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Welcome to lecture 28. We will briefly recapitulate whatever we have done in the λ calculus and 
then I will talk about data as functions. Let us just briefly go through the pure calculus. We have 
the syntax given a count-ably infinite set of variable symbols. Every variable symbol is a λ term. 
The λ abstraction is a λ term and the λ application is also a λ term.  
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We have the usual notion of free variables. The closed λ terms which have no free variables are 
called combinators. We will be looking at some important combinators and the operational 
semantics of β reduction is as follows. 
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The main rule is that of finding an application and replacing the bound variable in the body by 
the operand which simulates function application and there is the notion of syntactic substitution 
which we have rigorously defined before.  
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We can take the reflexive transitive closure of the β reduction and obtain a many step 
β reduction by these rules, just to make clear what our notion of free variable substitutions are. 
As I said for our β redex we require the notion of free variable substitutions which somehow has 
to be very carefully defined.  
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We will take this as a definition, though it is not completely algorithmic. It is possible to give 
this definition entirely in terms of free variables without worrying about these bound variables 
and then make it algorithmic but then that is harder to understand. We will follow the simpler 
route here.  
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We also looked at some strange kinds of things which normally do not happen with functions. 
For example, we saw that functions may be applied to themselves something that is otherwise 
unheard of and actually it does make sense for a function to be applied to itself. On the other 
hand it also does not make any sense for certain functions to be applied to themselves because 
they lead to infinite-non terminating computations and so one has to be careful.  
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We will see that self application by itself has to be banned and then we also looked at 
α conversion which is essential somehow for readability and for doing a β conversion without 



creating collisions or confusions. This definition of α conversion uses the definition of free 
variable substitution and also this α conversion includes the syntactic identity. 
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L is α convertible to itself. We will take z to be a fresh variable different from any in this. Again 
it is possible to redefine α conversion such that it is only necessary to look at free variables in 
certain bodies. This is the notion of α conversion. The α conversion basically tells you that two 
terms which are different only in terms of bound variables are essentially the same. They are 
almost syntactically identical and that you really cannot distinguish them on the basis of any 
meaning or operational semantics. We will include α conversion in our definition of β equality. 
The new β equality is defined as follows: if L is α  convertible to M then L is β = N and if L 
goes in a many step β reduction to M then L is β = M.  
If L is β = M then M is β = L.  
If L is β = M and M is β = N then L is β  = N. 
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These three were the original rules which really tell you about the reflexive transitive closure of a 
many step β reduction. This is a new one which says that every now and then while doing 
β reductions we might feel compelled to rename some bound variables therefore convert α  to 
another term which is not syntactically identical but which is α  equivalent and we will claim 
that they are both β equal. So, our reflexive transitive closure actually includes α convertibility 
too. Now we do not need to worry too much about α conversion which adds to the confusion and 
does not add anything new to the meanings of terms. 
  
Now getting back to the title of this lecture namely data as functions it is important to realize that 
there are essentially several models of computation. When we get back to this data as functions if 
you go through an architecture course firstly, it tells you that there is really no difference 
between program and data. Program and data both have the same representation namely various 
kinds of bit representations and they have the same representation. So, it is a matter of 
interpretation whether some bit string is a program instruction or a piece of data.  
 
The whole idea of the Von Neumann architecture which is what you study in most architecture 
courses is really that there is nothing fundamentally different between programs and data. 
Programs are not any different from data. It is a matter of interpretation. You can interpret 
certain bit strings either as data or as instructions. So, there is no difference between data and 
control and the important feature about any architecture course would be that all control and all 
programs are represented in the form of data in the sense that the machine instructions are all 
expressed in some bit strings; your jump instructions are bit strings and so they are all coded into 
data. All control is coded as data and data is coded as itself. The whole point is that depending on 
convenience very often you logically partition areas of memories into a data segment and a code 
segment and you interpret whatever is in the code segment as control and whatever is in the data 
segment as data. But it is largely a matter of interpretation and there is no essential difference 
between the two.  



 
In the case of theλ calculus, Church showed that programs and data are no different or functions 
and data are no different and that all data are functions and that is a reversal part of the 
fundamentals of architecture. There is no difference between programs and data or control and 
data. In this case it is functions and data and all data can be represented as functions.  
 
