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Welcome to lecture 14. We will quickly run through the semantics of the while 

programming language and then go on to what complicates matters. This is the syntax of 

the while programming language. 
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Most importantly, it consists of imperative commands which change some notion of state 

and I defined a state in a simplified form as a variable-value mapping. Sigma is the set of 

all states. We will assume an infinite set of variables available to us. Expressions are 

evaluated in a state and commands as state transformers. 
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We will look at state changes. Given two states I defined a state updation which really 

corresponds to having a single assignment statement. This updation could be generalized 

also to multiple assignments. 
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In the expression language what I said was that at this state at least there seems to be no 

real difference between environment and state. In the expression language at least there is 

no significant difference. So, you have the same kind of rules starting with the evaluation 

of identifiers in the state and the normal rules for expression evaluation which are strictly 

left to right sequential evaluations. Since our while language also contains Boolean 

expressions we required semantics of Boolean expressions. In a general programming 

language Boolean expressions would be treated on par with the normal expressions.  
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There is only a type difference in the sense that you would allow Boolean variables and 

assignments to them and whatever you can do with integer expressions you can similarly 

do with Boolean expressions. However, since this particular language is a sort of greatly 

simplified language and we did not allow Boolean variables, the Boolean expressions 

were used only as a via media in order to construct conditional commands. 

This has this following semantics but even when the Boolean expressions are an integral 

part of the expression language the semantics would not change too much except that one 

would have to look at the type distinctions between the various kinds of variables and one 

would have to do something about types.  

 

Here again we defined the evaluation of Boolean expressions in a left to right manner. 

This unary operator which we did not encounter in the expression language is of 

particular interest. The Boolean expression language actually assumes the existence of a 

Boolean algebra and semantics as defined by a Boolean algebra for Boolean expressions.  

For example; the ground values t and f are not identical and unless you specify clearly 

that they are not identical you could have a one element Boolean algebra and all the 

properties of Boolean algebra could be satisfied.  
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The fact they are not identical and they are actually compliments of each other is given 

by these two axioms B1 and B1’. Then we have these usual Boolean operations which 

essentially show a complete left to right evaluation. If you have a general Boolean 

expression of the form b1 or b2 then you would repeatedly apply b3 which means you 

would be evaluating the left operand till it reaches a truth value and then you would start 

evaluating the right operand. It shows a left to right evaluation and it always satisfies the 

standard truth table for a Boolean operation. 

  

So, everything is subject to the existence of such a model of meaning in the Boolean 

expressions and since our Boolean expressions acted as some sort of intermediate stage 

between the expression language and the command language, we have to relate the 

Boolean expressions also to the derivations of the expression language of which we had 

only a simple operation; the equality relation on expressions. 
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The rules B6 and B7 also give you a left to right evaluation of the equality. 

You would apply B6 several times which means you would evaluate the left operand of 

the equality till it converges to some integer value, then you would evaluate the right 

operand till that also converges to some value and you would check the equality of these 

two based on the fact that if m and n (since they are there in the underlying machine as 

patterns) are identical as patterns then it would be true, otherwise it would be false.  
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We do not need to go through this whole process; we could for example abstract away 

from the intermediate stages and simply give a fairly non deterministic rule which says 

that if e1 can evaluate in a finite number of steps (this star indicates a finite number of 

steps 0 or more to some integer value) and if e2 can be evaluated in a finite number of 

steps to n then this can be concluded depending upon these patterns m and n as given by 



this. This rule does a further abstraction from the order of evaluation in the transition 

system and you could modify these Boolean expression evaluations. For example; you 

could have a strict right to left order of evaluation or you could have a partial evaluation 

where you could give rules for partial evaluation especially the ‘OR’ operation, for 

example or any other binary operation.  
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In particular if the left operand evaluated to the truth value t then in a single transition the 

entire Boolean operation could go to t so that you do not have to evaluate the right 

operand of the ‘OR’. You could also do parallel evaluation or parallel partial evaluation.  

So, there are many variations depending on how you want to specify the language. Then 

we came to the most important aspect and that is commands and I defined this set of 

configurations.  

