
Principles of Programming Languages
Prof: S. Arun Kumar

Department of Computer Science and Engineering
Indian institute of Technology

Delhi
Lecture no 2

Lecture Title: Syntax

Welcome to the lecture 2. Let us just go briefly through what we did in the last lecture. We are
mainly concerned with what might be called high level programming languages of which there
are three kinds. Imperative and functional programming languages are the most important. Logic
also can be used as a language but our main concern is with the imperative and functional
languages. They are also similar in certain respects.

Imperative languages might be called state-based languages where state updation is the main
action. However, functional languages are really value based languages much closer to our
mathematical languages. The notion of variables in functional languages is very much like the
notion of variables in mathematics whereas the notion of variables in the imperative languages is
more like quantities in physics which can change over time such as acceleration and velocity.
State based languages means that there is a state change along a time axis. Unlike physics we are
not talking of continuous time. We are talking of discrete time in the case of functional
languages. The notion of the variable is really a variable in mathematics which means that a
variable is just a name for a value and it cannot change in time during the execution of a
program.

[Refer Slide Time: 02:24]

[Refer Slide Time: 02:27]

If we look at the history of languages, most of the work on high level languages is really
concentrated on the imperative languages. There are hundreds and hundreds of programming
languages. So firstly, it is impossible to study all of them. If you look at history, you will find
that a large portion of the time during the fifties and sixties was concentrated on what might be
called the basic features. This means that these represent the basic control structures in the basic
data structures in order to obtain clean readable programs efficiently. Later once they were fixed
in the 70s and 80s, most of the exploration of programming languages was in terms of what
might be called features.

If you were to take Modula, which is just an extension of Pascal, its most important feature is
that of a module. If you were to take Ada, it combines the module features of Modula and adds
more features like concurrency as an important feature like in exception-handling, generics or
polymorphism. Then you have CLU, which is a module based language very much like Modula
but with a different syntax. But they are all extensions of Pascal in the sense that the basic
control structure remains the same and then you extend the language.

The basic control structures in these languages could be different too. They are not very similar
except that these arrow marks denote the decendency in terms of similarity of even the basic
control structures. Even though the Smalltalk-80 control structures or syntax are different from
that of Simula, the basic extensional feature comes from a new feature of Simula which was
extended and that was the notion of class or objects.

[Refer Slide Time: 05:00]

Most of the languages in the early 60s were sequential, whether concurrent or modular
distributed or parallel etc.

[Refer Slide Time: 5:50]

Nowadays by and large the exploration of most of the languages in the early 60s is mostly in
terms of new features. I have listed the various kinds of features and in the current state of art,
large amount of work is into trying to make them more efficient, more readable, more
comprehendible etc. The basic functional languages also have this feature that the early
functional languages were all an exploration of. They were very basic data structures and control
structures. Languages like ML and CAML actually signify the addition of new features.

In fact the syntax of ML expressions etc. is much closer to that of Pascal than that of LISP. But
philosophically, it is a more LISP like language because it is an applicative or functional
language. It is not a state based language and it goes far beyond LISP in the sense that there are
new features like the introduction of modules, introduction of exceptional handling, the
introduction of very powerful data abstraction mechanisms and a type checking. LISP has no
type checking at all.

[Refer Slide Time: 07:20]

Let us first study the basic features of languages and look at the issues in language design.
Consider the kinds of issues you would really have to study if you were to design a language.
One very major issue that the implementation of the language Pascal has taught us is that it is a
good idea for a language to have a simple, clear and a small set of unified primitives for
expressing all your algorithms and data structures.

One of the most convenient characteristics about Pascal or in general about what are known as
Algol 60 like languages is that most algorithms are written in some crude variations of the dialect
of Pascal or Algol system. So, the Pascal is a small language easily learnable which is why most
people are taught Pascal initially. One issue could be that you should start with a small language
with a small set of primitive operations over which you can build.

The next issue would be that you should have an absolutely clear syntax. There should be no
ambiguity and you should be able to get highly readable programs.

It is very important to have readability meaning that we have to be able to read the source code
of the program like a book and a very good reason for that is that no piece of software that you
write is ever permanently fixed. Most pieces of software have bugs in them. Bugs might be
detected years and years after their software has been commissioned. Somebody else should be

able to read the source code and modify it. In order to be able to read the source code, one should
be able to understand the algorithms of the source code contained.

In fact consideration of efficiency comes much later. Readability is the most important aspect
because it includes maintainability of the software. Normally, those who have written this
software are not likely to be present to maintain the software. Software in general has to be
maintained by somebody else, which means that the source code must be readable and that
comes first. The second point is that over the years the software actually has more and more
users who feel their need for its extension which is why you have to be able to extend the
software by adding new features or by adding more conveniences for specific reasons.

