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Welcome to lecture 22. Last time we started on structured data and we looked at 
essentially Cartesian products and their variants. It corresponded approximately to 
records and variant records. We will look at sequences. Let me just briefly recapitulate 
what we will have to do while structuring data.  
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As I said one important point is to find constructors to combine simpler pieces of data 
into compound units and then find deconstructors which explode a compound unit into its 
simpler components. We should look at it this way. Long time ago the mathematician and 
philosopher Rene Descartes said that after addition and multiplication the most important 
human intellectual activity is equation solving. That is also how school curricula are 
designed. But of course equation solving also means finding inverses of additions and 
multiplications so you also have subtractions and divisions. Equation solving is really the 
most fundamental activity. After these four operations you could think of equation 
solving as the fifth operation which is part of any branch of mathematics. 
 
The main constructor is that of an equational definition. Given some data domain D, I can 
define this equation in terms of the unknown S. So S is the unknown and the question that 
we are asking is what the solution of S is for such an equation. You might be asking 
actually what the possible solutions of S are which satisfy this equation. 



If you look at it that way one solution or what we might call the least solution is that of D 
* and what is D *? D * is defined as let us say the union of Sn where S 0 is the singleton 
set consisting of  the empty sequence and Sk+1 is S Cartesian product Sk. 
 
The solution to this equation is actually what might be called the least solution. It is in 
fact the smallest set S which when you substitute on both sides for S would yield an 
equality. Since it is actually the construction of ordered pairs, you construct Sk+1 which is 
an ordered pair consisting of two elements; the element is an element of D and the second 
element is an element of Sk. That is the way you should look at it.  
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This is in fact the natural motivation why most of these functional languages actually 
provide some form of head and tail functions because a sequence is really an ordered pair 
whose second component might be another ordered pair. The deconstructors are just the 
head, tail etc. The constructor really is the ‘cons’ operation which comes from here and 
the deconstructors are just the head and tail functions. If you look upon it as just equation 
solving then this is not the only solution. There are other solutions to this equation for 
example; you could have infinite sequences also as solutions to this equation. 
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Consider *D D+ ∞  where D f : IN  D ∞ = { − > } . 
For the moment let us look at it. Then this *D D+ ∞ is also a solution to this equation and 
this solution is in fact the larger solution to this equation and you could regard infinite 
sequences as an ordered pair whose first element is an element of D and whose second 
element is another infinite sequence. The constructors and deconstructors that were used 
for this are equally applicable also for infinite sequences. Although we will not be 
looking at infinite sequences in some detail they are actually present in some form in ML.  
 
The lazy evaluation mechanism of ML actually has these infinite sequences. S here is the 
unknown variable.S D *= . This is the empty sequence. This is D x S . A solution for 
this equation I said was D n where D Not is the empty sequence. Dk+1 = D x Dk .  
I used S through out though what I had written was also not wrong. Let me clarify that 
that is also equally correct. For any solution if you have done these operations you would 
have got that also to be a solution of this equation. That is immaterial. That is not the 
least solution. The least solution is that which is obtained by using D. 
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There are other solutions. If you add infinite sequences also then you get another solution 
which might be called the greater solution. This equation really has only two solutions. 
There are really no other solutions. Normally you do not see a set definition which is 
recursive but in fact computer science is full of set definitions which are recursive. If you 
take a context-free grammar of this form, S 01/ 0S1 − > the question that you can ask is 
what is the language generated by this grammar?  
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If you ask the question what is the language generated by the grammar you might equally 
well ask the question what is the least solution to the equation given by this?  



{ }S 01 0S1= +  
 
That is why equation solving is absolutely basic where of course I have used a very loose 
notation. This S is presumably supposed to be a set and I have used 0 and 1 around S to 
denote that every element of S is padded on the left with 0 and on the right with 1. I have 
just generalized the normal prefixing or suffixing of strings to sets of strings. You can ask 
this question; what is the least solution to this equation? In fact that is the language 
generated by the grammar. 
 
