
Principles of Programming Languages
Prof: S. Arun Kumar

Department of Computer Science and Engineering
Indian Institute of Technology

Delhi
Lecture no 21

Lecture Title: Structured Data

Welcome to lecture 21. Last time we looked at various storage-allocation strategies for
simple data. Let me just briefly summarize it. Firstly, if we had constants I said that there
were lots of important questions of policy that one should answer before it gets down to
implementation. Should you allow structured constants? Should you allow simple
constants? What happens if you take various decisions concerning these? Should you
insist on compile time evaluation of a constant value? Should it be done at runtime? If so
should you do it just before program execution or should you allow it to be more
flexible?

(Refer Slide Time: 00:44)

Each time the block is entered it is a constant only for its particular life time and not a
constant for the entire program. Should constants just be names of some literals? Should
they be allowed expression values? If you allow expression values then would you insist
on a compile time evaluation or a run time evaluation?

(Refer Slide Time: 01:36)

If it is a run time evaluation would it be just before program execution begins or should
the constant be declared each time the block is entered? As far as variables are concerned
should you allow initialization? Should you insist on initialization always? What happens
to initialization of large structured variables? What kinds of languages allow what kinds
of initialization for variables? Finally we also classified variables in various kinds which
are automatic in the sense that they are created at block entry and destroyed at block exit.

(Refer Slide Time: 02:12)

The own variables or the static variables which are created during programming and at
entry to the main program have a life time extending right through the execution of the
main program, the area in which it would be most natural to allocate these variables.
Then of course there are programmer controlled variables, which are explicitly
programmer controlled and are usually allocated on a heap.

(Refer Slide Time: 02:43)

They have a life time which is different from their scope in the sense that they are
explicitly created or destroyed by the programmer. We will look at structured data in
some greater detail. Whatever we said previously holds for simple variables and simple
constants. When I talk about simple variables or simple constants I mean that the
underlying virtual machine already supports those types as data types. There are
predefined operations, predefined sets of values and so, they are simple in that respect. If
you had an underlying virtual machine which only dealt with matrices then that would be
a simple data type for that machine but in most general purpose languages the simple data
types usually are scalars of the form integers, reals, constants, strings, Booleans etc.

We are talking of structuring simple data into more compound data. It means that you
have to somehow combine simpler pieces of scalar data in the view of the virtual
machine on which you are implementing into compound units to be regarded as a single
data item. In any kind of structuring operation there are constructors and what I have
called, but which no other programming language text calls, ‘deconstructors’.
When you put together pieces of data and structure them into large units then you also
require methods of exploding that large unit and obtaining the simpler components.

(Refer Slide Time: 04:43)

I am calling them deconstructors but in the case of particular structuring operations they
have particular names. So, I would not call it destructor because that means completely
destroying the data but deconstructor is that you split it up into its components again. You
take some simpler pieces of data, combine them together but later you might want to
access the individual components for some reason may be to construct new structured
data. You would like to deconstruct a compound unit into its individual components.

What are the most common structuring mechanisms that mathematics provides and how
does one model those structuring concepts in our programming? Let us start with the
simplest possible structuring mechanism in mathematics and that is of tuples. The
constructor in this case is just a Cartesian product. You can take Cartesian products of
two sets for example and you get ordered pairs; you get n tuples by taking Cartesian
products and Cartesian product of n sets and you get n tuples of this form. Given any
tuple what you require are corresponding projection functions. Given a tuple the ‘ith’
component of that tuple should be extractable. Remember that all these individual sets
may be of different types meaning they may all be really different sets. What you are
looking for are forms of projections and projection functions. Projection functions are the
deconstructors for a Cartesian product.

(Refer Slide Time: 8:10)

Please note that deconstructor is really my name. It really is not available in any other
programming language text and deconstructor is actually a philosophical word dealing
with some modern concepts in linguistic philosophy. But I think it is a good name to coin
so we will use it for this purpose. Projection functions are what you require for exploding
a Cartesian product and extracting individual components. Let us look at how these
constructors and deconstructors are provided in some languages.

(Refer Slide Time: 09:28)

In most imperative languages you have records with named fields as the only tuple
formation construct and the fact that you have got named fields.

This means that you use a field selection operation which uses the name. A field selection
in a record is the major operation to explode or to extract an individual component of a
record.