Part of the maintainability of a piece of software is not just the detection and correction of bugs
but also the extensibility of the software as years go by and more and more needs are felt. It is
necessary for somebody who is usually not the original programmer or the original team that
wrote the software to be able to extend it. For all that, readability is most important and secondly
the language should provide what is known as a support for abstraction.

You are already aware of the basic abstractions. Control abstractions are procedures, functions in
Pascal, loop statements etc. There are also data abstractions. The most primitive kinds of data
abstraction that Pascal provides are the record structures and the arrays which almost all
languages including the early languages have.

Arrays are one data abstraction. You think of a whole sequence of elements as a single logical
unit like records and variant records. Over time it was felt that you should have data abstraction
which allows you to not only take sets of data together as a single unit but also to operate on
them as a single unit.

There are combinations of operations and data abstractions on a module basis or further
abstractions for which you might require languages like ML and Ada that provide the notion of
generality or polymorphism where you can use types themselves as variables and change types
and instantiate the same kinds of algorithms.

For example; in stacks, it does not matter whether you are talking of a stack of integers, a stack
of characters, a stack of reals or a stack of some complicated data element. It may be a stack of
some record or stacks of arrays.

[Refer Slide Time: 14:25]

The basic operation on stacks is like pop push, checking for emptiness etc. They should all be
available in one form and it should not be necessary for us to repeat the code depending on the
type of the element. An abstraction should be one where the basic element of the stack itself is a
variable which can be instantiated to a different type, each time the same piece of code is
carefully written, verified, or thoroughly tested and the type instantiated. We get different kinds
of stacks with the same kinds of operations which is why the support for abstraction is an
important modern language design issue. The other kinds of issues that have come up are that
you should be able to verify your programs. So, the language should also provide support for
verification, provability of programs (not necessarily machine based provability but possibly
hand based provability) or a mixture or a user interactive provability of programs. Portability
was felt even in the 60s where a lot of time and effort was expended in the case of FORTRAN
and COBOL compilers.

Nowadays portability means that the language design should be oriented towards an end user. It
is not architecture or machine-specific simply because a certain machine has a certain kind of
assembly instruction. It does not mean that you make that available in the language. Other
machines may not have that. You should be able to provide as far as possible an abstract form
which is not related to the machine that uses only the basic instruction set available in all
machines. If you ensure that your language is really architecture or machine-independent in the
sense that your main concern is one of convenience of the user or the abstractions required for
the user, then they are not specific to particular machine instruction sets of a particular
architecture. You might have register based architectures or stack based architectures. If you can
design the language in such a fashion that it is not architecture-specific or machine-specific then
you can move the entire language to another machine with a different architecture and with the
minimum amount of effort.

There are certain machine specific details which still have to be changed when I move an entire
language implementation from one machine or architecture to another. But the whole idea of the

language design or the design of its implementation should be that the amount of changes to be
made should be minimal. Then there are considerations that include the ability to easily
implement it. You cannot compromise everything for the sake of portability. Ease of
implementation and the availability of ready algorithms for implementing the language should be
considerations. Ease of implementation was perhaps the most important reason for this and the
fact that it used very low level primitives is perhaps the most important reason for the success of
the C language. Efficiency is another important reason. C programs run very fast and they are
very efficient.

[Refer Slide Time: 18:45]

If you have a language and you want it to be generally acceptable then it should have a clear
definition of what its constructs do. The reason being that if it has to be widely acceptable there
might be many different implementers trying to implement it on various machines and only if
there is a common clear syntax, common clear semantics or clear specifications of the effects of
each language construct, you can expect to get wide applicability. We will get to the notion of
semantics later. Of course it has to be run time efficient. By run time efficient I mean that the
programs have to run efficiently. This is the efficiency of the implementation which implies very
often compile time efficiency. This means how fast you can compile programs written in the
language. Whereas this runtime efficiency implies that it should have an excellent runtime
support and the program should run as fast as the programs written in the language.

[Refer Slide Time: 19:53]

Ease of maintenance is about the maintenance of programs as well as the maintenance of the
language by an implementation of the language. There might be bugs in the language
implementation. Fast compilation translation and support for extensibility are in fact the most
important reasons why Pascal is used as the basic language from which you add new features to
get newer languages. This is one controversial feature, which is the support for subsets. Most
books on programming languages specified this feature. It is that every language should support
subsets of the language in the sense that it should be necessary for you to use only a smaller set
of operations or features of the language than is actually necessary. It should be possible to
divide up the language so that there is a small kernel and large sorts of extensions. All programs
written for the small kernel run on all machines regardless of the subset supported. However, the
language of Ada for example in the 80s has clearly specified that there should be no support for
subsets and their reason is that it would then affect the portability of programs written in the
language.