Equation solving is absolutely fundamental and almost all things that we talk about 
computationally are instances of equation solving. In fact most of the equation solving 
that we do in computer science is of finding what might be called fixedpoints.   
When we talk of recursive definitions in particular the grammar that we have defined is 
also a recursive definition. This set is defined in terms of itself and so it is a recursive 
definition.  
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All recursive definitions are essentially equations which have to be solved and the 
meaning of finding a solution to a recursive definition is to find a non recursive definition 
which will satisfy the equation. That means finding a fixpoint. What is a fixpoint? Take a 
look at your standard methods. Let f be a continuous differentiable function over this 
interval on the reals so then f : IR IR − > . You want to find where this curve intersects the 
X axis. You are essentially solving the equation ( )f x  0= . 
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In order to solve this equation ( )f x  0= f, which involves finding the root of this 
function, you often manipulate things so that you get an equation of the form x = g (x) . 
Way back in the 16th century somebody said that the solution to this equation is defined 
by the recurrence. So, you can find the root by doing some transformations and get an 
equation of this form which is very much like giving a recursive definition to x. 

1 ( ) / 1( )xn xn f xn f xn+ = +   
 
I could look upon this as giving a recursive definition to x and given a recursive 
definition to x, I give an iterative solution which is a recurrence. So, I can use recurrences 
in order to give iterative solutions to what might be called fixpoint equations. This is 
standard on real numbers. There is absolutely no reason why one should not do it on sets. 
These solutions that I am talking about are in fact also recurrences in that same form. If 
you look at it analogously this is a recurrence which defines an iterative solution to this 
fixpoint equation. This is clearly an iterative solution and most iterative solutions will 
give you solutions to fixpoint equations.  
 
When we are talking about the language generated we are talking about the least solution 
that will satisfy this equation in the sense that we want the least solution which is closed 
under the operation of prefixing and suffixing of 0 and 1 respectively.  
What is the least set S such that 0 1 belongs to S and if x belongs to S then 0 x 1 also 

belongs to S. So, there is a closure property that has to be satisfied. 
01

0 1
S

x S x S
∈

∀ ∈ ⇒ ∈
 

 
This is an important closure given by this definition and the least solution that you can 
think of is all the possible purely nested bracket matchings of 0 1’s. So, if you go through 
an iterative solution the language generated by this grammar is just 0 raised to n 1 raised 



to n where 1n ≥ . We have the set S. It is the least solution because I am not for example 
permitting infinite sequences.  
If you permit infinite sequences there is a possibility of getting cardinality that is greater 
than a left Not. You are actually finding accumulation points or limit points of sequences. 
I do not know whether you have done all these sequences but it is a topology which is 
completed. This is the least solution in the sense that it has to satisfy these two closure 
properties. You take any set smaller than this and I can find that there is an element in 
that set which does not satisfy one of these properties. So, we are usually talking always 
of least solutions though not necessarily always now but we are always talking of least 
solutions which satisfy such closure properties.  
 
 
(Refer Slide Time: 20:34) 
 

                              
 
 
If you were to take this constructor for example; such a domain equation, then no set 
smaller than D * will actually do for you. If you take any set smaller than D * either by 
removing some elements or just by putting some bound n then I can find a sequence 
which does not satisfy these closure properties.  
 
For example; I can take an n element sequence. For any n element sequence it does not 
satisfy the property that if I take that n element sequence and an element of D as an 
ordered pair, then that ordered pair belongs to the set S because it is a 1n + sequence.  
The smallest solution that you can get is only the set of all finite sequences of elements of 
D. You cannot get anything smaller than this because there is a closure property to be 
satisfied. 
 
Very much as Newton gave a solution to this fixpoint equation you can give solutions to 
such fixpoint equations and in fact most of our recursive definitions in computer science 
are really equations to be solved and they are fixpoint equations to be solved. What is 



most surprising is that if you did a course on semantics of programming languages, you 
will see that in fact the way you obtain solutions to those fixpoint equations is also very 
much like the way Newton did it for continuous differentiable functions. 
  
The analogy is absolutely striking. So, you can have also infinite sequences as solutions 
to this equation. You might just look upon an infinite sequence loosely but then more 
particularly when we talk about an infinite sequence or at least a sequence that is infinite 
on one side and not necessarily infinite on both sides we can look upon that as a function 
from the natural numbers to the domain.  
 
After all when you consider a sequence, it is most natural to write it as a1 a2 a3 a4 a5 etc. 
This essentially means that you are drawing a mapping from the natural numbers to 
elements of the domain. You are saying that the first element is a1 and the second 
element is a2 etc. 
 
D ∞ (infinity) itself is a solution to this equation. In fact it is not the least solution 
because the empty set is the least solution for this equation but it is the least solution 
other than the empty set. So, whenever you think of recursion think of equation solving. 
Whenever you think of equation solving think of equation solving by solving a fixpoint 
equation and when you think of a fixpoint equation solve it by a recurrence. Find a 
suitable recurrence which will satisfy it and that is the basic idea. 
  
