
Principles of Programming Languages
Prof: S. Arun Kumar

Department of Computer Science and Engineering
Indian Institute of Technology

Delhi

Lecture no 20
Lecture Title: Data

Welcome to lecture 20. Last time we dealt with pragmatic issues such as the large scale structure
of the runtime system. Those structures are essentially basic to the rest of the course. Almost all
languages would follow one or the other structure with mixtures. Let us quickly summarize all
that and then we will get on to data.

A typical structure of the runtime environment of a block structured language is like this. There
is a runtime stack with a heap where usually the heap and the stack grow towards each other;
there is a code and some special kinds of data are stored along with the code and there is a
current instruction pointer usually stored in a high speed register and a current environment
pointer usually stored in another high speed register.

[Refer Slide Time: 01:11]

[Refer Slide Time: 01:35]

I also spoke about scope. At least static scope refers to that part of the program text in which all
occurrences of an identifier refer to the same binding occurrence of the identifier. It is a region of
program text and it was illustrated with this. Such scope rules are present in most of the modern
block structured languages. However, there are languages like LISP, A P L and SNOBOL which
have something known as dynamic scope. So, it is not possible to specify scope from the
program text.

[Refer Slide Time: 01:55]

[Refer Slide Time: 02:25]

I also spoke of extent. The extent or lifetime of an identifier really refers to the time during
execution in which all applied occurrences of an identifier refer to the same storage location that
is bound to it. In a statically scoped block structured language as in the example shown before,
you have lifetimes. For the same identifier in an inner block you have different lifetimes and the
different lifetimes are not necessarily related.

[Refer Slide Time: 02:55]

[Refer Slide Time: 03:11]

In most languages in the Algol 60 family like Pascal, Ada etc the notion of blocks is whatever
we have done which is that we have taken the minimal subset that should define a block. Other
languages have certain policies such as named procedures or functions, packages or tasks and
even unnamed blocks and extent in such languages with a typical runtime structure is really from
the moment of entry to the block to the moment of exit from the block because the allocation is
dynamic at runtime.

[Refer Slide Time: 03:48]

Then we saw that there are languages like FORTRAN and COBOL where the scope is again
delimited by the program text and therefore they are statically scoped. However, the extent is the

duration of the execution of the entire program and that is because languages like FORTRAN
and COBOL perform a static allocation of storage. At compile time every data item that occurs
in a piece of code is actually allocated area. Besides this there is a common area for sharing
locations between various program units which are known to have disjoint lifetimes but then it
really depends upon the programmer to infer that they have disjoint lifetimes and so they can
share a common area of storage.

[Refer Slide Time: 05:11]

It is safe only when you can actually show that whatever is common in different blocks have
disjoint lifetimes. Unless you can show that there is likely to be confusion there is likely to be an
error also in a program. You have a static allocation of storage in which most of the data is
allocated immediately below the code along with the code. Therefore the normal scope rules
apply, if within any program unit all references to the data are either to the common area, which
is separate or to the locally declared data to the local environment.

The advantages and disadvantages of doing pure static or pure dynamic allocation are that with a
static allocation you cannot have nestings of blocks and you cannot have more than one
activation record for the same unit. Therefore you cannot have recursion. However, since all the
allocation is done at compile time the actual execution of programs is very fast. That is one good
reason why scientific programs are still written in FORTRAN. Another good reason of course is
that there is already a large library of FORTRAN routines that are available which are
thoroughly tested and tried. So, the confidence level in those FORTRAN routines is very high.

[Refer Slide Time: 06:14]

If you want to actually build more scientific routines it is a good idea to use the existing libraries
but otherwise this fast execution is a very good reason why most scientific computation, which is
highly computation intensive and with very little I O, is still done in FORTRAN. In structured
versions of FORTRAN the original version of FORTRAN was FORTRAN 4 which is not
structured but now you have these structured versions of FORTRAN the latest of which, I think
is FORTRAN 90 where they also have highly optimized compilers so that the execution is really
fast.