Support for subsets is a controversial aspect. It is not at all clear whether it is desirable especially
in the most important language for embedded systems. They are real time systems that control
sensors, various kinds of hardware, ballistic missiles etc. It could affect their portability because
you would have a feature which is used in a specific implementation and then you move the
program to another implementation which does not support that feature and your programs do
not run.

The portability of actually programs written in the language gets affected if you allow arbitrary
subsets. If you look at all these features, there are hundred and hundreds of programming
languages and it is impossible to study all of them and moreover it is not necessary to do so.
Therefore we would like to divide up the study of programming languages into a few small parts.

[Refer Slide Time: 22:50]

What does a theory of programming languages contain? A general theory of programming
languages is based on three aspects. What might be the most important aspect or the most basic
aspect is known as the syntax of the language. A programming language is really like a very
highly simplified natural language; it has a certain syntax which implies that it has a grammar.
Certain elements of a sentence can occur only in certain ways. You cannot arbitrarily form
sentences of the language. As I said, a program written in that language is the sentence of the
language like in a natural language. You take a sentence of a natural language and you find it has
various parts. For example; in almost all natural languages any full sentence should have a
predicate. A syntactic category called predicate in general may not be words; a predicate could
be a clause or a phrase and so it might have a subject and an object.

Let us take a sentence in natural language. Supposing I say ‘run’; that is a complete sentence
because it has a predicate. No complete sentence in the natural language is without a predicate.
So ‘run’ is a complete sentence because it has a predicate. Optionally, it might have a subject and
may be also an object clause. Subject clauses have to be of a grammatical form called subject
phrases or may be noun phrases which means they might have nouns qualified by adjectives or
an article etc.

You can divide up any grammatically correct sentence in a natural language into firstly various
clauses and each clause into various phrases and all these phrases have certain grammatical
properties in a very much similar manner in a greatly simplified form that might be called the
parts of speech of a program. Every programming language has a certain grammar, which
specifies various parts of speech. It has a certain vocabulary and it is possible to take a sentence
of this programming language and parse it. We will get into the meaning of these points more
clearly later where artificial languages have similarities with natural languages; (a lot of the
theory of the syntax was actually inspired by natural languages) where the construction of
artificial languages did not have a lot of problems in the natural language.

The next aspect is ‘semantics’, very often called the semantics of a programming language,
which is really specified by its reference manual.

In your study of Pascal programming one of the important references would be the ISO standard
Pascal reference manual by Janson Edward. That reference manual really specifies for each
syntactic entity of the language the effect to be expected by executing that syntactic entity which
is the meaning associated for each language construct. So, we have to look at the notion of
meanings. Unlike natural language the notion of meaning can be specified mathematically in a
machine-independent fashion.

When we are talking about the semantics of this programming language, we are talking about a
pure meaning associated with the language regardless of any machine on which the language is
implemented. In general we are talking about meanings in an abstract setting in the sense that
you assume for practical purposes that you have no restrictions on the word lengths, no
restrictions on memory and you have no restrictions on computational power except that you can
only do a finite number of operations at any instance.

The programming language itself can be thought of as a mathematical entity quite independent
from all its implementations and in general when you think of it that way then you are thinking
of some kind of an ideal machine which has no restrictions except one that at any instant of time
only a finite number of operations can be performed.

You cannot do an infinite number of operations at any instant of time. If you consider such an
ideal machine then you are really looking at the programming language as a mathematical entity
in some ideal environment and the meanings of the constructs of the language in that ideal
environment, form, what might be called the actual reference manual.

If you were to go through the reference manual of Pascal, most of the reference manual is
independent of any machine. There are certain specific machine paragraphs or what are known
as implementation dependent features. But if you look at the language itself, it is capable of
looking at the language as an entity devoid of any machine.

[Refer Slide Time: 30:13]

In general the semantics would follow the syntax. The syntax has a certain structure. The syntax
has got some basic elements and some compound forming operations. They are connectives
which allow you to form compound sentences from simpler ones.

The meanings in general should be such that you give the meanings of the basic elements and
then you give the meanings of the connectives in terms of the basic elements.
A programming language is really a finitary object which allows you the construction of the
infinite set of programs.

