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Welcome to lecture 13. Let us quickly look at commands in a simplified setting. We have 

previously looked at expressions and declarations which are two important classes of 

syntactical categories with different meanings. I will introduce commands separately with 

expressions and then later we will integrate them with declarations.  

 

For the purposes of this lecture we will just assume a ‘while’ language which is like the 

most skeletally complete structured language for programming. We will assume that we 

have a language with no declarations but we can have lots of identifiers and all those 

identifiers are variables. For the present while we are still discussing the various major 

syntactic categories, we will assume that our variables are only integer variables. There 

are no declarations but we will assume that we can freely update variables. Since there 

are no declarations we really cannot distinguish between a constant and a variable.    

      

We will assume that there are no constants. Later, when we integrate declarations into 

this imperative language then we will also look at environments. For the present we will 

just assume that we have got this simple imperative language that consists of a language 

of expressions which have literals, integer literals, integer variables and the standard 

operations say the binary operations on integers.  

 

A program in this language is just a command. I have written it in a bottom up fashion. A 

complete program is just a command and since we have conditions, here we require a sub 

language of Boolean expressions also. I will assume a simplified sub language of 

Boolean expressions and since there are no declarations I do not want to complicate 

matters by allowing Boolean variables. I will just assume that there is a Boolean constant 



in the language called ‘true’ and the only kind of Boolean expression which consists of 

integer expressions is an equality checking expression. Otherwise you can have 

negotiation or disjunction. I just chose ‘OR’ because we have to choose one binary 

operator and the rest is simple; the one unary operator, one binary operator and one 

constant besides these equalities of expressions. Our main grammatical category is that of 

a command whose basis is an assignment statement. 

          

There is a sequential composition of commands, as in a language like PASCAL. Then 

there are these conditional commands and looping commands. In the last few lectures we 

looked at an expression language with declarations so, it was very much like a functional 

language. Here we are looking mainly at an imperative language without declarations 

because in an imperative language the main syntactic categories are commands. If we 

have to give semantics of the simplified language we should in some sense be faithful to 

the previous operational semantics that we have already given for expressions. 
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Now since we are considering an imperative language with an assignment statement there 

is an updation of variables and we have to come up with a suitable concept which allows 

for updation of variables. However, we should not unnecessarily load our semantics with 



pragmatic features. We should not unnecessarily bring in data structures or algorithms 

but just give minimal concise rules, which will specify the language, in machine-

independent and architecture-independent fashion.  

 

We will do the concept of a state. In fact the most common way of describing imperative 

languages is that they are state based languages. There is a concept of state which is some 

abstract entity and for our purposes and for the purposes of most discussions on the pros 

and cons of imperative versus functional languages, a state is really nothing more than a 

variable-value binding. In that sense it looks no different from what we said about 

declarations in the functional language. They are also just identifier-value bindings.  

 

The reason a state is different from an environment is that the variable-value binding 

really represents bindings that can change with time in the semantics. So, the semantics 

of the ‘while’ language is important because if you want to talk about a simplified 

imperative programming language, everybody would pick up a ‘while’ language and give 

it essentially just the state based semantics or define its meaning in a state based manner. 

  

In all programming courses also the while language is considered the basic building 

block through which programming may start and you talk about states and changing a 

state. So, it is instructive to look at it. At the same time by looking at it in a simplified 

fashion we might also understand how to express the semantics of Boolean expressions 

and in general what happens in the case of commands. We will combine all of them in a 

single framework and then we will go on to actually looking at programming languages 

in which the notion of state is not sufficient and you require to augment it with a different 

concept which is closely related to it and closely related to environments but is actually 

separate. 
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We will just assume that expressions are evaluated in a state which is a very simplistic 

assumption and commands are state transformers. That is really what happens in the case 

of an imperative language. Each command can modify the state in some fashion and 

those state transformations are irreversible changes in the sense that to undo the change 

requires at least as much effort as was required to make the change. We will look at just 

state as an abstract concept which has got nothing to do with value memory and we will 

look at state changes. Given two states Σ and Σ prime belonging to the set of states we 

assume that there is a predefined collection of variables v always. 
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Since there are no declarations we have to assume an unbounded collection of variables 

available to us and we will just assume that they all have some value associated with 

them and very often that value could be undefined. You could augment your value 

domain with some element called the undefined and initially, an uninitialized variable 

could be regarded as having the value undefined. They have representations in actual 

hardware meaning there is a null value that can be used, which is not a data value, 

belonging to any type.  