So far we have not only looked at the pure λ calculus but also what might be called the pure un-
typed λ calculus. Firstly, we must realize that in theory it is not really necessary to have to apply 
the λ calculus to have an applied λ  calculus. In theory it means that our application like taking 
the pure λ  syntax and applying it on to Peano arithmetic is not essential. You can get rid of 
Peano arithmetic completely. Since all data are going to be represent-able as functions, Peano 
arithmetic can also be represented as functions. So, it is possible to work with just the pure 
λ calculus. You do not need to apply it. It is a matter of taste whether you want to apply it or not 
but largely if you look at functional programming languages they are all applied λ  calculi but 
they are all applied λ calculi for reasons of efficiency. 
  
The trend in the last 50 years of the existence of computers has been that you should be able to 
exploit speed of hardware. Hardware is very fast and anything that is programmed in hardware is 
likely to be very fast. Instead of actually coding up all data structures as functions it is more 
efficient to use the underlying data structuring capabilities of your machine hardware. You want 
the power of the λ calculus which means higher order functions but you do not want to work 
with a pure λ  calculus simply because even though the pure λ calculus can represent all the data 
you require, it is going to be extremely slow. So, you apply it on to an existing virtual machine 
whose operations are likely to be very fast.  
 
The underlying hardware is going to be very fast and it is getting faster everyday. So, it makes a 
lot of sense not to try to code everything in the pure λ calculus but to use the underlying data 
representations of the underlying hardware and code only what is very difficult to do with the 
underlying data representations. Remember that the whole Von Neumann thesis is not that you 
cannot write higher order functions in hardware but it is just that it is extremely hard and 
complex to do it. So, you exploit the hardware to the hilt, for example, the integer arithmetic is 
very fast on hardware. No amount of simulation using list is going to get you that speed. 
Whatever is programmed in hardware or at most firmware is likely to be 5 to 10 times faster than 
the best algorithms you can write in software.    
 
It is a good pragmatic reason to use only the applied λ calculi which is why all functional 
languages are applied λ calculi. They provide this excellent structuring facility for higher order 
functions but even though the pure calculus can structure data just as well as data itself, it makes 
a lot of sense to apply it on to an existing virtual machine and get the benefit of the structuring 
mechanism of the λ calculus coupled with the speed of the underlying virtual machine. That is 
really the main reason why all functional programming languages can just be regarded as applied 
λ calculi. But as a matter of academic interest it is a good idea to know that it goes in parallel 
with what you learn in an architecture course. In an architecture course essentially you learn the 
representation of all data and functions as data. If an architecture course has to be summarized in 
one sentence it is just a representation of all data and functions as data. It is a good idea to look at 



the pure λ  calculus theoretically at least to be able to program all the data themselves as 
functions and so it provides a parallel. 
  
First, let us go through some of the important combinators that we will see. Then we can look at 
numbers and data structuring facilities. The three most important combinators are these. What is 
a combinator? A combinator is a closed λ  expression. It has no free variables. Closed 
λ expressions provide the capability as they have the status of full programs to which data can be 
supplied and they can be executed. This I is the identity function. You apply it to any object and 
you get that object. Since we are talking about that n type λ calculus, that object may be a value 
object or it might be another function. This combinator ‘I’ is polymorphic in the sense that there 
is nothing specified about this type of X. Whether this type of X is a value object or a function 
object or a higher order function you can apply this ‘I’ to any function and you should get back 
the function. Let us suppose that you are using this ‘I’ in an applied λ calculus in which you have 
a function from some domain A to some co-domain B. In the function f A →  B when I is 
applied to f then ‘I’ acquires the status of having a type and A →  B goes to A →  B. 
  
If you look at an object X say in integers and you apply I to X then ‘I’ is a function of the type 
integers to integers. On the other hand if you took a function f from integers to integers and you 
apply ‘I’ to f you get back f. Then ‘I’ really has the status of having the type integers to integers. 
That means it takes a function ‘integers to integers’ and gives you another function which is 
integers to integers and that is actually the same. You can take any function of any type and ‘I’ 
applied to that function will give you back the same function. In each case if you have a function 
f which goes from some type A to some type B then ‘I’ applied to f is equal to f and therefore I 
has the status of being from A applied to B →  A applied to B. : ( ) ( )I A B A B→ → → . ‘I’ is 
polymorphic in the sense that depending on the argument, it has a varying personality. If the 
argument is a plain integer then ‘I’ has this personality of a function from integers to integers. If 
it is a plain Boolean then ‘I’ has a personality which is like Booleans to Booleans. If ‘I’ is 
applied to a function from integers to integers or integers to Booleans then ‘I’ takes a personality 
which is of a type of integers to integers to integers to integers or integers to Booleans to integers 
to Booleans.  
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In general instead of looking at these various types formed by constants just as I can talk of value 
variables, I can talk of type variables, ‘ :I α→α ’. These types are what you see in your ML 
interpreter. When you define a function it determines the type, if it can determine the type by 
means of a constant that is if there is a distinguishing constant then you can look upon types 
themselves as a language whose constants are things like int, bool, real etc. The functions are 
arrow types formed of these. In the case of a combinator like I, it is saying that you take any 
typeα . So, α  is a variable over the types and I is a function then of typeα →  α . 
 