It is not in general possible to predict the behavior of the language of a program written in the
language unless you have this basic discipline where you express the effects of connectives in
terms of the effects of the basic elements of the language.
It is not in general possible to predict the behavior of the language of a program written in the
language unless you follow this discipline.

The basic feature of any kind of semantics is that it should allow for the derivation of the
meanings of an infinite number of programs which means the only way to derive the meaning of
the program should be from the meanings of its finitary elements. You have certain basic
elements from which complex elements are formed. So, the meaning of the complex element
should be derivable in terms of the meanings of the basic elements and the meanings associated
with the connectives that formed a complex element from the basic elements. It means that
semantics is going to be intimately related to syntax.

The syntax is really a finitary way of specifying an infinite set of allowable objects. The infinite
set of allowable objects are the programs of the language or the sentences of the language and
the syntax gives you a finitary mechanism for specifying all possible allowable programs very
much like a set theory notation, which allows you to give a finitary specification for an infinite
set. What is really analyzable for an arbitrary program is its structure in terms of its syntax.

The meaning of the program has to be derived from its finitary specification to be expressed in
terms of its finitary specification. Lastly, do not worry about machine constraints or about
architecture because the programming language has to be portable. Do not worry about word
lengths or about limits and also do not worry about memory constraints.

[Refer Slide Time: 33:58]

Assume infinite amount of memory available so that you get into what are known as pragmatic
considerations. Most of these implementation dependant features are really pragmatics, for
example; the Pascal reference manual does not tell you how to associate a disc file with a file
variable inside the program. That is one example of an implementation dependant feature which
will vary depending upon the operating system interface you have. Then there are various simple
implementations.

The pragmatics firstly involves really all the algorithms that are going to be used for the
implementation of the language and all kinds of machine and architectural constraints for
example the MAXINT. The maximum integer allowable in a Pascal program is a typically
implementation dependant feature because it really depends upon word length or byte length or
on whether it uses two bytes for representing integers etc. The value of the MAXINT can vary
from machine to machine. The amount of memory that is available for a program can vary
whether it is a stack based machine or a register based machine. All those are implementation
dependent features.

Normally, the way to make the language portable even in our implementation is to separate the
basic algorithms of implementation from the architectural specific nature of the implementation.
When we read through a small compiler you will see this happening. So, there are certain basic
algorithms which are really machine-independent and then there are some machine dependant
features and the actual code.

Then you have the OS interface, the nature of the input and output that is file-based, terminal
based, sensor based, signal based, etc. The OS interface also includes the file server, how the
language has to interact with the file server and how the language has to interact in general with
the directory service of the machine etc.

Lastly, what is to be done about errors introduced by users in their programs? Errors could be of
a syntactic nature or of runtime nature and we need to know what to do about them. There is a
blanket policy where you could just abort but you know that does not help anybody in particular.
What is the nature of error reporting?

Is there some error correction that can be done? Is there some way of recovering from errors so
that as soon as the first error comes, you just throw out the program? - No, if you can you should
at least be able to point out all the errors in the program or all possible errors so that the user gets
to know all the errors at one time. It reduces the amount of compilation effort and similarly you
cannot do that at run time but at least there should be some decent error reporting mechanism.

But error is a very dicey subject and dicey policy. Different languages have taken different
attitudes and different implementations take different attitudes towards it. So, it is a very
pragmatic feature. I will just briefly go through the notion of syntax. There are three issues and it
is better to study all three issues separately. The semantic and pragmatic issues will closely
depend upon the syntax and it is preferable that they depend upon the syntax.
Let us look at what constitutes syntax.

[Refer Slide Time: 39:20]

Syntax has to do with a form or a physical representation of possibly an abstract object. If you
look at numbers, they really are not very physical. At least the 20th century attitude towards
numbers is that they are a conception of the mind and are not physical. They do have a physical
representation in the form of numerals. What you write out and think of as a number is actually a

numeral so while you have various ways of representing the same number let us say the number
126 you can have what is known as the positional representation which is what we normally use.

In the basic form all these three representations of the number 126 are really the same. The
roman representation differs from the DEVNAGRI representation in the sense that the characters
used are different. What might be called the basic alphabet for the positional representation of
numbers is different in the two.

It is just that the character set is different but that is incidental. It is a positional representation
but in basic forms all these are unified by the fact that they are all positional representations. You
go in units: 16s...64s... Then you have the roman numerals which is non positional. Firstly, it has
a different alphabet. You could represent the same number 126 with different character sets but
there is something unifying about this. There is some fundamental difference about this
representation.