 

I will consider the change from sigma to sigma prime and represented as a one point 

change in the sense that sigma and sigma prime are everywhere identical except at the 

variable ‘i’. At the variable ‘i’ whatever may be the image of i in the state sigma, in the 

state sigma prime its value is n, which is what σ ′ = σ [i ← n] indicates. We are saying 

that σ′ is everywhere identical to σ except at i where σ′ has the value n and σ may have 

some value but it may not be the same as n. For all variables other than i, σ and σ′ yield 

the same value and for i Σ’ yields the value n. This is very important because the 

assignment statement involves a one point state change and so it is absolutely basic.   

  



We will go through the semantics of the language in a rapid fire fashion so that it acts as 

a revision of whatever we have previously done and introduces a few new concepts at the 

same time. The language of expressions is not very different from whatever we have 

previously defined. It is just that now we are looking at expressions evaluated in a state.  

You can think of it as replacing row by sigma but to be more rigorous let us look upon 

the evaluation. We will look upon the set of configurations for expressions. Everywhere 

you carry a state with you in the execution of a program and the set of configurations of 

expressions is just the collection of all ordered pairs of expressions and states and the set 

of terminal configurations is just the collection of numerals along with the state and so, 

we have to define the transition function. 
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I have put a prime everywhere to distinguish it from the last semantics but you will see 

that it does not look too different from the last semantics. Let us quickly go through the 

expression language and you will see that it is more or less like the last one except that 

since I am considering expressions to be ordered pairs. The meaning of an expression, ‘i’ 

in the state sigma is the value assigned by sigma to ‘i’ in the state sigma. It is just the 

value of the expression ‘i’ in the state sigma and you carry the state along with you every 

time. 



 

The meaning of a binary operation on two literals assuming that the binary operation is 

already available in the underlying virtual machine, is just whatever is the result provided 

by that operation in the  underlying virtual machine. It is the base case of left to right 

evaluation for expressions. The rule just says that given a constant m binary operation 

some expression e this goes to m binary operation e’ provided in the state sigma the 

expression e can move to e’. Note that we are considering a very simplified language in 

which there are no state changes that occur in the evaluation of expressions. 

 

Going further given a complicated expression of the form e1 binary operation e2 in a 

state sigma our left to right evaluation strategy says that in the state sigma if e1 moves to 

e1’ then the complicated expression moves to another complicated expression in the same 

state. So the e’ Not to e’ 3 are really a syntactic translation of the rules we gave e0 to e3 

for left to right evaluation expressions under some environment.  
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Since it is an imperative language with conditional statements and looping statements it 

also means that we have separate categories of Boolean expressions. Before we can 



actually give the semantics of the commands we have to define the semantics of Boolean 

expressions.  

 

Let us quickly look at the semantics of Boolean expressions. I will assume that the set of 

Boolean expressions that are possible includes all Boolean expressions that we already 

have and two predefined constants t and f denoting true and false. There is no reason why 

we should assume that t and f have a representation similar to that of the constants. 

 

We could be type respecting in whatever we do and we might keep Boolean constants 

separate from the integer constants and this is not too outlandish because there are 

architectures which are tagged. In many tagged architectures there is a tag associated with 

every memory location which a type could be specified and storage is allocated only 

based on the type. This is not too obscure or outlandish and as we did in the case of the 

declaration language though I have not explicitly specified it here we will also include 

these constants t and f as part of the Boolean expression language. In addition you can 

think of the Boolean expressions as having an extra two productions and the language 

that we will be considering for semantic purposes. 

 

You can form Boolean expressions with constants. In the process of evaluating a Boolean 

expression you will also include constants. This ‘true’ is a language specific syntactic 

entity. This t is a constant available in the underlying virtual machine. The two are not 

exactly the same. The ‘true’ is in the syntax of the language and you will always be using 

it. You will never in a program actually use t or f. It is some constant provided in the 

underlying virtual machine. The semantics of this true will just turnover to be the t in our 

single step.  

 

If you want you could for example have gotten rid of true and put this t and f here just as 

much as having it separate. But very often you have to distinguish between an element of 

a language from an element of its meaning. If you look upon Boolean expressions as a 

language then there is a separate construct called true and a separate construct called 

false. 