We will talk about polymorphism in a type λ calculus in a little bit of detail. A large part of it 
still is a matter of fairly current research but there is quite a bit of material which is already quite 
well known especially ML type inferencing etc. Similarly, you can assign most of the other 
combinators a type in that way. Twice is also polymorphic in a similar fashion in the sense that I 
can assign type variables to the type of twice and then I can try to solve for those type variables. 
Solving entirely for type variables is expressing one type variable in terms of the other.  
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If I cannot do that as in the case of Ω (omega) combinator that I showed twice self application is 
polymorphic whereas the Ω combinatory, defined this way; ([ ( )][ ( )])x xx x xxΩ ≡ | |  is not 
polymorphic. It is possible to do a type inferencing for twice but it is not really possible to do a 
type inferencing forΩ . It is possible to assign some type variables and some type expression to 
twice but it is not possible to do that for Ω  and that is what distinguished just genuine self 
application from merely polymorphic application. Let us look at combinators now. Just keep in 
mind that we are starting at the beginning. In the beginning there is nothing. You are extracting 
functions, values and everything from essentially a homogenous mass of nothingness.  
 
Here is a combinator K. If you look at the combinator K, basically given two arguments X and Y 
it returns the first argument. Then there is this combinator S which is actually very important. 
For the three arguments X, Y and Z it is of the form X applied to Z the whole thing applied to Y 
applied to Z. Its importance is really that with S and K you can program all other combinators 
meaning, they are the absolute primitives that you require. With just these two constructs 
essentially all functions that are programmable can be programmed.  
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It is a matter of study after you have finished your theory of computation course but till then you 
just keep in mind that S and K are very important. This combinator just tells you about how to 
compose functions together. Function composition is again polymorphic in the sense that 
regardless of the domain in which you are, you can always compose unary functions. This is a 
function composition. Then let us look at actual representation of data. 
  
Firstly, let us look at truth values. The truth value ‘true’ is just the combinator K. Given two 
functions X and Y it chooses the first one and that is true. False is just, choosing the second one 
given two functions X and Y. I have given two objects X and Y. If you choose the second one 
and that is false you can see the similarity. Here it is functional but in your architecture it is 
really data based. You have only two possible values of data from which data is all formed 0 and 
1. One of them is false and the other is true. It really does not matter which one you take. 
  
We will just quickly look at the data structuring capability. We have to be able to define various 
data structuring facilities. What are the data structuring facilities? They could be Cartesian 
products, probably disjoint unions (but let us not think about disjoint unions now) and sequences. 
We need to construct sequences. So, if you have got pairs, tuples and sequences you have 
essentially got everything else that is required theoretically but is not required pragmatically. As 
far as functions are concerned you have got them. It is the whole purpose of the λ calculus.  
 
We will define a pairing function. I am following a convention now. I am using dark green for 
combinators constructed from λ  expressions. Do not get confused when I use a green square 
bracket. Do not confuse it with the blue square bracket which is part of the λ calculus language.  
Here, this is a pairing function which takes two arguments and this pairing function is just 
defined by this combinator. In all our data structuring facilities we had essentially two kinds of 
operations. One is the constructor operations, which allows you to construct complex data from 
simpler data and the other is the deconstruction; how you get the simpler components from a 
complex piece of data.  



 
This is the constructor for pairing and this is the deconstructor. I will call the deconstructor this 
and it means that if I have the λ  expression P which is actually supposed to denote a pair of 
elements which presumably was formed through this construction operation and not anything 
other than P applied to true will give me the first component of this construction and P applied to 
false will give me the second component. You can verify them by actually doing the 
λ application. Remember that this bracket is my representation of the deconstructor operation. It 
is in green. This blue parentheses represent actual λ application  so that means you take the 
combinator P to which you apply the combinator true and see what you get through β reductions 
and of course our β  reductions now include also α  conversions wherever necessary. 
 