You can do a certain amount of stepwise refinement with these new structured statements of
FORTRAN 77. FORTRAN 90 is really a parallelized version of FORTRAN 77 but the
executions are fast and general purpose scientific routines are going to be developed once and
are going to be run several millions of times. It is necessary to have fast execution even if
compilation is slow but surprisingly FORTRAN compilers also compile very fast. But that is
because the language is otherwise very close to the machine language and assembly language. In
the case of dynamic allocation it actually allows you to do a systematic development of programs
by allowing nesting so, you can actually apply a top down or a stepwise refinement method to
inter-mix specifications and program code and derive the final code as a refinement of the
intermediate steps of your program.

They allow recursion which is a very powerful specification facility and if it is directly
implement-able then it simplifies a lot of matters because transforming recursion into iteration is
not a particularly easy task. For large programs you would like an automatic transformation
mechanism but that is very hard and most of the time the only transformations that work are very
trivial sort of transformations. As a result there is more book-keeping at runtime in these
dynamically allocated languages, in most block structured languages and because of the
allocation and de-allocation that you have to do, the executions are also likely to be slow unless
of course you optimize the compiler.

[Refer Slide Time: 09:44]

The main pragmatic issues that we have to deal with in a subject like programming languages are
not at the level of very deep or complex algorithms. Most of the decisions are of a policy nature.
What kind of allocation strategies should we have? The actual algorithms are never very
complex. The main problem is integrating all the policy decisions into a consistent framework
and making something actually work which is very hard. Mainly the questions are of policy
decisions and algorithms are few and far between in the traditional sense of very deep and fancy
algorithms. It is really a matter of optimizing resources, optimizing trade offs between whether
you want to do something at compile time; you want to do something at run time, you want to do
something dynamically at run time etc.

The question is what tasks should be performed at translation or compile time? What should be
done at runtime or what should be done immediately after compile time but just before runtime?
Then how and when is storage allocation to be done? What kinds of data are required to have
storage allocation done and when? How can you optimize memory usage not instantaneously but
may be over an average? How can you optimize instantaneously when a program that requires a
large amount of data at an instantaneous moment in the execution, runs out of memory and never
works? So, it is a matter of taking decisions rather than actually designing fancy algorithms.

Then finally of course what are the algorithms and what are the kinds of data structures you have
to use? Once you have decided on certain policies then data structures become more or less clear
like the runtime stack or a heap. What is the relationship between the code segment and data?
What is the structure of the underlying virtual machine if you are designing a compiler like P L
0? If that is the case then what should be the data which contains the code and how should that
be executed? They are really not very central issues. So, depending upon answers to these
questions you can define attributes of a data item and the kind of information.

[Refer Slide Time: 12:44]

The answers to these questions will also determine what kinds of information you should gather
at compile time, what kinds of information have to be preserved at run time in order to introduce
checks or in order to do storage allocation itself at runtime. Let us look at the primitive forms of
data that we already have in our language. Firstly, let us consider constants. We will for the
present just assume an imperative language very much like the ‘while’ language that we have got
with unnamed blocks and the local declarations could be either constants or variables. We will
talk about complex data without being too specific about it.

You will find that the decisions that we require even for constants are quite a few. It is not a
question of deciding that we are going to have constants in this language and then we are going
to set about implementing them according to this semantics. Very often you have to look into the
future before deciding to allow constants of a particular type after allowing constants of another
type. For example; the first question is should constants be simple or can they be structured? By
structured constants I mean where you can have arrays, records and lists but if you allow for
structured constants then you should also allow for structures that are very large. If structures are
going to be very large then in a compiled language implementation how are you gong to assign
these large structures to constants?

[Refer Slide Time: 14:55]

Assuming that we are going to have constants the first question really is: are these constants
going to be given values at compile time or at translation time or runtime? Now based on that the
question is that if you have large structured constants how are you going to assign values?
Supposing you decide to do a compile time assignment of values to the constants then how are
you going to do it for large constants?

[Refer Slide Time: 16:00]

If you are going to do it at compile time and if you have large constants then are you going to
access files in the directory at compile time? Are you going to do compiling and access various
files? You might have to access enough files in order to link and load the program. You will

have sufficient hassle just trying to compile the program. Now your compile time especially in a
language which is suitable for development is going to be tremendously slow if you decide to
take the policy that constants have to be allocated at compile time and you are also allowed large
structured constants. Then you are going to also take in the value somehow from files.