As I said we could look upon infinite sequences as just a structured data element 
containing an infinite number of components in some order or I can look upon that 
merely as a function from the natural numbers to my data domain. This function basically 
tells you what is the first element, the second element, the third element etc. You can 
think of that infinite sequence as a function defined by an infinite enumeration. We could 
also think of other sequences as functions. Even though we defined those sequences as 
ordered pairs we defined a 1k +  length sequence as an ordered pair consisting of an 
element of D and a ‘k’ length sequence as a second component. 
  
However, we could just collapse all that and we can look upon every finite sequence as 
being isomorphic to a function defined by enumeration. You can look upon that either as 
just a k length sequence of data elements or as a function from the set 1 to k to the 
elements to D where of course the empty sequence is the unique function from the empty 
set to D. The domain is empty so it does not matter really what the co domain is when 
there is only one possible function from the empty set to any domain D. You can look 
upon the empty sequence as just such a function and you can look upon any k length 
sequence for 1K >  as a function from 1 to k to D.  
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The set of all k length sequences is just the set of all such functions. It is isomorphic and 
this is isomorphism. There is a one to one correspondence between the definitions of S k 
as we have given before and this set of functions. This is the basic idea behind arrays. 
 
Let us take a k length sequence of integers. I have the sequence 8,3,4,8,2,1< > . The first 
element is 8. This is a function; (1)f  is 8, (2)f is 3, (4)f is also 8 and (6)f in which is 
the sixth length sequence is 1.  
 
You can actually write a function by enumeration. You can look at the graph of the 
function. A sequence is really a function in that sense. It is a function not defined in this 
form ( )f x x= 2  (square). This is a definition which is not by enumeration. It is a 
definition by a predicate. But you can also have functions defined. After all the definition 
of a function just says that for each element in the domain there exists a unique element 
in the co-domain which means that you cannot have an arrow of this form. You cannot 
have two arrows from the same element of the domain and that is all. Otherwise you 
could write a function out by enumeration that is as a good a function as any other. 
So, Sequences could be regarded as functions. 
 
It is important to know that there is no essential difference between data and control. 
Control is really a function. When we do the lambda calculus you will see that there is 
really no essential difference between data and control. You already know that. In the 
case of your computer architecture course both data and control are represented as data. 
The fact that you got opcodes for every instruction means you are not really doing much 
control; you are just representing program as data. There is an alternate view in which we 
can look upon all data as functions and all controls also as functions. 
 



Meanwhile let us delve into finite sequences. This set is isomorphic to the set of all 
functions from this closed interval 1 k to D. This also gives us the reason why we might 
look upon arrays in programming languages as functions. Arrays are really functions 
defined by enumeration. It is important for us to look upon sequences in their generalities 
so that we understand that there is an underlined unified whole called the sequences. We 
should not be misled by the fact that arrays look different from files and lists but 
fundamentally they are all sequences. 
  
The only difference is that arrays are functions by enumeration and they are functions 
over a finite index set of some component type. This is of type D and so, your very basic 
declaration in a Pascal like language is really that of a function specification. A is an 
array …something index set of type component which is really specifying a domain and a 
co-domain and is specifying the name of the function to be A.  
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It is a function defined by enumeration as opposed to a function defined by a closed form 
and the deconstructor for such a function is just function application. How do you get a 
component out of the array? By applying the function A to the component I, you get the 
ith component. It is as simple as that. This is the deconstructor. Many languages for 
example, do not distinguish between array-component reference and function application 
at all. They use the standard parenthesis for array-component reference or subscripting. 
The subscripting operation on arrays is really a function application.  
 
Let us look at arrays. The one important reason why arrays are useful in programming is 
that they provide a form of direct access which is what is known as random access. If you 
look at the pragmatics of the array allocation, you would find that firstly, since these 
arrays are bounds, in a language like Pascal the bounds are known at translation time and 
the type of the components is also known at compile time, you can give an accurate 
calculation of the space that is needed to store the entire array.  



 
If you can give an accurate calculation then all your address calculations can be based on 
the stack and you do not need to go into the heap. I have to be careful about the index set. 
So, an array is a function from the index set to a component type. This index set is by 
definition any finite ordered set. It is ordered either by a predicate or more usually it is a 
finite set with the operations of successor and predecessor defined for all elements except 
the extremes. That is also the reason why you can take any enumeration type or a sub 
range type in Pascal and call that the index set of the array.  
 