In this truth table semantics what you actually give are not the constructs of the language 

but of a semantic domain which consists of two different values in which the true and the 

false have corresponding representations. 

  

The distinction between syntax and semantics has to be kept clear. You can define the 

language of let us say, propositional logic or Boolean expressions without the syntactic 

constants true and false. I may not have it at all. I could just have variables no true and no 

false. If you want a representation of true or false I will take it to be of the form ‘a’ or not 

a. There is absolutely no need to introduce true into this syntactic language. I could keep 

true and false purely in the semantic language and have a language of Boolean 

expressions which is totally expressive. It is not as though the constants true and false 

cannot be expressive. I could just have the various Boolean constants other than true and 

false.  

 

For example, I could just define the language of Boolean expressions or let us assume 

that you have truth values. I could just define it to be a language which consists of a set of 

Boolean variables and just these operations [ ¬A] [A v A] [A & A]. There is nothing 

which tells me that I should have true and false in the language at all. I can define a 

complete propositional set. This is a complete set of adequate connectives of 

propositional logic or of Boolean algebra. I do not need to have the constants true or 

false. Here x is just an identifier or a propositional variable or a propositional constant or 

Boolean variable or a Boolean constant other than true or false. Now this is a completely 

adequate set of connectors for Boolean algebra.  

 

In specifying the semantics of this through truth tables I might specify that my semantic 

function is a truth value function which maps the set of all propositions. So, let me call 

this the language of propositions. It just maps this to the collection of truth values, t and f. 

It is important to realize that whatever is in green is the language of propositional logic 

and whatever I specify in the truth table is really a function of a function called t which 

maps given a truth value assignment to each of these identifiers. It gives me a truth value 

of compound expressions and there is no true anywhere in the language. This is not made 



explicit in any of your previous courses but essentially there is a semantic domain called t 

and f which is completely different from the language of Boolean expressions or from the 

language of propositional logic. 

 

I have just introduced true in the language. I just wanted to introduce a Boolean constant 

and so I introduced it. It is enough for me to have these three connectors and I can 

express all possible propositions that I want. This t and f belong to the underlying 

semantic domain. They need not belong to the syntax of the language at all.  
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It is a different matter that very often you introduce it because you want to make a 

specification for example; a tautology is an identity for the AND operation or a 

contradiction is an identity for the OR operation. So, what you do is that you explicitly 

introduce two separate constants such as true and false to make it distinguishable from t 

and f into your language so that you can specify those equations in a convenient fashion. 

But there is absolutely no reason why you should do that. I could specify a tautology of 

the form A or ¬A. I could specify a contradiction of the form A and ¬ A. I have just 

introduced a constant into the languages. The constant may not be in the language at all. 

This is part of the language and what are there in the underlying semantic domain are 

these two truth values.  
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They are not necessarily the same and your elementary knowledge of architecture or 

hardware will tell you that there is an explicit true in PASCAL but what is its actual 

representation in the hardware? It is not true at all; it is something else depending on the 

underlying representation. Let us look at the semantics of Boolean expressions. We have 

this set B along with these two constants t and f and we have a set of configurations 

which I will call Γ b which is just this entire set. This B includes this t and f too. Unless it 

includes t and f you cannot have a set of terminal configurations. You might as well 

introduce this as equal to B’ and call this B’ instead. 

 

You have the set of final configurations and my first rule for the semantics of Boolean 

expressions is just that the constant true evaluated in any state sigma gives me the truth 

value of the underlying machine or interpretation. ¬ of this constant t is f. This ¬ is again 

an operator of the language and it has got nothing to do with anything that might be there 

in the hardware. This is the basis of the NOT operation and this is the induction step. If 

you have a complicated Boolean expression b which is being negated with a NOT then 

you can evaluate it not only after you have evaluated B and brought it down to a truth 

value.  



If b is some complicated Boolean expression it might have to be evaluated in several 

steps. Remember that there are syntactic transformations and symbol manipulations. This 

b might go to some b’ and therefore this NOT b will go to NOT b’ and this rule will be 

applied several times till finally this b has been reduced to a truth value.  
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There should be one more rule which says ‘NOT f σ is t σ 2’. Let me introduce that. 

There is a b1’ which I will introduce here.This is NOT f = t. That gives me a complete set 

of evaluations of Boolean expressions.  

