumably was formed through this construction operation and not anything
other than P applied to true will give me the first component of this construction and P applied to
false will give me the second component. You can verify them by actually doing the
λ application. Remember that this bracket is my representation of the deconstructor operation. It
is in green. This blue parentheses represent actual λ application so that means you take the
combinator P to which you apply the combinator true and see what you get through β reductions
and of course our β reductions now include also α conversions wherever necessary.

If true anyway is the combinator K, which given two arguments, gives you the first argument.
For example, take this. P could be any λ term and you could apply this deconstruction operation
on any λ term. It is just that if you apply it on any λ term then the chances are you will not be
able to interpret what you are getting in some reasonable fashion. But if P had been constructed
through two terms M and N using this constructor then when you apply true here you get true
applied to M and the whole thing applied to N. True applied to M true is just K; K applied to M
applied to N means that it will give you the first component and it will give you M.

Similarly, P applied to false will give you the second component and it will give you N. But
remember that since we are in an un-typed world you can actually construct any arbitrary
λ expression and say that this somehow represents a pair though you may not have constructed it
through this fashion. You can apply that combinator to true and get some result which does not
make any sense to you.

This is sort of natural. Here again we actually had an inkling of that in this. If you say true has
the same representation as K then can I apply K to a pair and claim that I am applying true to
some pair and getting some truth value. The type of value you get is largely a matter of
interpretation. I used to have these FORTRAN programs and then run them through the Pascal
compiler just to see what kinds of errors come. It is really a matter of interpretation meaning you
can send any file into a Pascal compiler and what you get is anybody’s guess. Similarly, you can
apply any combinator to any combinator. After all the language syntax does not disallow you
from doing that but what you get is undeterminable.

As far as these combinators are concerned, the fixing of the types and the fixing of the kind of
values is largely a matter of interpretation. I can take cosmic ray data and try to execute it. I get a
whole sequence of bits, 0’s and 1’s so why can I not regard it as a program and try to execute it.
Some glitches will take place somewhere and something will happen but it is a matter of
interpretation whether you get something meaningful or not. In an un-typed world, which is what
your underlying hardware is, there are no types and there is no distinction between programs and
data. So, what prevents me from executing data? Similarly, in the un-typed world of the
λ calculus what prevents you from applying some strange combinators to other strange
combinators? What you get is unknown.

(Refer Slide Time: 36:20)

I can interpret the construction and deconstruction operations only under certain conditions. For
example; what prevents me from just incidentally forming an expression which has this syntax.
Why should I interpret it as a pair at all? Similarly, there is nothing that prevents me from doing
this application to any arbitrary λ term and seeing what I get. What I get is not necessarily the
first element of a pair. I would get the first element of the pair only if that λ term was obtained
by this pairing constructor. This is a fact in the un-typed world. Whether it is program or data it
does not matter. In any un-typed world there is a problem of interpretation that is these
operations are not serjective. They do not go back and forth necessarily always, but they go back
and forth only if you go through the construction operation and then the deconstruction
operation.

That is one of the problems of the un-typed world meaning you can take an arbitrary λ term and
deconstruct it first and then try to do the construction and see whether you get the original
λ term. If your arbitrary λ term was not of this form then you are not going to get the original
λ term. If your arbitrary λ term was of this form then you will get it but if your arbitrary λ term
was not of this form then you are not going to get it because when you do the deconstruction you
will get some strange λ term M and a strange λ term N and then you will apply this construction
and you will get a λ term of this form which is not necessarily going to be β equivalent to what
you started out with.

One may think that when we started with true and false we expect something like what we do in
the Boolean world. But the problem is that you are mixing up an un-typed world. For instance
why should true + false = 1? We may think that when we take a function, apply true to it, take a
function apply false and then in some way try to get it back, we always get back the same
function. But it is not so because what is guaranteed is that if you go through the constructor first
and then do the deconstruction then you will get back what you originally had. If you do a

deconstruction and then try to apply a construction then there is no guarantee what will happen.
That is how the un-typed world is.

What Barronreck has proved way back in 1974 is that there is no perfect possible construction
and deconstruction operation for pairs which will ensure that construction and deconstruction are
somehow inversions of each other under all circumstances. It means that if you do a
deconstruction and then do the construction from what you get out of the deconstruction you will
not necessarily get what was original. It is a good idea to play around with these things to see
what happens with your data structuring. Why should we play around only with Pascal compilers
and FORTRAN programs? We can do that also with combinators. Apply the successor function
to a sequence and see what you get. After all there is nothing that really prevents you from
seeing what extremely complicated expressions you get. This is how the pairing goes and once
you have the pairing it is very simple to construct tuples.