  

As I said commands change states and the first rule of the command itself tells you this 

one important difference between states and environments and that is that in an 

environment you can have a re-declaration. Whatever modifications you make are re-

declarations and redefinitions of given identifiers. However, we had said that the little 

environments the declarations created are only intermediate stages in a larger 

computation.  



 

A declaration does not stand by itself. An expression stands by itself especially in a 

functional language. The expression is evaluated in an environment and in the process of 

its evaluation little environments are created and destroyed. So, the evaluation of the 

expression from start to finish goes through some intermediate stages of the creation of 

new environments in which there might be redefinition of identifiers but the whole point 

is that those changes in the environment are reversible in the sense that whatever gets 

declared also goes out at the end. 

 

In the case of states we are talking about capturing a general notion of an irreversible 

change inside the value of the identifier. Even if symbolically it did not look too 

different, conceptually at least there is an important difference which we have to capture 

somehow and one of the reasons why we will introduce stores is to capture this 

conceptual difference between environments and states. The assignment statement is an 

example of a change that is irreversible.  
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Suppose you have some command which is going to be evaluated in a state starting from 

some initial state sigma. Let us have some large command with some assignment here 



and something else. When this is evaluated in a state sigma starting from a state σ 

NAUGHT at the end of this you get a new state σ 1 which is different from σ NAUGHT 

in the sense that x now has the value which is one more than the x given by σ NAUGHT 

and this state change is irreversible in the sense that it is starting from this state that 

further state changes take place as you execute the command and you finally end up with 

some final state say, σ f at the end of this command. In the case of an environment you 

could have had inside declarations which created little environments but at the end of it 

you still had the original environment with the same name-value bindings that you started 

of with.  

 

In that sense all the changes that occurred inside in the evaluation of an expression were 

all reversible whereas in the case of state changes and in general in an imperative 

language we are looking at some concept which allows for irreversible changes to be 

made. The σ f need not be the same as σ NAUGHT even for the value x unless an equal 

amount of work was done to get x back to its original value in σ NAUGHT. Even if your 

command had been such that it restored all values back to the original and σ f was the 

same as σ NAUGHT, those changes were irreversible in the sense that the amount of 

effort required to undo the initial changes that you made, was as much as the amount of 

effort you required to make the changes in the first place. Whereas in the case of 

environment there is something automatic about the way the new environments that are 

created get destroyed at the end. 
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So, there is something conceptually different between states and environments which we 

should capture. A notion as abstract a state does not really capture this difference totally. 

But it does capture to this extent in the sense that you can see from the semantics that 

state changes occur and a final state need not be the same as the initial state. We will 

come to the notion of a store but let me first go through this while language. I showed a 

sequential evaluation of the sequential composition operation semicolon and so you 

evaluate the left operand of the semicolon till it reduces to having made just a state 

change and there is nothing more left of the command.  

 

Commands get consumed and reflected as state changes and then you start evaluating the 

right operand. You could evaluate the right operand and in the case of the conditional we 

evaluate the Boolean expression and we transfer control. The transfer of control is like 

getting rid of one arm of the conditional depending upon the truth value of the Boolean 

and lastly, we had this while loop and of course there is something about the ‘while’ loop 

which is not quite correct, meaning it does not quite meet with the philosophy we started 

out with.  

 



After the execution of the ‘while’ loop the state does change but c6 says that this moves 

in one step to a program which has this form and the sequential composition rules tell you 

that there could be state changes. For example; you have some c1; c2 which is really 

what the ‘c; while b do c’ is like. This is c1; this is your c2 and c1 could create state 

changes and could finally terminate and then you would evaluate c2 and this new state σ’.   
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It is not as though there are no state changes but there is something that is seriously 

wrong with this ‘while’ loop. It conforms to our intuition about how while loops are 

executed but it does not conform to some other aspect of our semantics and notion of 

semantics. What is the most important feature about semantics, syntax directed 

translation and recursive descent parsing? What is common to all these definitions? This 

is what you get after having programmed enough in a while language but there is 

something wrong with it.  The final expression is even more complicated then the initial 

expression we started out with which means that this definition is not inductive. Several 

applications of this might only give you more and more complicated results. What is 

wrong with you recursive definition?  

 

Let us take a function on numbers the f (n) = 0 if n = 0 otherwise it is f (n+1) – 1.    