In ML of course there is an explicit tuple construction mechanism and an explicit
deconstruction which is through a pattern matching rule. Since ML is quite clear about
the kinds of patterns a tuple must possess, you could go through a typical ML session like
this in which you construct a tuple A, which has these values and the ML type
inferencing mechanism automatically gives this a type which is defined by this Cartesian
product. Of course the individual patterns actually make it clear what domains are
involved in the Cartesian product and in what order.

The most common way of deconstructing is to give a declaration where for example, B,
C and D are names which are not pre-declared. It is not that while constructing this tuple
you gave these field names. These field names are absolutely new but the pattern
matching facility of ML clearly indicates that if there is some new name and you are
declaring this in this fashion then you have to do an appropriate mapping of what might
be ML variables to their appropriate values.

(Refer Slide Time: 12:03)

You get a response which actually is something like this and so the deconstruction is very
often done through pure pattern matching and this is not true just of the tuples but it is
true of any data type in ML. For any kind of structured data in ML you can actually do
deconstruction through such a pattern matching mechanism. Whether they are ML
records or records of records to any depth; records of tuples of lists etc you can do
deconstruction just by using the pattern matching facility.

In most other languages while ML has taken a very strict mathematical view towards data
types, the constructions are such that they model an elementary mathematical text

including what kinds of constructions and deconstruction mechanisms should be provided
and how they should be implemented whereas most languages actually have not
considered this problem of providing a separate construction or deconstruction
mechanism for many mathematical operations. They have usually confused the abstract
operation with a representational equality for example; the Pascal record is one such case
but most commonly are their kinds of mechanisms used in Lisp and Scheme.

A Cartesian product is clearly a different operation from a sequence-forming operation.
The fact that Cartesian products are isomorphic to certain subsets of Lisp formation is a
different matter altogether. But it is fundamentally a different operation whereas most of
the older functional languages mainly Lisp and Scheme which is just a daughter of Lisp
with a simpler structure, only use list construction as a main operation and list operations
themselves as the deconstructors. An ordered pair in a Lisp or Scheme is no different
from a list of two elements.

An ordered triplet is no different from a list of three elements whereas logically they are
two different things. A list is meant to model a sequence and not a tuple. However, they
are isomorphic and since lists are a more powerful construction operation and you can
program tuples through lists it is assumed that it is not necessary to have a fresh data type
called tuples. In fact most of these languages actually do this. In the past they have
confused what constitutes an abstract construction or a deconstruction operation from the
fact that it is easily implement-able and they have confused these two issues.

The other important operation is what might be called the sum or disjoint union or a co-
product. The Cartesian product is a product and this is a co-product in some category of
domains. It is what I might call a sum. You have the sum of two sets and what I said
loosely was that this is really like maintaining the identities of the elements in the
individual sets. These two sets may not be disjoint but you have to somehow maintain the
identities of the elements drawn from these two sets. So, it is natural to have a tag or a
discriminant which will clearly give an identity to the elements in this union.

(Refer Slide Time: 16:30)

When we are talking about a sum or a disjoint union we are really talking about two
injection functions which are of this form.
in1: A A
in2: B A

B
B

− > +
→ +

(Refer Slide Time: 17:05)

Actually these two injection functions are really what constitute the constructors for the
disjoint union operation. If you look at it as a construction which is obtained through
injection functions it is not necessarily the same as having a tag or a colour to distinguish

between the elements. This is only a representational mechanism; it is not a logical
mechanism. Logical operation is just A + B.
In my past lectures whenever I have used the disjoint union, I may have used equality but
here I am saying that it is not really equality. It is an isomorphism which means that the
two sides are not exactly identical. There is some logical information in this ‘+’ which is
made explicit through a tag or a discriminant and this is really representational rather than
logical. However, what has happened is that just as in my past lectures I have actually
identified (0A×  ) with (1B× ) . Most languages have also identified these two and they
use a tag in some form or the other.

(Refer Slide Time: 19:00)

Most languages actually have records with variant fields and in order to identify
individual fields rather they take the identity of the individual elements in this co-
product A B + . They have used this tag and the operations that come with the
appropriate tag.
You do a case analysis on the variant. This is used most commonly in all languages
starting after Algol 60. PL 1 and COBOL have a stuck mechanism which is similar to the
records of Pascal. The first language to use the variant mechanism is PL 1, then Algol 68
and then Pascal.