So, the pairing is through Cartesian products and tuples are also Cartesian products. Let me take
a Cartesian product ()()1 2 m.... A x A x .x A .…

I can look upon this Cartesian product which is obtained by a binary Cartesian product, take the
Cartesian product of this with the next and I keep on bracketing.
The other possibility of course is that I can look upon this Cartesian product as looking at such
Cartesian products so that I get 1A x ()m 1 mx A x A ...)−… .

I can look upon an enary Cartesian product which I will just write like this A∏ as being
isomorphic to binary Cartesian products.

This is isomorphic to ()()1 2 m.... A x A x .x A… is isomorphic to 1A x ()m 1 mx A x A ...)−… .

(Refer Slide Time: 42:15)

So, I can take an enary Cartesian product and either I can look upon it as binary Cartesian
products done one way or binary Cartesian products done the other way or I can also have
mixtures of these. I can choose some k and somehow do A1 to Ak and then Ak + 1 to Am and
take it as a binary Cartesian product. So, it is isomorphic to a whole lot of possibilities. It is
actually isomorphic to all possible ways of bracketing that you get. We will just take one of
these. We will look upon a tuple as just obtained as an ordered pair. A tuple m1 to mn is an
ordered pair whose first component is m1 and whose next component is n - 1 tuple whose first
component is m2 and whose next component is n - 2 tuple etc.

(Refer Slide Time: 43:48)

Since we have a pairing construction operation we know how to find tuples. Essentially, we are
using one of these isomorphisms for the representation of tuples. Since our tuples are constructed
from pairs that are deconstruction operations for tuples the projection functions for the tuples can
also be constructed from the deconstructions for pairing. If you keep on deconstructing the tuple
in a certain fashion you can get the Ith component of the tuple which essentially means that if p
has been obtained by an explicit tuple construction mechanism then to get the kth component of
this tuple I do the paired deconstruction k - 1 times.

If I have a tuple of this form; 1 2 n 1 nM , M , M ,M−< < <… >…> if I do a deconstruction for
pairing n - k - 1 times then I have a tuple whose first element is Mk and whose next element is
another tuple of n - k elements, it is a n - k tuple and now I take the first component of this and
that is what actually happens here. You take the right hand component each time of this pair, do
it k - 1times and then take the first component of what you get. For the nth element you always
take the right most element. So, you do this n - 1times and you always take the right component
here. These are the deconstruction operations for tuples derived from the deconstruction
operation for pairing. We had the first confusion with these parentheses because these

parentheses when in blue are λ applications and parentheses when in green are deconstruction
operation for pairs as tuples. Now let us look at sequences. For sequences I have square brackets.
Square brackets when blue are λ abstraction and square brackets when green are actually
sequence constructions. If you actually look at your programming the tuple formation is really
like your list constructions in ML or LISP etc. It is like having a cons operation.

(Refer Slide Time: 48:09)

A cons operation is really like successive pairing. There is an alternative way of looking at them.
You can look at sequences this way; whole sequences as just λZ, Z applied to M1 applied to M
2…..up to Mn. Then you have this deconstruction operation. If you actually play around with it
you will be able see that this is a deconstructor. This P, i, n is the deconstructor which extracts
the Ith component of the sequence. If that sequence is n components long then the Ith component
out of n is going to be this and we are in the un-typed world. So firstly, you can apply this P, i, n
to any λ expression that you want; it may not even represent a sequence but you can still apply it
and get something. You would not know what you apply and what you get after application. You
could even take a sequence that is much shorter than n elements long and try to apply P, i, n
where i is greater than the length of that sequence.

You will get some other λ term because a λ term applied to a λ term will give you a λ term but
you would not know what it means again. Here again only when you go through the constructor
operation and then do the deconstruction you are liable to get back your original component. If
you go through the deconstructor operation and then go through the constructor you do not know
what you will get and in the un-typed world there is no such thing as an error. Errors are a logical
consequence of an interpretation. In your actual hardware you actually set some condition codes
and detect certain patterns as errors. Otherwise if you just look at the bare hardware there is no
such thing as an error. It is just bit patterns.

(Refer Slide Time: 49:22)

Similarly here, the concept of errors again is a matter of interpretation and you just get
λ expressions. Errors are really higher level abstractions from the un-typed world, meaning, they
are not part of the un-typed world. If you do erroneous applications you will get something but to
interpret it as an error is a matter of your taste. It is a matter of what you consider right. For
example; you may not like the idea of a deconstructor followed by a constructor application
giving you actually something that is meaningful and then you call it an error. You will still get a
λ term whether you like it or not.

	Principles of Programming Languages
	Prof: S. Arun Kumar
	Department of Computer Science and Engineering
	Indian Institute of Technology
	Delhi
	Lecture no 28
	Lecture Title: Data as Functions