Now if the constants are structured and large and if you allow for file input then a file typically is
just a sequence which means a file has to be formatted in a certain way. So, you may have to
parse the file before you actually perform the allocation to different components of your
structured constant. If you just have an array maybe it is simple but if it is an array of records of
an array of records, there has to be syntax in the file itself which specifies what components go
where. This means that you have a certain grammar for the data in the file which means that you
have to parse that input from the file before you actually do the assignment. The question is that
are you willing to do that?

When you take a policy that constants are going to be assigned at compile time and large
structured constants are going to be allowed it means that you have to be prepared for these
constraints. Then is the resulting slow down in the compilation speed or translation speed really
acceptable (if it is a compiled language in which you assume that the executable versions of the
program are going to be run much more than the only repeated compilations that are required at
development time of the program that later become part of the library)? Then may be a resulting
slow down in compilation speed is acceptable. But in a language used to learn programming the
number of runs are going to be much less than the number of compilations. So, what you require
really are fast compilations and these decisions may not be acceptable in such a language.

These kinds of decisions have far reaching consequences and the actual algorithms themselves
are not as important as the decisions that you take in language design in the implementation
design. The next question of large structured constants automatically raised is; when should a
constant be really assigned its value? Suppose you assign it at runtime and you can assume for
practical purposes that you have to consider also extreme cases; suppose that constant is
embedded in a block that is very deeply nested in the program and if you are going to do it at
compile time then the value of the constant itself is going to be an attribute of the constant and it
is an attribute that is going to be preserved. We have not spoken much about attributes but
general attributes include various kinds of information that you gather at compile time.

In the case of constants it might be the value if such decisions are taken. In the case of variables
and also the type of a data item it is also an attribute. What is the amount of storage that is
required for a record or for a double precision floating point integer? The amount of storage that
is actually required either contiguous- or non-contiguous is also an attribute that you are going to
keep. What kinds of runtime checks are to be preserved or kept? It may be part of a sub ranged
type or an enumerated data type. For example; if it is part of a sub-range type then the bounds
are also part of the attributes. In the case of a constant if you decide to assign its value at compile
time then its value becomes an attribute of the constant which has to be preserved through the
runtime.

In general if you decide to assign the values before at compile time then the usually large
structured constants are infeasible. This is in fact an excellent reason why Pascal decided not to

have large structured constants. It is a language for learning about programming, learning how to
program and so, it makes sense not to have large structured constants. Arrays and records are all
out. Supposing it is going to be allocated at runtime then there are two possibilities. Either it is
allocated once before program execution begins or it is assigned each time the block in which it
is declared is entered. The complexity of assigning it once before the program execution actually
begins is just that at this point if you assign it at runtime then you can actually allow for large
structured constants.

[Refer Slide Time: 21:18]

In some initialization procedure values are assigned just as you enter the block or just before
program execution all the structured constants could be read in. But large structured constants
become feasible. Supposing you do it either at compile time or once before the program
execution begins that does not necessarily mean that you have actually reached the block in
which that constant has been declared. But just before program execution begins, all the
constants in all the nested blocks are assigned the values. This means that you are going to sweep
through the entire program looking for all the constants which have to be assigned values
regardless of scope rules or whatever it may be.

So, the constant cannot be part of a dynamically allocated storage. The storage has to be away
from the activation record in some safe place. This is a decision you might take especially with
large structured constants in order to save runtime. Once as part of the initialization you might
just sweep through the entire program and perform an assignment of values to constants but then
you have to be careful that that storage is separate from the activation record of the individual
blocks because the activation record really signifies a dynamic allocation which has a very small
extent that does not span multiple entries into that block. It has an extent which is only for one
particular entry and exit into the block. Then the storage has to be away and this is one reason
why you might have some data associated with the code segment. In my general structure where
I spoke about data under the code segment and away from the activation record this is one
possibility. You can actually store the constants along with the code, sweep through the code and

fill up all the constant data once before your actual main program execution begins. Those
constants are then available. You do not have to redo those constants whereas if each time the
block is entered if you have to assign a value to the constant then large structured constants will
have to be reinitialized and reassigned values each time the block is entered, which is going to
cut down on your execution speed firstly, because when you are talking of large structured
constants, implicitly you are assuming that they will be stored in some external files or in some
secondary form of storage. It is going to be much slower than memory. This means that there are
going to be I O weights, interrupts and if in a multi- process system this program might get
swapped out or it can become a background job and the actual elapse time will be much slower
than even the lowering of this execution speed of the program.

