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Welcome to lecture 12. We will continue what we did last time with an emphasis on 

declarations. Before that I will quickly go through the transition system as we defined last 

time. We were looking at simple ML like declarations. We have variables and for the 

present we will just assume that variables have only values and they are not functions.  
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We have the usual binary operators and a let construct ‘Let I = E in E end’. This I = E is 

the binding occurrence of the let construct. A binding occurrence in some books is also 

called a defining occurrence. The E of ‘E end’ is an applied occurrence. Declarations are 

also called definitions but we will call them declarations.  

This ( )E N I E o E→    is the grammar with non terminals.  



I will use corresponding low case letters; ‘n, i, e’ to distinguish the fact that I am actually 

interested in syntax trees and not in the grammar per say which has other implications 

besides that for semantics. 

 

(Refer Slide Time: 02:05) 

 
 

We defined the notion of a free identifier in an expression and in particular in a let- 

construct ‘Let I = E in E end’ the identifier that is declared is not free. We defined bound 

identifiers and the set of all identifiers is just the set of all free and the set of all bound 

identifiers.  
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We defined the notion of closed terms of a language and ground terms of a language. A 

complete program is closed and a term without variables is ground. Then we defined the 

notion of an environment as a function. An environment over a set V of variables is just a 

function which maps variables onto a particular domain of values and an environment is a 



set of variable-value bindings and the function vP :  V N→ actually defines the binding. 

We could go a little further and consider the set of all possible environments. 
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I will define list environment as the set of all possible environments over the set of all 

possible variables. If I consider unions rather than what is known as a disjoint summation 

then there is a possibility that at some point you might have two environments which are 

supposed to be distinct in some logical way but it so happens that they represent the same 

function.    

 

Supposing you have two sets A and B then a disjoint union of the two sets A and B is 

equivalent to having an identity associated with each element in the two sets. For 

example; if the two sets were not disjoint and if they had some common elements then A 

u B will just consist of all the elements of A and B without actually specifying an identity 

as to where that element came from. Let us take some standard representations. If I take 

the union of the set of all natural numbers and the set of all role numbers of B.Tech 

students then that is just going to be the set of all natural numbers because all your role 

numbers are natural numbers. But if I take a disjoint union of the set of all natural 

numbers and the set of all role numbers then there is a distinct identity associated with 



each element. A role number like 94141 will occur twice in the set but once as a natural 

number and once as a role number. The best way to think of disjoint unions is as having 

tagged the identities of the elements individually.  

 

If you have these two sets then I can look upon the disjoint union as; 

{ } { }A  B  A 0 u B 1+ = × ×  

  

Similarly, if I take the set of the disjoint union of the set of all role numbers of B.Tech 

students then by ‘ { } { }A  B  A 0 u B 1+ = × × ’ I am actually tagging them appropriately.  

I would actually have 94141, 0 as one element and 94141, 1 as another element and they 

will be distinct and the tag of 0 or 1 specifies which parent set it actually came from and 

you actually encounter disjoint unions in programming.  
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The variant record construct in PASCAL for example, specifies a disjoint union and in 

the case of a tag you get some values according to the tag. A variant record in PASCAL 

like language actually specifies a disjoint union of two sets where the tag, the variant part 

of the record, actually disambiguates whether an element is from one or another. 

  



The variant construct for example, works as follows. 
 type  

  R  record=  

    ( )Case tag :  0,  1  of 0 :  a :  integer  

   0 :  a :  integer;   

1:  b : integer;   

  end  

 

I could have case 0 of; I could have single variable a, which is integer and in that case I 

could have a single variable b which is also of type integer end case. This kind of 

declaration in PASCAL really specifies that I am using integers but I am using integers to 

mean two different things and what I mean by them are specified by the tag.  
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Disjoint unions of data types are standard constructions. Although they are not used very 

much in mathematics, they are definitely used in programming.  



Just in order not to confuse matters the environment v
v

Env Env= ∑  is a disjoint union and 

not a mere union. It is a disjoint union or a set of all possible environments that you can 

have.  
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A separate grammatical entity has a separate logical meaning. We looked at sequential 

declarations, nested declarations and we defined the notion of updation of an 

environment. Disjoint union becomes effective when you have two distinct environments 

on variable sets which are not necessarily disjoint and you want to give a preference as 

for any identifier what value it should take in the updated environment. 

 

The binding in this updated environment P  (i) of any identifier ‘i’ is P 2 (i) if i ∈V2.  

The ‘i’ could belong to V1 also but that does not matter and if ‘i’ does not belong to V2 

then it is whatever is defined by row 1, P 1 (i).  
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We looked at the operational semantics of expressions with a usual notion of 

configurations except that we have to add the set of variables that we are actually 

interested in. The meaning of an expression is not clear unless you can assign a value to 

an identifier and that assignment of a value to an identifier is performed by the 

environment and so, you have the three rules with an extra assumption. You can assume 

that ‘ P ’ acts as an extra assumption. Under the assumption of an environment row the 

meaning of ‘i’ is whatever is the binding defined by the row on ‘i’. Similarly, the 

meanings of all the expressions depend on the assumption of the environment. 
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Then we looked at the semantics of the ‘let construct’. Given any let expression  

let d in e let d  in e→ ′ provided d dD→ ′and d is a declaration. So, there is a separate 

transition system for declarations. That is why there is a subscript of d whereas the entire 

‘let construct’ defines an expression. The transition E is in the expression transition 

system. In order to evaluate a ‘let construct’ you are depending upon first evaluating the 

declarations that the ‘let construct’ contains and those declarations could be complex so 

you require the rule d dD→ ′  and all our transition systems are symbol manipulations. 