Most languages actually have a form of records with variants and the variant field is a
tag. The tag field is used to disambiguate to provide an identity for where a certain
element comes from. However, let us look at the Pascal variant records.
There is a certain insecurity which actually was exploited even by Niklaus Wirth in his
own original Pascal compiler. But however even though it was very useful for his
compiler, the construct came under tremendous criticism because of this reason.

I can have a record declaration where the variant is a part of a larger record declaration
which means that you are taking some Cartesian products initially and then you are
taking a disjoint union of two different kinds of Cartesian products.

That is really how you should look at it but let us usually look at the variant in isolation.
There is a tag filed which may be a Boolean and if the tag is true then what it has is an
underlying integer and if the tag is false it has a character. In this particular declaration
you are just taking a disjoint sum of integers and characters. What is there within the
parenthesis could be more complicated. It could be another Cartesian product or some
such thing. This declaration is a variable and since it is a record and you use field
selection and in the normal idea of designing such a record you can do a case analysis on
the tag and do appropriate operations probably such as integer operations or character
operations.

(Refer Slide Time: 21:34)

Remember that when you take a disjoint union of two sets the injection functions are
such that once the identity of the individual components of a set are known the
operations of that data type become applicable. You import also the operations of that
data type. For example; if you are taking the disjoint union of integers and characters and
you know that there is an element which actually came from the integers then you could
for example do addition and subtraction. You could take two different records whose
parent component is integer and you could add those values.

If the characters are there you could compare the two characters and take some successor
or predecessor of the character. But the point is that if you have two different records P
and Q with the same declaration and one has a tag which is true and the other has a tag
which is false then theoretically, you cannot add the integer component of one to the
character component of the other. The operations remain distinct. However, since the
record is just a variable and its individual fields are also just variables one could actually

assign the tag value and then one could change the value of the tag and then look at an
operation from the other data type. You started of with P being from the characters and
you assigned it a character and then you changed the tag. So, P became part of the
integers and now you can write out the integer value. This for example leads to type and
runtime insecurities.

(Refer Slide Time: 25:44)

The pride of Pascal implementation is that every type is compile- time determinable.
With the variant records you have something that is not compile-time determinable and
that is not even really run time dependable and in the sense that you cannot introduce run
time checks because you do not know how the tag is going to vary. After all I could
change this to some complicated Boolean expression. So, it has a schizophrenic type
which keeps changing.

The actual value does not change of the individual components but there is a side effect
on their type of the individual component by changing the value of the tag field.
This is the reason this construct came under severe criticism because it leads to firstly, an
abuse of the type structure of the language and then it makes runtime type checking really
impossible. After all there are other ways of doing the same thing and they should be
used. You should not abuse a flexibility that is provided.

Many languages actually avoided this problem in various ways. One is the language of
Euclid. Let me first say that I will always use Pascal or ML type syntax and I do not
swear by that syntax. I do not know the syntax of Euclid or of the many other languages
that I would be discussing and I will write them in a sort of Pascal like fashion. The
whole idea is that you should worry about the semantics rather than the syntax. This
syntax is definitely not Euclid compilable. What I have used is a Pascal like syntax here.

In that PASCAL declaration you could have actually defined that variant record as a
separate type and then declared that variable P as being of that type. You can give that
type a name and then declare that variable P as of that type. That could have been done.
But the point is that it does not solve the problem of those runtime insecurities. EUCLID
actually parameterized the tag in the declaration itself. If you declared some variable to
be of this type then since this is a variant record type you had to give an initialization for
that tag and the compile time check was introduced to ensure that there was no way that
the tag was changed in the program.

The identity of the disjoint union was preserved by putting an initialization for the tag
field in the declaration of a variable itself. So, you could not mix two variables very
easily. You could however define two different variables of the form p and q like this. So,
p comes from the integer component of the disjoint union and q comes from the character
component of the disjoint union. The properties of the injection function are rigidly
maintained but very often you require temporary variables.

(Refer Slide Time: 28:30)

You could declare some variable like r in which there was a new reserved word called
‘any’ and it meant that you could assign any type to this. The natural question is, in the
main program can I assign a value to p, assign that p to r and assign that r to q? Thereby I
would have moved from one component of the disjoint union to the other. So, Euclid
banned all forms of such assignments. If you are going to use r as a temporary variable
you could assign p to r but you could never assign r to q. However, once r has been
declared to be of the same type as p, you could assign r to some other variable say s
which is of the same type as p. There is a runtime type checking. Based on the tag value
you could do appropriate assignments.