The successor and predecessor functions are defined for all the basic data types except 
the reals. For example; a dense set is one in which between any two distinct elements 
there is guaranteed to be another element. Any dense set is going to be infinite. Dense 
sets cannot be index sets. This means logically that the reals and the rationales are out. If 
you are talking about any finite set which is ordered by a successor and predecessor 
relation then this index set is isomorphic to some ordered set of natural numbers for some 
k. In fact if you look at [' '..' '] intarray a z of eger  then you are looking at a function that is 
a composition between this isomorphism from index set to the set where k happens to be 
26 and integers. This is a finite ordered set with a successor and a predecessor defined on 
it. You can also have for example [ .. ] intarray false true of eger . You could have arrays of 
this form too.  
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As long as successor and predecessor functions are defined on the index set and it is 
ordered in some way, the index set can be placed in one to one correspondence with the 
closed natural interval 1 to k for some k and therefore any array could be defined in terms 
of any such index set. In fact the sub range types and the enumerated types in Pascal are 
actually implemented by a one to one correspondence. You actually create an array and 
put the elements in that order so that you have already performed the mapping by an 



enumeration mechanism. We are looking at storage allocation. The only other problem 
that you have to worry about is really that of checking bounds at runtime and for that you 
require what is known as a runtime descriptor. 
  
Here I have given a picture of a single dimensional array. It is called a vector. In order to 
be able to perform runtime checks on indexes you require to know the lower bound, 
upper bound and the type of the component and the amount of space each component is 
going to occupy. Since you have to do runtime checks on expressions which are going to 
access components of the array you require to store this descriptor along with the array 
on the stack as and when you enter a block which declares this array. The data of the 
array is actually stored down here.  
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Most of these languages which involve runtime checks on array bounds actually perform 
these bounds because they keep a descriptor which is created. This descriptor template is 
created at compile time and there is enough information in the declaration of the array to 
have this stored somewhere and each time on entry into a block during execution time 
you first store this descriptor on the stack and then store the actual array elements after 
that. So, you can do a direct address calculation which is quite trivial. 
  
If you look at array access whether for L value or R value you still have to get to that 
location of the ‘i’. Then there is a base address which is not compile-time determinable. 
Relative to this base address there is a descriptor size which is compile-time 
determinable. There is of course an ‘i’ which need not be an index. It might be an 
expression on the data type of the index set and therefore ‘i’ is not compile-time 
determinable. However, the lower bound and the size of the elements are compile-time 
determinable. You have to do a certain amount of compile-time computation as part of 
your array creation mechanism and the rest can be a runtime computation. 
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The actual direct access is more often called random access. But what you mean is direct 
access and the direct access means that the direct access does not have to go through the 
structure in sequence to find an appropriate element but that you can do an address 
computation outside that structure and hit upon the absolute address of that component 
directly and that of course involves this very trivial runtime computation.  
 
Most machine architectures usually specify some byte length or some word length. Very 
many architectures starting from the IBM 360 actually specified that all integers should 
be in half word boundaries and all floating points should only be in full word boundaries 
where a word consisted of 4 bytes. Some machines like Deck System 10 had a word 
consisting of 5 bytes and then they had all these complicated conditions and one was that 
you can store data only starting from  a word address or a half word address or some such 
condition.  
 
The whole point was that the underlying assembly language provided operations which 
worked fastest on word boundaries or half word boundaries and worked much slower 
when you had to pull apart the individual bits of a byte one at a time. They could do these 
parallel Boolean operations on words; they could do parallel Boolean operations on half 
words but sequentialyzing all those operations bit by bit would slow down the machine 
extremely. They always recommended that you store data in such a way that they 
occupied word boundaries so that they might exploit the parallel Boolean operations to 
the fullest extent to give you the maximum throughput.  
 
As a result you will be storing arrays mostly according to some architecture-specified 
boundary so that the computations are fastest. However, if storage is at a premium then 
you might want to use a packed representation.  



If you are going to use a packed representation it means that storage is more important to 
you than actual computation time and so you are disregarding all the advice that the 
architect of the machine gave you regarding fast operations.  
 