What is wrong with this definition? What is wrong with it mathematically and 

computationally? Mathematically, it is just an equation which has to be solved for f and 

there is a solution too. The solution to this equation is f (n) = n as a mathematical 

equation. What is wrong with it is not mathematical. What is wrong with it is 

computational in the sense that it is not inductive. This semantics of the ‘while’ suffers 

from the same problem.  

 

For example; if you take c6 and c7 then it means that in any state ‘while b do c is 

equivalent to if b then (I will use begin and end because I require to bracket) begin c; 

while b do c end’. So, c6 and c7 are mathematically quite meaningful in the sense that all 

that they say is that this is equivalent to this. If you had a ‘no’ operation in your language 

you could also write this as else skip. It just gives you an equation which is perfectly 

meaningful and which is why implementations actually work this way.  
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It is perfectly meaningful but however it is not inductive precisely because the resulting 

expression is much more complex structurally than the original expression. But the fact 

that while loops are executed and they give you meaningful results means that there must 

be a way of giving a semantics which is inductive. There is a very simple solution to 

make it inductive just like there is a very simple solution to make this computationally 

more meaningful. You could either just give this non recursive definition or you could 

even give a recursive definition which is computationally more meaningful. You may 

think that this should be the semantics of the ‘while’ loop except that it is not inductive. It 

has led to an important semantical notion which should come out as part of your 

operational semantics or any kind of semantics is program equivalence.  
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Let us look at program equivalence in the context of this language and let us start with 

expressions. Two expressions are equivalent if and only if for every state sigma in which 

they are both evaluated they yield the same values. I can define a function which denotes 

evaluation, eval (e, σ). Unless you have explicitly proved it, there is no reason to believe 

that evaluating an expression gives you a single answer. Until you have proved it you 

cannot be sure. We will define ‘eval’ of e sigma as being equal to the set of all values m 

that eventually lead to a terminal configuration. 

 

In the expression language, terminal configurations are of this kind. Unless and until you 

have proved it you do not know whether expression evaluation actually terminates. You 

have to prove if all expression evaluations terminate. Supposing you have not proved it 

then you cannot assume that expression evaluations do terminate in which case this set 

would be empty. 

 

There might be some evaluations of this expression which might terminate and some 

evaluations which may not terminate. In which case let us just for simplicity assume that 

the evaluation of this expression consists of just the set of values that are reached on 

termination which is not quite correct. We could also introduce a new fictitious element 



called some undefined which represents non termination and we could define the set as 

the set of all possible evaluations which yields proper values and an undefined value.  

Whatever may be your definition of this ‘eval’ we of course have to consider only a finite 

number of steps in the evaluation.  
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We would say that two expressions are semantically equivalent provided in all possible 

states the evaluations of these two expressions yield identical sets of values. Similarly, in 

the pervious model of a functional programming language with environments, we could 

think of it as evaluating these expressions in all possible environments. We would say 

that two expressions are equivalent only if in all possible environments in which they are 

evaluated they yield the same set of values and the same holds for Boolean expressions.  

 

 

 

 

 

 

 



(Refer Slide Time: 32:15) 

 
 

When are two programs equivalent?   I will define the notion of an execution in which I 

will say that in our simplified programming language a command is also a program so 

there is no distinction really. I can define this function called executions and I can define 

it as a set of all final states. So, I can define this concept of an execution of a command or 

a program in our case and I would also call this a behavior. The behavior of an expression 

is just the set of all possible values it can yield which is what our definition of ‘eval’ does 

and the behavior of a command is just the set of all possible final states that it can yield 

given an initial state. When are two programs equivalent? Two programs are equivalent 

only when for every initial state in which you start executing these two programs c1 and 

c2, they yield the same final states at the same set of final states. In this case you do not 

know unless you have proved that a program will actually for a given input state yield 

only one output state. 

 

There are non deterministic languages which do not necessarily satisfy the state to state 

functionality. Our semantics actually gives us a way of defining program equivalence and 

what does program equivalence finally work out to? What does Boolean expression 

equivalence finally work out to? It works out to just all the laws of Boolean algebra. 