If true anyway is the combinator K, which given two arguments, gives you the first argument. 
For example, take this. P could be any λ term and you could apply this deconstruction operation 
on any λ term. It is just that if you apply it on any λ term then the chances are you will not be 
able to interpret what you are getting in some reasonable fashion. But if P had been constructed 
through two terms M and N using this constructor then when you apply true here you get true 
applied to M and the whole thing applied to N. True applied to M true is just K; K applied to M 
applied to N means that it will give you the first component and it will give you M.  
 
Similarly, P applied to false will give you the second component and it will give you N. But 
remember that since we are in an un-typed world you can actually construct any arbitrary 
λ expression and say that this somehow represents a pair though you may not have constructed it 
through this fashion. You can apply that combinator to true and get some result which does not 
make any sense to you.  
 
This is sort of natural. Here again we actually had an inkling of that in this. If you say true has 
the same representation as K then can I apply K to a pair and claim that I am applying true to 
some pair and getting some truth value. The type of value you get is largely a matter of 
interpretation. I used to have these FORTRAN programs and then run them through the Pascal 
compiler just to see what kinds of errors come. It is really a matter of interpretation meaning you 
can send any file into a Pascal compiler and what you get is anybody’s guess. Similarly, you can 
apply any combinator to any combinator. After all the language syntax does not disallow you 
from doing that but what you get is undeterminable.  
 
As far as these combinators are concerned, the fixing of the types and the fixing of the kind of 
values is largely a matter of interpretation. I can take cosmic ray data and try to execute it. I get a 
whole sequence of bits, 0’s and 1’s so why can I not regard it as a program and try to execute it. 
Some glitches will take place somewhere and something will happen but it is a matter of 
interpretation whether you get something meaningful or not. In an un-typed world, which is what 
your underlying hardware is, there are no types and there is no distinction between programs and 
data. So, what prevents me from executing data? Similarly, in the un-typed world of the 
λ calculus what prevents you from applying some strange combinators to other strange 
combinators? What you get is unknown.  
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I can interpret the construction and deconstruction operations only under certain conditions. For 
example; what prevents me from just incidentally forming an expression which has this syntax. 
Why should I interpret it as a pair at all? Similarly, there is nothing that prevents me from doing 
this application to any arbitrary λ term and seeing what I get. What I get is not necessarily the 
first element of a pair. I would get the first element of the pair only if that λ term was obtained 
by this pairing constructor. This is a fact in the un-typed world. Whether it is program or data it 
does not matter. In any un-typed world there is a problem of interpretation that is these 
operations are not serjective. They do not go back and forth necessarily always, but they go back 
and forth only if you go through the construction operation and then the deconstruction 
operation. 
  
That is one of the problems of the un-typed world meaning you can take an arbitrary λ  term and 
deconstruct it first and then try to do the construction and see whether you get the original 
λ term. If your arbitrary λ term was not of this form then you are not going to get the original 
λ term. If your arbitrary λ term was of this form then you will get it but if your arbitrary λ term 
was not of this form then you are not going to get it because when you do the deconstruction you 
will get some strange λ term M and a strange λ term N and then you will apply this  construction 
and you will get a λ term of this form which is not necessarily going to be β equivalent to what 
you started out with.  
 
One may think that when we started with true and false we expect something like what we do in 
the Boolean world. But the problem is that you are mixing up an un-typed world. For instance 
why should true + false = 1? We may think that when we take a function, apply true to it, take a 
function apply false and then in some way try to get it back, we always get back the same 
function. But it is not so because what is guaranteed is that if you go through the constructor first 
and then do the deconstruction then you will get back what you originally had. If you do a 



deconstruction and then try to apply a construction then there is no guarantee what will happen. 
That is how the un-typed world is. 
  
What Barronreck has proved way back in 1974 is that there is no perfect possible construction 
and deconstruction operation for pairs which will ensure that construction and deconstruction are 
somehow inversions of each other under all circumstances. It means that if you do a 
deconstruction and then do the construction from what you get out of the deconstruction you will 
not necessarily get what was original. It is a good idea to play around with these things to see 
what happens with your data structuring. Why should we play around only with Pascal compilers 
and FORTRAN programs? We can do that also with combinators. Apply the successor function 
to a sequence and see what you get. After all there is nothing that really prevents you from 
seeing what extremely complicated expressions you get. This is how the pairing goes and once 
you have the pairing it is very simple to construct tuples.  
 