It is more important for you to able to pack as much data as possible into a single word 
rather than do faster computations because you have got tremendous amount of data. 
When you have packed representation then usually you are not going to stick to the 
discipline of word boundaries or byte boundaries or half word boundaries. You are going 
to move things to occupy as small a place as possible. So, if you have integers only from 
1 to 100 then it is not necessary to allocate one word to each integer. You could allocate 
one word to 4 integers. If the integers are all going to be less than 2 raised to 8 or 2 raised 
to 4 then you are going to pack as many integers into one word as possible and if you are 
going to pack that many then you cannot exploit the parallel application of those logical 
operations that the machine architecture provides you. This implies that in order to do 
them fast, you have to unpack these integers and store them afresh in some place to do 
the computation and be stored back in this pack back fashion.  
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Any kind of packing mechanism means that your access to individual components will no 
longer be direct and secondly if you want faster computation you will have to unpack that 
representation. So, you might use more intermediate storage in order to gain faster 
computation but you are going to lose some time because of unpacking and packing again 
because that is an extra loading and storing. Unpacking and packing also means accessing 
individual components whose addresses are integral multiples of whatever is the basic 
unit in the machine memory. Packed representations are likely to be slower and more 
expensive and are going to be used only when the data is so huge and it is possible to 
save on storage spaces. When storage space is at a premium it is possible to save on 
storage space but at the expense of slower access and slower computations.  
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This notion of arrays can be easily generalized to multidimensional arrays. All it means is 
that your runtime descriptor should also include information about the dimensions and for 
each dimension you have a lower bound and an upper bound specification. You have to 
specify them in a particular order which is also going to be reflected in the representation 
of the entire array for example; a two dimensional array could be represented either in 
row major order or column major order. To explain row major order if you have a matrix 
of this form a 11 to ‘a nn’, a two dimensional matrix is going to be represented linearly in 
memory. If it is represented in row major order then you are going to have 11 to a 1n 
followed by a 21 to a 2n…..up to ‘ann ’. 
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This is row major that means the matrix is regarded as a vector of vector of rows or as an 
array of rows. The other alternative is a column major order, a11 a21 ….up to an1 and then 
a12 and then up to an2 and up to ann. Many of the initial FORTRAN compilers and even 
now many FORTRAN compilers actually use this column major ordering. That means 
they represent the two dimensional matrix as a vector of columns whereas most 
languages now a days such as Pascal and Ada would represent a two dimensional array in 
row major order. That means they would represent a matrix as a vector of rows. 
 
In the case of multi-dimensions again you can write an easy formula to do a direct access 
calculation of the address, separate it out into translation time computable term and 
runtime determinable term. The other kinds of sequences that we use are strings. 
Normally the strings are stored in heap. Sometimes the heap is divided into a separate 
string space where all strings are stored contiguously with just a single descriptor which 
gives the length of the string. Very often they are stored contiguously because each 
character in a string does not require more than 7 bits.  
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You could afford to store them in an 8 byte word contiguously for example or you could 
actually use the heap for dynamic data structures and you could use it as part of the 
dynamic data structuring. This means that a pointer can make things slow. A language 
like SNOBOL4 which is meant specifically for string processing would try to store all the 
strings contiguously without having to use too many pointers. There are languages like 
PL1 which allow fixed size strings which means that they could be stored in the stack 
because their length is calculate-able or fixed bound but variable-sized strings which 
means you specify an upper bound of the length of the string but you do not guarantee to 
use all of it.  
 



This means that the runtime descriptor for that kind of a string would contain both the 
upper bound and the current length of the string so that you know exactly how much you 
are using and you are not reading more and more garbage that is there in the end of that 
allocated amount. Then in such cases these strings could be stored directly on the runtime 
stack since their sizes are compile-time determinable. Lastly, you have files. This is 
actually the disk drive or some secondary storage device. In the case of files there is a 
logical difference between the program ‘read’ and ‘write’ operations and actual transfer 
to and from the secondary storage.  
 
Usually the transfer is by a block and there is a file information table which usually 
contains information such as firstly, what area of the disk a piece came from or what area 
it should go to; secondly there should be a pointer to the actual area in the buffer where 
the current pointer is. Very often the actual transfer of data takes place at an idle time for 
the processor or it is just handled directly by the IO processors. This means that you have 
to have interaction with the operating system on which you are implementing your 
language. 
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These are only sequential files. Languages like COBOL allow direct access and index 
sequential access files which means that essentially the structure of directories has to be 
pulled down into data components within the file and you will have store disk addresses 
and cylinder sector addresses in some files so that you can do a direct access on to the 
disk for the block of storage which contains the data you are looking for. But then that 
means it involves a lot more intensive computation.   
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Then we come to lists. They are just stored in the heap and they might be controlled. 
They are usually programmer controlled. They are automatic in functional languages and 
the allocation and de-allocation depend upon the kind of list it is going to be.  
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