In a stand alone mode only the slow down will be visible because of the access to external or
secondary storage. But in a job environment of a large system the elapse time can be much more
than the slow down in execution speed mainly because the job might get swapped out for I O.
Then if it is going to be initialized each time then one possibility is that you have storage along
with the other data items in the activation records but then you have to tag an attribute that is a
constant and therefore it is of unchanging value that has to be carried through to runtime. It has
to be an attribute of that storage location which has to be checked at run time to make sure that it
is not updated. One benefit of having the constant stored along with the code segment is that
there is a reasonable guarantee from the normal scope rules that that value is not going to be
changed because only the ones in the activation record are going to be accessed.

However, if it is going to be stored along with other data items either in the activation record or
in the heap area then there is a possibility that through aliasing and through various other means
you might actually change its value unless you tag it sufficiently and put in code to prevent its
implicit or explicit modification. Then the next question is: should constants be assigned only
literals or can there be expressions? But then this also depends upon whether you are going to do
a compile time evaluation of that if you allow expressions. If you allow literals the only question
that arises is again of a large structured data. The problem reduces to whatever are the answers to
the questions about large structured data or large structured constants.

[Refer Slide Time: 29:02]

If you allow expressions then are you going to do a compile time evaluation or are you going to
do a run time evaluation? If you are going to do a run time evaluation then is it going to be each
time the block is entered or is it going to be before execution? If you are going to do a run time
evaluation then you are always slowing down the execution of a program. If you are doing it
each time the block is entered, you are slowing down the execution even more.

Secondly, if you do it each time the block is entered you have to ensure somehow that there are
other questions that arise. Supposing you decide to do a compile time evaluation or you do it just
before execution begins again it means sweeping through the entire program and doing an
evaluation of all the expressions. One question is: should the expression consist only of the
previously declared constants? In this case the sweep will work and if you do a compile time
evaluation then your actual execution time is speeded up or if you do before execution begins
also the execution speed might be acceptable. But then if you ensure that the expression consists
only of previously defined constants then you have got reasonable guarantee that every constant
is in fact a constant.

[Refer Slide Time: 31:18]

But supposing you do this evaluation at runtime at block entry time then there is no reason why
you should prevent the use of variables that are global to the block from being used. Since the
lifetimes of different activation records are anyway different and the constants have different
values then the constant is not really going to be a constant. At different extents they might have
different values. If you allow expressions that use variables but with the guarantee that those
variables are always going to be previously declared and initialized then you could use global
variables that is variables that are global to that block. Then those variables are reasonably
guaranteed to have values and they are not likely to be undefined but then it means that your
constant is no longer just a constant. It is a constant only for a particular lifetime and that block
has several lifetimes and so that constant might have different values at different lifetimes.

The actual execution speed is going to be slowed down with each evaluation. This means that
you have a more flexible approach at the cost of execution speed and you also live with the fact
that the constant really is not constant throughout the execution of the program but is only
constant for each lifetime and at different lifetimes it could have different values. Another
intermediate kind of decision that you might take is that your language might allow variable
initialization and you could intersperse constant declarations with variable declarations and if
your variable initializations are guaranteed then a constant declaration could follow a variable
declaration and use that variable initialization in an expression.

But the fact that there are so many decisions to be taken at various points all this decision making
can give the implementer difficulty because many of these issues are not there in the language
definition. In the semantics these issues are not covered. So, what it means is that some kind of
the language design at the semantics level should ensure that the implementer can take certain
decisions which might be deemed right and not take arbitrary decisions. That is one excellent
reason.

There is absolutely no semantic reason why Pascal does not allow the declaration of a variable to
precede a constant. It does not allow declarations of constants and variables to be interspersed
and one excellent reason is that it just did not want to get into so many policies. It decided to
stick to some consistent policy. One is that a constant is a name for a simple value expression
and it is just a name for some expression which might be very cumbersome or difficult to just
type it out each time. So, you give it a value.