 

We have to look at the OR operation. Here is the semantics of the OR operation. Again as 

in the case of the expression language we will look at left to right evaluations. If you have 

got a complicated expression of the form b1 or b2 then you first evaluate b1 till you 

reduce it to a truth value, then you evaluate b2 till you again reduce it to a truth value and 

once you have got two pure truth values you can actually get another truth value and b4 

should actually be replicated separately for t and separately for f. Similarly b5 will 

actually have 4 copies depending upon the truth table. I use an inverted question mark 

and exclamation as being elements of this semantic domain. Arbitrary elements and the 

connections between them are given by the truth table.  

 

Actually there are four different versions of b5 depending upon the truth values that you 

are interested in and similarly several versions of b4, one for each truth value. But I do 

not want to stress it too much because these are elementary materials. Rather then use 

new variables I have used symbols as variables over the semantic domain.  
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So this is as far as Boolean expressions and combinations of Boolean expressions are 

concerned except that the only way we can form Boolean expressions are through 

equality of expressions. We have to look at expression equality which means the 

evaluation of equalities is again specified in some such fashion. It has to be related to the 

transition system for expressions and B6 and B7 just as they did for the expression 

language for binary operators in an expression language. They do the same for the 

equality where equality is really regarded as a binary Boolean operation between 

expressions.  

 

B6, B7 and B8 actually specify a left to right evaluation of expressions to yield an 

appropriate truth value where it must be understood that the resulting truth value says that 

these two constants should be identical as patterns. That is the only way a machine with 

no intelligence can really recognize equality. Given that it has no other information, what 

it can recognize as equality are just two identical patterns. If the two patterns that you get 

from evaluating e1 and e2 are identical, though I have given them different names here, 

then you would say that this yields a true otherwise it yields a false.  

 



In our grammar we actually specified the Boolean expressions as a separate grammatical 

category which used the expression language whereas we are treating Boolean 

expressions and the equality of Boolean expressions at essentially the same level as the 

expression language. We are specifying a left to right evaluation of an equality 

expression which while we assume under a uniprocessor implementation makes 

pragmatic sense is really belabouring a point. It would be simpler actually to replace all 

these rules by a single rule of this form. This says that if e1 σ goes in 0 or more moves to 

some constant m and e2 is σ goes in 0 or more steps to some constant n, then e1 = e2 

goes to some truth value depending upon essentially whether the two constants m and n 

are the same or different. 

  

This way you provide an abstraction from the expression transition system and also by 

giving a rule, you have clearly abstracted away from the order of evaluation of 

expressions. The rule just says that in order to conclude you require two premises and it 

really does not matter in what order these two premises are true. You need to somehow 

prove that even σ -> m σ and e2 σ -> n σ; it does not matter whether you evaluate in 

parallel, non-deterministically, whether you partially evaluate one and then partially 

evaluate the other.  You evaluate them in some order and if you get two constants then 

the equality of these two expressions moves to some truth value in a single step. Whereas 

an application of b6 to b8 says that the equality of expressions really has to move in 

several steps based on the depth of the Boolean expression e1 = e2 and it makes no 

difference in the abstraction level between the Boolean expressions and the expressions 

and even for a simple language it is actually tedious to go around doing this.  
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If you are going to do things in the recursive descent fashion it makes sense to do an 

abstraction at an appropriate level and leave that abstraction as a base case of a lower 

transition system. B9 is actually what you might call an abstraction from the underlying 

transition system. It also does not specify any order of evaluation and it greatly simplifies 

the number of rules that you require which is important. If such a simple language 

requires so many rules then you can imagine what a real programming language would 

actually look like. We will use the abstraction to define the semantics of commands. We 

will assume the existence of the underlying Boolean expression transition system and the 

integer expression transition system and look upon commands as some high level entity.  
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The whole point is that as far as the Boolean expression evaluation is concerned, how 

many ever steps the sequential expression evaluation might take, all of that is regarded as 

one single step in the Boolean expression evaluation. Similarly, in the case of the 

command language we will look upon as many transitions of the Boolean expression 

evaluation and the integer expression evaluation steps as constituting a single atomic step 

of this level.  

 

The set of configurations is just the set of commands. I will use script C to denote the set 

of all possible commands and small c to denote the syntax tree of an arbitrary command. 

Here we have a slight difference in the sense that once we have executed a program there 

is really nothing more to execute so there is no command at the end of the execution.  