(Refer Slide Time: 30:33)

If this portion were inside a loop then occasionally depending on the value of the
variables that you are using, r might be either of the type integers or it might be of the
type character and you could do a case analysis. But you could never make such an
assignment. Note that in some sense this r is of a super type compared to either of the p or
q. By assigning p to r you are assigning a p which is of narrower type to a variable of a
wider type. That is called widening.

You could do widening but you could not do narrowing which means taking a value of
the super type and assigning it to a narrower type. You could not do this arbitrarily; it was
very difficult to do this. There were some predefined tags but it also complicates matters
a lot when you want to actually do explicit type cohesion. But their single purpose in life
was to avoid the pit falls of the variant records in Pascal and so they took this view.

The language Algol-68 actually took a more pragmatic view. Let me first mention that
Algol-68 has got no relation whatsoever to Algol 60 and it is not like FORTRAN 4,
FORTRAN 77 and FORTRAN 90. Algol-68 is a completely new language whose main
design issues were not only to specify the context-free syntax. Algol 60 was the first
language which used a BNF notation to specify the context-free syntax and the idea in
Algol 68 was not only that you should specify context-free syntax; you should also
specify context-sensitive syntax.

They had grammar rules which were so complicated that I doubt if anybody other than
the language designers have actually written substantial programs in this language.
But Algol 68 had a very interesting method which was just that they actually gave a
union of types in this fashion. You could actually define a union like this and do a case
analysis. There was no tag field and therefore there was no possibility of abusing the tag
field.

(Refer Slide Time: 33:12)

You could look at any particular variable of this co-product type and you could do a case
analysis based on whether it comes from here or it comes from here. There was
absolutely no tag field and therefore there were no tag field assignments; there was no
way you could change the tag field assignments, there was no question of widening or
narrowing, they thought they had put everything in watertight compartments and things
could be compile-time checked. But you could do assignments between various variables
of the type ‘int char’. But along with that information there is the actual value of the
assignment; the parent type that came from injection function which was also carried
through.

You had to always do a case analysis on finding what the injection function used in order
to do whatever manipulations you want. More modern languages like Ada for some
reason just used exactly what Pascal has done in spite of knowing about all the
insecurities of the Pascal variant record. The only difference was that Ada gave it a four
syllable name called a discriminant which sounds more grandiose. But in order to avoid
the insecurities they said that any time you are trying to change the tag field you cannot
selectively update the tag field. You have to change the entire record that is you have to
reassign the entire record. So, in this way they allowed for a flexible cohesion of types
but then that cohesion meant that the programmer by having to change the entire record
including the tag knew exactly what he was doing.

(Refer Slide Time: 36:00)

So, you do the changing of the entire record in a block but Ada also allowed various
kinds of compound initializations.
Since ADA allowed mechanisms and even syntactical mechanisms for doing
initializations of aggregate objects or compound objects you could change the entire
record also in a single command through various syntactic means by the use of various
kinds of brackets.

If you had records within a record so the components of a record would be written in
parenthesis very much like the ML tuples and if they were records within records then
you would have more and more nested parentheses inside and so a large record could be
changed in a single assignment command by using an aggregate. The large record
including the tag could be changed in a single command by using an appropriate
aggregate but then that only meant that the programmer knew explicitly that he was
changing the tag field and he was doing the change in the tag field at the same time that
he was changing the other components. They are not being done in a selective or
distributed fashion.

The code for changing the tag field and changing other areas of the record were not
distributed in various places within that program. It was all done in one single command.
So, it localized the variant record problem of Pascal which they found the most
acceptable to them. There is a co-product construct also in ML but that is at the level of
data types. Let us see what a typical ML co-product would look like. If you look at a
disjoint union it is not just the sum of two sets. It is actually a sum of two different data
types.

If you have integers and characters and if you are taking the disjoint union of integers and
characters then you are also importing for the appropriate components the appropriate
operations available with integers or the appropriate operations with characters. You are

actually defining not just a new set but a new set with a new set of operations where each
operation comes from either of the two injection functions.