If you type out 3.14159265… repeatedly in your program you are likely to make a mistake. It is
a convenient idea to just define a name calledπ and carefully type this out and use that π as the
name for that value throughout. It avoided all the problems of trying to decide about large
structured constants and what to do about them. One decision is that there are no large structured
constants. All of them have to be variables and it is the programmer’s responsibility to ensure
that if he wants them to be constants then he keeps them as constants.

[Refer Slide Time: 36:38]

The point is that because of this policy actually the constants of a Pascal program are
determinable at compile time. It is possible to do a compile time evaluation but somehow it was
decided that a constant should be assigned a value only at runtime when the block is entered and
since there was no variable initialization in Pascal there is no guarantee that if you allow
variables in an expression assigning a value to a constant then you will actually get a meaningful
result. They actually disallowed variable and constant declarations to be interspersed and since
there was no variable declaration it was very clear that all constants can only use previously
defined constants. So, a constant will actually be always constant. The only point is that they
took this decision that the constant is assigned a value at runtime when the block is entered.

But that is perfectly alright. Since the constant is determinable at compile time you can evaluate
the expression at compile time and store it as an attribute to be preserved at runtime and to be
allocated storage in the activation record itself and maintain your scope rules. It is a simple

decision which actually side-steps all these other policy questions that arise. Since it is a
language for learning about programming you might think that it is reasonable.

If you were to take some other language like Ada, which is not designed for learning about
programming but is actually meant to send- satellites for various purposes then you should allow
for large structured constants. But then the point is that they still stuck to the Pascal decision of
having simple values and they assumed that it may not be determinable at compile time. At each
lifetime the constant might actually have different values. Then what they also allowed was that
you might use functions to define the values of constants which means you are going to use
variables that are already available.

[Refer Slide Time: 39:18]

Since you can use functions it clearly means that nothing is going to be actually compile- time
determinable unless explicitly as in the case of π where there is no use of explicit use of variable.
It is of course easy to do a scan of the program. After the parsing phase it is possible to scan the
program to find out about dependencies for each of the constants and clearly demarcate which
constants can be evaluated at compile time and which constants can be evaluated only at
execution time and then take a decision instantly. Make sure that you fill up those decisions at
runtime during block entry time.

They also allowed structured constants like arrays and records to be permitted. After all
remember that maybe a missile must know the exact longitude, latitude and altitude of a nuclear
installation and so you require large structured constants.

Now let us get on to variables. In the case of variables actually the problems are not so severe.
There are a few default decisions that we have to take but more or less the only other decisions
are really that of storage.

[Refer Slide Time: 41:11]

Should initialization be allowed? Should initialization be mandatory? But not everybody likes
initialization being mandatory because the whole idea of a variable is that it provides you a lot of
flexibility. The only other question is should initialization be allowed? One possibility which is
that in for example the language Pascal it does not allow any initialization at all. The syntax itself
throws out the notion of an initialization. Languages like Ada actually allow you to provide a
small set of initial values. So, even though it might be a large structured array you could have a
declaration of this form.

Let me call this

[]I r : Array 1 .10000 of real :
[1 .5000 0.0, 5001 10000
 1.0];

… =

… => …
=>

So this is how the syntax of an initialization would look.

[Refer Slide Time: 42:57]

In large structured values like large arrays if you provide a small set of initial values then you
could actually enumerate in such a fashion but if all the 10,000 values are going to be different
then you have a severe problem. They do not answer this question as to what they are going to do
in such a case. After all why should I be restricted to 2 or 3? Why can I not write 10000 different
clauses?

The other question is will a programmer write 10000 different clauses? He will take the easy way
out and just write 1 or 2 values. That is it. He will read the rest of the values from file for
instance but he is not likely to use that initialization unless he is absolutely sure that there are
only a few initial values possible. The question of whether it is going to be mandatory is useless
because you cannot prevent large structured variables. They have to be there. That is not a
decision that is open to you. If you want your programming language to be actually used by
people then you had better allow for large structured variables. But you just have something that
is not mandatory but it provides for a small set of initial values whose size might be dependent.