Program equivalence just works out to equality as functions. Think of functions of this 

form.  

 

This is the power set of states. Note that we have not yet proved that a program would 

give only a unique final state, it could give several possible final states so typically if you 

want to regard a program as a function, then you have to regard it as a function from 

states to the power set of states. So, two programs are equivalent if they represent the 

same function. It should be possible to use the semantics to reduce it to two functions. 

Given two programs c1 and c2 they represent corresponding functions f1 and f2 and if c1 

and c2 are equivalent, it should be possible somehow to prove that f1 is the same function 

as f2. 
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One initial promise that I made of being able to define program equivalence and 

behaviors is essentially fulfilled by these definitions and you can generalize this. As we 

go along in each case you can define behavior in such a fashion that it represents some 

functions. It does not make much sense to really talk about the behavior of a declaration 

but we could define similar notions for declarations.  



We can talk about two declarations being equivalent except that there is one problem 

associated with that. In the case of a declaration a new environment is built and that new 

environment is some name-value bindings.  

 

Suppose I decide that in analogy to whatever we have done, the behavior of a declaration 

is just the set of new environments it creates when it reaches a terminal configuration, 

then I go further and say that two declarations are semantically equivalent if and only if 

they create the same new environment. Now declarations might occur within expressions. 

One reason why we had to talk about the behavior of expressions is because our 

programs cannot be semantically equivalent till we have actually defined an adequate 

notion of equivalence of expression. Since our commands depend upon expressions you 

have to define a notion of semantic equivalence in the case of expressions. What can 

happen in the case of program equivalence or in the case of expression equivalence?  

What is inadequate about this notion of declaration equivalence? Just assume an 

expression language with declarations like the ones we have already done. Two 

expressions are equivalent if and only if under all environments they yield the same 

values.  

 

Let us look at this. I define two declarations to be equivalent if and only if they yield the 

same environment. Suppose I define declaration equipments as two declarations d1 and 

d2. They are equivalent if and only if for all initial environments row (let me call this a 

new function called elaboration; we usually talk about elaborating a declaration in an 

environment) you could say that two declarations are equivalent, where of course this 

function elaboration elab (d, p) is defined as the set of all little environments row prime 

such that in the environment row if d is elaborated, then in a finite number of steps it 

gives you a new environment row prime. Of course I am forced to use this set because we 

have not actually yet proved it but it can be proved that an elaboration at least with the 

syntax and the semantics that you have given will give you a unique new environment 

row prime. So, with this definition of elaboration I can define this but while this might be 

correct it is somehow not adequate. Environments are temporary but that does not affect 

expression equivalence. 



What does expression equivalence finally boil down to?  
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If you are talking about expression equality in say number theory then it means that two 

expressions will be equivalent only if their equivalents can somehow be justified by 

number theory eventually because when you evaluate you get these numbers or at least 

you get expressions on numbers on pure ground terms and you should be able to prove 

that those two numbers are the same and for that you will just be using pure mathematics 

and no programming.  
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We are considering their equality in the same environment. This universal qualifier says 

that you elaborate them both in the same environment and for all possible such same 

environments if those elaborations give you identical new environments then they are 

equal but this definition is not incorrect in the sense that you cannot give a counter 

example to it but it is weak in the sense that it does not really get us very far. Two 

expressions can be equivalent even if the declarations inside them are not equivalent. In 

that sense it is weak.  Two expressions could work out to be equal but the declarations 

inside them could be completely different; they might create completely different 

environments and that happens in most cases.  

 

For example; even if the declarations look identical they could still differ up to name 

changes. I could uniformly replace names in one declaration to give me another 

declaration and by this definition the two declarations will not be equivalent. This is 

equivalent to saying that when I have to submit my assignment I take a program and 

uniformly replace all the names; I draw up a table of names and I give corresponding 

different names and all meticulations are different but the two programs are still 

equivalent and the reason the two programs are still equivalent is that if I have made 

uniform name changes it is really because those names do not matter. They are part of the 



reversible changes which are very intermediate. Declaration is meant to perform various 

kinds of abstractions. Somebody might use less number of variables and more 

complicated expressions. Somebody might be able to deal with only very simple 

expressions and so uses more declarations. So, declarations could be different in various 

ways and the expressions could still be equivalent.  