Once the program execution is terminated there is no command left and what is left is 

only a state.  Your terminal configurations are just the collection of possible states. At the 

end of executing a program all you have is a single state; you can look at all the variable-

value bindings and there is nothing else left.  

 

In the intermediate stages you have some commands left. You can see that our command 

language has two distinct types of entities for the intermediate configurations and final 



configuration. The assignment statement can go in a single step to an updated state 

provided the expression on the right hand side of the assignment can go in 0 or more 

steps of the expression language to a constant m.  

 

(Refer Slide Time: 44:37) 

 
 

In this setting, which is the meaning of the assignment statement you will see that it has 

some far reaching consequences. The assignment statement constitutes the basis of the 

command language and rule c1 actually is the base system. Now we have to consider 

compound statements. Just like we have a sequential composition of declarations we 

could have a sequential composition of commands.  

 

Let us look at c3 first. If c1 can directly go in a single step, c1 in a state sigma directly 

yields you a new state sigma prime with nothing in it and ‘c1; c2’ in the state sigma 

yields an intermediate configuration of the form c2 σ’. Here is where the first state 

changes actually take place. You can look upon this as a basis for the sequential 

composition. If you have a whole lot of sequential compositions this c3 tells you 

essentially that if c1 is an atomic command (that means it is an assignment command; in 

this language the only atomic command in the command language is the assignment 

statement) which just gives you a state change, then this sequential composition gives 



you an intermediate change and c2 tells you the induction step for the induction on the 

number of semicolons that are there in a command. 

 

If c1 is an atomic command which just yields a state change then the sequential 

composition gives you this. So, this is the basis of the induction over the number of 

semicolons. So, if c1 is not an atomic command but is instead itself some complex 

command then there is no reason to suspect that in a single step it will give you just a 

state. It will actually give you some other command. Remember that it is all symbol 

manipulation. It should give you some other command with possibly a modified state 

sigma prime. Then this entire program c1; c2 moves in a single step to this configuration 

with the modified state. This is as far as sequential composition is concerned.  

 

The ‘c2’ is also applicable when c1 is something other than a sequential composition.  

For example, c1 could be a conditional statement or a looping construct. In the case of a 

conditional statement we will assume that the Boolean can be evaluated in several steps 

possibly of the Boolean expression transition system to a single truth value and if that 

truth value is T then the effect of this conditional is just to get rid of c2 and everything 

else and only retain c1 as part of the configuration. Since our Boolean expression 

transition system did not allow for changes in state, the state remains the same. So, this 

c4 just specifies a transfer of control on evaluating a Boolean expression. Nothing else 

happens to the programming state. 
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It is just a transfer of control that occurs and the control is such that c2 is discarded after 

consuming b and getting a truth value t and this is the program that you have to execute. 

What happens if the Boolean condition evaluates in 0 or more steps? This 0 or more steps 

is important because for example, in our language this would not be 0 or more steps; it 

would be 1 or more steps but if t and f are actually part of your language then there is no 

evaluation involved and so it could be 0 or more steps. Since my t and f are not part of 

the language this will actually turn out to be 1 or more steps. If the condition b evaluates 

to false then you just discard the branch c1 and you have c2 left. There are no state 

changes because the evaluation of the Boolean condition does not change the state and 

this also just signifies the transfer of control to c2.  

 

The ‘while’ statement is very simple; if the condition b evaluates to true then you 

manipulate this ‘while b do c’. There is no state change. How is the control changed? 

You execute the body c and then you execute the ‘while’ statement again. So, having 

evaluated b and having got a truth value t, the program that you have now left to execute 

is more complex then the program you started out with because you have to execute the 

body c and execute ‘while b do c’ again.  

 



In the case of a looping construct this is how you specify in advance what the transfer of 

control is going to be. You first transfer control to c and then you append this entire 

construct again to the end. You sequentially compose this entire construct with the body c 

and if b is false then this entire construct works out to a no operation and you get just a 

state sigma. So, this denotes the termination condition for the while loop.  
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For Boolean expressions we have specified complete evaluations. You could actually 

modify this transition system for partial evaluations (by partial evaluations I mean short 

circuit evaluations). You could even do parallel evaluation of Boolean expressions and 

you could modify all these transition systems also for parallel evaluation.  
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I will stop here. This provides a brief overview of both how to specify commands and 

Boolean expressions. We will get into the more complex issue of stores in the next 

lecture and why we require stores and some modeling of memory.   
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