In the case of languages like FORTRAN for example, there is an explicit data statement which
allows for an initialization. Again in FORTRAN it is not mandatory and everything is initialized
by default even if you did not provide an explicit initialization whether you like it or not.
Whatever is not initialized by the data statement anyway has a default initialization in
FORTRAN. If you are just looking for possibilities of allocating storage to variables then you
could allocate them either here or here or here. There is absolutely no reason why you cannot
allocate them in any of these three places if this is going to be your typical structure. There have
to be good reasons why you want to allocate something here or here if your default allocation is
going to be in the runtime stack.

As far as the heap is concerned it does not really matter. The heap is used for a dynamically
allocated variable. So, the heap is really going to be like a garbage heap.

This means that for explicit allocation and de-allocation of variables you can use the heap. That
is the policy most languages follow. The heap space is mostly used by all languages which allow
for a heap space and where there is a dynamic or explicit allocation and de-allocation done by
the user of the language.

[Refer Slide Time: 46:54]

The scope of a variable is still the block containing the declaration of that variable which has to
be dynamically allocated. The extent of that variable is also determined by the programmer.
Therefore the extent is from the time the program explicitly creates data object to the time the
program explicitly deletes it from the heap. There is an explicit creation and deletion. For
example; a language like Pascal has this ‘new and dispose’ which are explicit creation and
explicit deletion commands. Other languages like P L 1 followed FORTRAN. They had to
clearly specify what is automatic, what is controlled and what is static.

The static was supposed to be FORTRAN, the automatic was supposed to be what is normally a
variable in a block structured language and the control was explicit programmer creation and
deletion. The other possibility is to actually use the own variables of Algol 60. As I said last
time, the problem that the Algol 60 designers felt was how you are going to use random numbers
unless you have a procedure which is somehow history-sensitive. It really depends on how many
times it has been called before. There has to be some variable. The seed of a random number
generator should be changing every time and normally you would take the last random number
generated as the seed for the next invocation. This means that in such a procedure you require a
seed whose value should be retained between different life times of that procedure. Most
languages actually allow for this version of own variables.

Normally, since the values of these own variables have to be preserved between two different
lifetimes of that block they are stored in the data area under the code segment. That would be the
normal place to store them so that they do not get washed out when you do block exits. Note that
heap space is still accessible only through the runtime stack. So, if your activation record gets

washed out on block exit then you cannot store the own variable in the heap because the pointer
to it has been lost.

The third space is that reserved space allocated to each block in which history-sensitive variables
may be stored. They have this reserved word called ‘own’ for a variable which for example in C
and P L 1 they call static, which retains its value between successive invocations and you can use
that. The only problem with these ‘own’ variables is that if your language does not make variable
initialization mandatory then there may not be any initialization. This means that each time you
call this procedure which has an ‘own’ variable, you have to introduce code in your calling
procedure to check whether it is the first time that procedure is being called or not.

If it is the first time then you have to provide an initialization value for the own variable. If it is
not the first time then you just call it. You need to introduce every call to that procedure which
contains an ‘own’ variable if your language does not allow initializations and declarations.

[Refer Slide Time: 51:18]

[Refer Slide Time: 51:38]

You have to write a cumbersome piece of code to find out whether this is the first time you are
calling that procedure or not. Normally, this allocation is with the code segment if in languages
with default initializations, there is no problem of checking whether it is the first time or not and
most languages which allow it actually allow for explicit or default initializations.

[Refer Slide Time: 52:06]

We might finally classify variables in this form. You have variables which are automatic in the
sense that they are created at block entry, they are deleted on block exit and the area where they
are stored is a runtime stack. You have static variables which are created when you enter the
program but may not be initialized depending on the other features of the language. They are

deleted when you exit the entire program. They have an extent spanning the entire execution of
the program and the area is usually the code segment area and there are controlled variables
which are explicitly programmer controlled, which are created by an explicit programmer
command and which are deleted by an explicit programmer command. They are stored usually in
the heap and they have a lifetime between their creation and their deletion.

	Principles of Programming Languages
	Prof: S. Arun Kumar
	Department of Computer Science and Engineering
	Indian Institute of Technology
	Delhi
	Lecture no 20
	Lecture Title: Data