If you disregard the change in character set what makes these two classes different is the
grammar of the numeral of the language used for representing them. In both these cases the
grammar is exactly identical, the character sets are different and by and large the grammar of all
these three is the same except for the character sets but the grammar is different in the sense the
form of representation is fundamentally different. How you represent compound forms from
simpler forms is different between the roman and Arabic case. What that grammar is, is what we
have to study. Let us look at this in a more general setting of the programming language.

[Refer Slide Time: 43:08]

We might think of every programming language as having a vocabulary. A vocabulary is a
complete dictionary of words of the language. A word of a language is formed from a fixed
character set and you identify certain strings of characters as allowable words as part of the
vocabulary of the language. A complete dictionary of the language is what states that vocabulary.

If you take languages, for example natural languages like Konkani or Sindhi they have different
character sets but the same collection of words.

Sindhi for example is written by different people. Some people write in Devanagari, some people
write it in the Urdu script or in the Arabic script. But the collection of the words is the same, so,
a person who knows Devanagari can communicate with the person who does not know
Devanagari but knows the Urdu script by speech because the words are the same although you
cannot communicate by letters.

There is a certain fixed collection of words whose actual form might depend on the character set.
But given the words there are formation rules. Given a vocabulary there are ways of combining
words of the language to form sentences of the language and there is a finite set of formation
rules called productions which allow you to generate all possible sentences in the language.

Let us quickly go through one example. The character set really depends upon the kind of codes
you use. Nowadays most of the time we use ASCII codes but then we have 8 bit ASCII’s and
PC’s and 7 bit ASCII’s on the main frame. The character sets are different. There are all these
kinds of differences but let us disregard them and look at what constitutes grammar.

[Refer Slide Time: 46:00]

I would say grammar is really a four tuple of objects where there is a set N which is called the set
of non terminals and this set of non terminals really specifies various kinds of grammatical
categories of the language like the parts of speech, noun phrase, verb phrase, adjectival phrase,
noun clause subject clauses, subject phrases, object clauses, predicates etc. This set N consists of
the basic grammatical categories and all these sets are finite. Then the terminal T is the set of
what are known as terminal symbols or terminal words and T is the complete vocabulary of the
language. P is the collection of formation rules or what are known as productions and S is what
is called as the start symbol but S really represents a grammatical category in N called as
sentence.

So, the basic element of the language is what constitutes a sentence.

[Refer Slide Time: 47:56]

Here is a simple grammar specifying Boolean expressions. There is a start symbol S, (every
grammar should have a start symbol S) and some grammatical categories. The grammatical
categories that I have chosen are A, V and C which actually stand for an odd Boolean expression
or a complement expression.

The vocabulary of the language consists of all possible Boolean variables that we might take
including the two left and right parentheses and the three connectors and ‘not’ and ‘or’. Any
Boolean variable is a Boolean expression meaning you take any b belonging to the set of
Boolean variables. The sentences of the language are Boolean expressions that are more than
fully parenthesized Boolean expressions.

Any sentence is either a complement of a Boolean expression or of the 2 Boolean expressions
‘and’ and ‘or’. If an ‘and’ expression is one form which consists of two Boolean expressions
enclosed in parenthesis and separated by the word ‘and’, an ‘or’ Boolean expression similarly is
two Boolean expressions enclosed in parenthesis and separated by an ‘or’ and it is similarly the
case with ‘not’. These productions are really replacement rules so whenever you find an S you
can replace it either by an A, a V or a C or one of the Boolean variables. Whenever you find an
A you have to replace it by this. There is no other way you can replace A by anything else.
Similarly, whenever you see a C you have to replace it and so here is a simple sentence
generation.

[Refer Slide Time: 50:17]

You start from S and one of the possibilities is that you can replace S by C. Whatever I am
replacing, I have circled in orange. C has to be replaced and now I am replacing S leaving
everything else intact. I have chosen here to replace S by A and once I have got an A there, the
only possibility is to replace it by this form S. I have chosen to replace this S rather than this S
first and I have chosen to replace it by a Boolean variable.

Let us assume that there are only two variables b1 and b2 and I proceed. Lastly, I get a complete
sentence of the language which consists of only the terminal symbols which is generated by the
grammar.

[Refer Slide Time: 51:30]

[Refer Slide Time: 51:40]

We talk of a language as being generated from a grammar as a set of all possible sentences that
may be generated from the start symbol S. Important warnings are that the set of non terminals
and the set of terminal symbols are disjoint and a production is really a replacement. It replaces a
non terminal by a string consisting of terminals or non terminals and a sentence is just a string of
terminal symbols generated from the start symbol.