If you look at this construction of an int char data type, it is not just a construction of a
new set but it also has summation, multiplication, ordinal numbers of characters, getting a
character from an integer and it has all these operations except that all these operations
are conditional and undefined.
For example; ordinal number of an integer or adding two integers is not available in the
character domain. It is conditional and so you are actually defining a new data type of
this form. By data type we mean a set equipped with its operations. Integers are not just a
set but they are data type, which have associated operations with them. You could define
a data type like this. My ML syntax is also quite informal so I do not guarantee that all
this is compilable.

You actually define the injection functions in ML as; int char = in1 of int 1
 in2 of char

Each time you would carry this injection function itself as the tag for each element.
Whenever you are assigning a value to this data type you would actually write something
like this in1 5 let us say. The injection function itself acts as a tag and they have two
distinct tags. Since it is a functional language everything has a constant value. So, you
actually have two different tags for this data type. If you did an n fold summation you had
n different data types because the injection functions were always tagged on as patterns
with the component and the injection functions ensured that you had type compatibility
whenever you performed operations.

You could not do strange cohesions unless you were explicitly conscious of it and unless
you took the ordinal value of some character you could not treat it is an integer. ML
actually follows the mathematical definition of a co-product or a summation in a very
strict fashion. Lastly, we have to look at storage allocation issues and also that given an
arbitrary variable of this type you could do a case analysis. You could have a function
some,

(int)funf x =
()1f in2y ..= …

You could do the standard case analysis that is available in ML through the pattern
matching that is also available to do the case analysis for an arbitrary variable of this
summation type.

(Refer Slide Time: 42:35)

(Refer Slide Time: 43:20)

Finally we have to look at storage allocation issues. Let us first look at ordinary records
without variants. By records here I do not mean ML records but in general Pascal like
records or PL 1 and COBOL like structures. You know how much space you require for
each of these components and you allocate a contiguous block of memory equivalent to
the sum of the space that is required for each of them at runtime. You just allocate it all
contiguously and you just place the individual fields in contiguous locations and in the
order of appearance in the record declaration which also brings in another issue. It is just
another of these various insecurities in this imperative languages which have records.

(Refer Slide Time: 44:09)

If you do this then you do not really require any runtime descriptor. If it is a variant
record in Pascal then you do not really know what kind of runtime descriptor you can
keep for it. The address of any particular field which you require for deconstruction is
just some offset plus some of the sizes of the individual fields up to that and since the
order of appearance in the declaration is important, which is the order in which they are
also stored, you can just take the size of individual fields and contiguously allocate it.
You can randomly access an individual field of a record by a simple compile time
calculation. Only the offset is going to be known at runtime. Part of the offset consists of
a relative start of the block in the runtime stack.

The other is the absolute position of where that block is going to start in the runtime
environment and that depends on its life time.
It depends on the number of procedures, calls or number of blocks under it etc.
The offset consists of an absolute component which is not known except at runtime and a
fixed relative component which is known at compile time.
The size of each of these fields is known at compile time. This calculation of the fixed
offset from the current base of activation record to the appropriate field is all compile
time determinable. So, you can do random access quite easily with such a structure.

(Refer Slide Time: 46:15)

Since a record is a structured data type using individual components you might require
some runtime descriptors in order to do various kinds of checking.
After all for example, you might have a record whose one component is an array with
certain fixed bounds then you have to ensure that the array index does not go out of
bounds. The runtime descriptors are usually necessary for arrays.

For the record as a whole you are not going to have any runtime descriptors. You are just
going to have run time descriptors as appropriate for the individual components. In the
case of a variant record you really have nothing to do except allocate some maximum
value computed over all possible variants of the record. You just look at all possible
variants of the record and find out which one requires the maximum amount of storage.

The fixed part of the record anyway is going to use only that much which is one of the
reasons why Pascal insists that the tag field and the variant component should always be
the last declaration in a record if it is present so that the fixed parts of the record anyway
have fixed memory allocation and the variant part could have variable amounts of
memory allocation.

(Refer Slide Time: 48:12)

But normally, most Pascal implementations would just take the maximum over all
possible variants that you have and just allocate that much space. If you are looking at
smaller variants, they just occupy a space that is a part of this larger space that you have
allocated and the initial position of that larger space is all that they will occupy.
That is how these records structures are implemented and that is how they also allow
random access to the fields of the record.

	Principles of Programming Languages
	Prof: S. Arun Kumar
	Department of Computer Science and Engineering
	Indian Institute of Technology
	Delhi
	Lecture no 21
	Lecture Title: Structured Data