So, the pairing is through Cartesian products and tuples are also Cartesian products. Let me take 
a Cartesian product ( )( )1 2 m.... A x A  x .x A .…  
 
I can look upon this Cartesian product which is obtained by a binary Cartesian product, take the 
Cartesian product of this with the next and I keep on bracketing.  
The other possibility of course is that I can look upon this Cartesian product as looking at such 
Cartesian products so that I get 1A  x ( )m 1 mx A  x A ...)−… .   
 
I can look upon an enary Cartesian product which I will just write like this A∏  as being 
isomorphic to binary Cartesian products.  
 
This is isomorphic to ( )( )1 2 m.... A x A  x .x A…  is isomorphic to 1A  x ( )m 1 mx A  x A ...)−… .  
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So, I can take an enary Cartesian product and either I can look upon it as binary Cartesian 
products done one way or binary Cartesian products done the other way or I can also have 
mixtures of these. I can choose some k and somehow do A1 to Ak and then Ak + 1 to Am and 
take it as a binary Cartesian product. So, it is isomorphic to a whole lot of possibilities. It is 
actually isomorphic to all possible ways of bracketing that you get. We will just take one of 
these. We will look upon a tuple as just obtained as an ordered pair. A tuple m1 to mn is an 
ordered pair whose first component is m1 and whose next component is n - 1 tuple whose first 
component is m2 and whose next component is n - 2 tuple etc.  
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Since we have a pairing construction operation we know how to find tuples. Essentially, we are 
using one of these isomorphisms for the representation of tuples. Since our tuples are constructed 
from pairs that are deconstruction operations for tuples the projection functions for the tuples can 
also be constructed from the deconstructions for pairing. If you keep on deconstructing the tuple 
in a certain fashion you can get the Ith component of the tuple which essentially means that if p 
has been obtained by an explicit tuple construction mechanism then to get the kth component of 
this tuple I do the paired deconstruction k - 1 times.  
 
If I have a tuple of this form; 1 2 n 1 nM ,  M , M ,M−< < <… >…>  if I do a deconstruction for 
pairing n - k - 1 times then I have a tuple whose first element is Mk and whose next element is 
another tuple of n - k elements, it is a n - k tuple and now I take the first component of this and 
that is what actually happens here. You take the right hand component each time of this pair, do 
it k - 1times and then take the first component of what you get. For the nth element you always 
take the right most element. So, you do this n - 1times and you always take the right component 
here. These are the deconstruction operations for tuples derived from the deconstruction 
operation for pairing. We had the first confusion with these parentheses because these 



parentheses when in blue are λ applications and parentheses when in green are deconstruction 
operation for pairs as tuples. Now let us look at sequences. For sequences I have square brackets. 
Square brackets when blue are λ abstraction and square brackets when green are actually 
sequence constructions. If you actually look at your programming the tuple formation is really 
like your list constructions in ML or LISP etc. It is like having a cons operation.  
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A cons operation is really like successive pairing. There is an alternative way of looking at them. 
You can look at sequences this way; whole sequences as just λZ, Z applied to M1 applied to M 
2…..up to Mn. Then you have this deconstruction operation. If you actually play around with it 
you will be able see that this is a deconstructor. This P, i, n is the deconstructor which extracts 
the Ith component of the sequence. If that sequence is n components long then the Ith component 
out of n is going to be this and we are in the un-typed world. So firstly, you can apply this P, i, n 
to any λ expression that you want; it may not even represent a sequence but you can still apply it 
and get something. You would not know what you apply and what you get after application. You 
could even take a sequence that is much shorter than n elements long and try to apply P, i, n 
where i is greater than the length of that sequence.  
 
You will get some other λ term because a λ term applied to a λ term will give you a λ  term but 
you would not know what it means again. Here again only when you go through the constructor 
operation and then do the deconstruction you are liable to get back your original component. If 
you go through the deconstructor operation and then go through the constructor you do not know 
what you will get and in the un-typed world there is no such thing as an error. Errors are a logical 
consequence of an interpretation. In your actual hardware you actually set some condition codes 
and detect certain patterns as errors. Otherwise if you just look at the bare hardware there is no 
such thing as an error. It is just bit patterns. 
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Similarly here, the concept of errors again is a matter of interpretation and you just get 
λ expressions. Errors are really higher level abstractions from the un-typed world, meaning, they 
are not part of the un-typed world. If you do erroneous applications you will get something but to 
interpret it as an error is a matter of your taste. It is a matter of what you consider right. For 
example; you may not like the idea of a deconstructor followed by a constructor application 
giving you actually something that is meaningful and then you call it an error. You will still get a 
λ term whether you like it or not.  
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