 

The equality of expressions does not necessarily depend upon the equivalence of 

declarations and these name changes are always done. That is one of the reasons why I 

should have a more sophisticated definition of equivalence to really bother about it 

though it can be done. There are other important questions with regard to whatever we 

have said about our semantics. We have to worry about when configurations get stuck 

and what is a stuck configuration?  

 

A stuck configuration is one from which there is no movement. It is not a terminal 

configuration; it is a non terminal configuration from which there is no movement. Then 

you would say a configuration is stuck. Then of course there is this problem of the 

inductiveness of whether all our definitions are inductive and the while loop definitions 

are certainly not inductive. If your definitions are not all inductive then you do not know 

whether you have taken care of all the possible syntactical constructions. If your 

definitions follow the syntax at least you are sure that you have taken care of all possible 

syntax constructions. At the level of a context grammar at least you are sure that you 

have taken care of all possible cases.  

 

If your definitions are not inductive then there might be certain syntactical constructions 

which you have not taken care of and you have to explicitly prove that you have taken 

care of all possible syntactical constructions. If your definitions are not inductive you 

cannot even use induction in order to prove it. We will have to prove it by some other 

complicated means. Now can there be stuck configurations even if all definitions are 

inductive?  

 

 



(Refer Slide Time: 48:30) 

 
 

I will let you think about that. In the meanwhile let us talk about stores. Now it is clear 

that the environment and the state are really two different concepts and they try to capture 

two different concepts and ‘state’ is a very abstract concept and we have tried to model 

the assignment commands where we will consider the right hand side of the assignment 

to be a source and the left hand side to be a target but our assignment commands are very 

simple. For example, they did not allow side effects and when you talk about a side effect 

it is equivalent to some kind of an invisible assignment taking place somewhere without 

your knowledge. It is at least invisible outside some scope. Secondly, if you take our 

working definition as a store being on association of identifiers and values what happens 

when you have these complicated kinds of targets of assignments?  
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I can have for example an array which indexes into another array and I can update one 

array element in some complicated fashion through an indexing mechanism. I can have 

pointers. So, my targets are not necessarily just simple variables. They are not just 

identifiers. They are actually complicated expressions because the identifier p has some 

meaning and this is like an operation on p. The identifier ‘a’ has some meaning, ‘i’ has 

some meaning, ‘j’ has some meaning and this is some complicated ternary operation on a, 

i and j. Our targets are not necessarily just identifiers. They are actually expressions. 

Then there are further complications. What about when identifiers get re-declared? Can 

you just talk about a store as such an association?  
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Is a re-declared identifier different from the identifier that was previously there? What 

about scope issues? Also not all target expressions might be meaningful. So, there is a 

separate subset of the expression language which targets can be and not all source 

expressions can be meaningful.  

 

(Refer Slide Time: 51:09) 

 
 



There is a separate language of source expressions; sublanguage. There are two subsets of 

target expressions; valid target expressions, valid source expressions and they are not 

disjoint. Then you also have anonymous targets.  

 

(Refer Slide Time: 51:52) 

 
 

For example; if you had such a loop every time you create a new ‘p’ you are creating a 

new anonymous target. Actually you are creating a target which has some meaning. If 

you look upon this as a name it has the meaning there but then the next time you come 

around the loop the previous invocation is anonymous. It has no name. How are you 

going to look at the previous invocation? 

  

So your environments themselves are not sufficient to worry about it and our abstract 

notion of a state is also not sufficient to look at complicated programming language 

behaviors. Further, when you have recursion you have the same identifier, the same name 

for several different logically distinct identifiers which have got nothing do with scope.  

Then you have several different names for the same object when you have something like 

a call by value or when you have a call by reference, when you have the ‘war’ parameter 

declaration in languages. I can do a pointer assignment so that several different identifiers 

actually refer to the same object.  
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With recursion I can have several different objects having the same name. This means 

that we have to refine our notion of state to something that is more tenable. We will come 

out with the notion of a store. Looking upon states as just identifier-value bindings is 

simply not sufficient to account for most behaviors in real programming languages. We 

will define the notion of stores and then integrate that with the notion of environments.  
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