This declaration d dD→ ′  might during the process of evaluation, get transformed into 

some other declaration d′and eventually after several applications, presumably you 

would have identified an environment row prime, P ′ .  

 

Declarations give you environments and you would probably get (an environment row 

prime) P ′  and now the expression ‘Let P ′ in e’ is strictly speaking not in the syntax of the 

language. It is an expression which we are using in order to specify meanings in a 

systematic fashion. We have to specify one step transitions. So, there is an intermediate 

state in which the environment has been created but ‘Let P ′ in e’ is some sort of an 

intermediate specification rather than being part of the syntax.  

 



In the environment the meaning of the expression e can transit to the expression  

‘Let P ′ in e ′ ’with the e ′  provided in the updated environment P [P ′ ] you can  

show that e →e ′ . Several applications of the rule script e5 with the rules for ordinary 

expressions should finally yield a constant and then the meaning of the expression ‘Let 

P ′ in m’ is just the constant ‘m’. However, it is necessary to know that we have 

intermediate steps and eventually we are still interested in the original environment row. 

We are looking at the evaluation of an expression which contains a declaration in the 

original environment row and in the process of evaluating, you create a temporary change 

in environment in order to enable the evaluation of the expression ‘e’ and once the 

expression has been evaluated you revert to the original environment, P. The original 

environment is all that you have.  

 

The temporary changes are reversible changes and once you look at the data structures in 

pragmatics, you will see that they really involve no work at all. An interpretation of the 

‘let construct’ according to our rules can be loosely specified in the following way. Given 

an environment row ‘Pv ∈ Envv’ you first elaborate the definition d or the declaration d in 

row, P and the elaboration of a declaration yields an environment row prime, P ′ . So, you 

temporarily change row to row updated with row prime, P to P″ = P[P ′ ] and evaluate e in 

the new environment, P ″  till it yields an m and then you revert to the original 

environment, P. 

 

 Several applications of the expression transition system should essentially boil down to 

the steps that are specified. I have specified them as a sort of an algorithm but nowhere in 

our rules have we actually ever decided on a data structure or an algorithm. We just have 

to apply the rules very much like we did in the towers of Hanoi problem whether in the 

specifications of the towers of Hanoi problem or in the execution of the towers of Hanoi 

problem. We just apply rules which are not really algorithms but they actually hide 

algorithms inside them and some of the assumptions actually hide data structures which 

are fairly natural inside them and the whole set of rules is precise, unambiguous and 

framed by induction on the structure of the syntax. 
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Let us now look at that semantics of declarations. The rule e4: D

v

P to d d
Pt Let d ine Let d in e

→ ′
→ ′

 

obviously involves some rules that we still do not know.  

 

You cannot conclude vP t Let d in e Let d in e→ ′ ’unless you can do something about the 

declaration transitions DP to d d→ ′ . That means that we have to define a new set of 

configurations for declarations and define a new set of rules to process declarations also 

in a syntax directed fashion.   

 

In the expression language, 
( )

;
E N E o E Let Din E
D I E D D

→ |Ι| |
→ = |

 I have added a row, |P. You can 

think of the grammar ;D I E D D→ = | as being extended by another production which 

from a declaration gives you the row |P. The row |P is strictly not part of the language but 

part of our semantical specification language. It is not part of the original language and if 

you add the production |P to the language then you have various possibilities. For 

example; the moment you add the row to the language you have possibilities like ‘Let P 

in e’.  



 

You have other possibilities for declarations. You can have declarations of the form P; D.  

You can also have D; P; D. You have all the extra constructions possible when you add 

the row, P as a new production.  
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We require the extra row as part of our semantical specification and not really as part of 

the language. We have used some of our rules which had to deal with expressions.  

 

For example; that is what we have used in ‘Let P ′ in e E→ Let P ′ in e ′ . We have used the 

construction where you can have an environment P ′  itself as being part of the declaration 

but not part of the language. It is not part of the original language or specification 

language. It is part of the notation that we are using in order to specify the meanings of 

constructs.  
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The set of configurations that we are interested in for declarations is given by the set D in  

‘ V v
D DΓ = ’ where D is not just of the language constructs but also includes that extra 

production D goes to row. We had the base case of this declaration D as I = E (D → I = E) 

and sequencing of declarations. Now you can assume that for our specification purposes 

our base cases include not just I = E but also |P and you can therefore mix actual 

syntactic declarations with environments according to the particular grammar in anyway.  

 

You have a collection of configurations which goes beyond just the syntactic 

declarations. D in‘ vD ’ should be understood as specifying all the possible declarations 

that are specified by the extended grammar with the production row |P. The set of 

terminal configurations is just the set of environments ‘ V
D vT Env= ’. 

 

Note that our terminal configurations the set DT has to be a subset of DΓ .  

That is also a good reason why you should include the row as part of the semantic 

specification language D DT ⊆ Γ . If you did not include the row then this important 

condition D DT ⊆ Γ will not be satisfied. 



 As far as just our semantical specification is concerned we will allow all these 

conditions. It is a patch work way of making our language of meanings more expressive.  

In general the language of meanings has to be more expressive than the syntactical 

language. That is how you get specification languages whose particular cases might be 

implementations in an existing language.  

 

I already mentioned once that in general, specification languages might contain 

constructs that probably cannot even be implemented. In that sense in order to specify 

meanings you require a language that is more expressive but it is not really a formal 

language; it is just a language loosely specified in mathematics. I could have specified  
V v
D DΓ = such that it satisfies the condition D DT ⊆ Γ by including a whole lot of conditions 

which exactly specify the set of syntactic declarations and the mixtures of syntactic 

declarations and environments that are allowable in V v
D DΓ = .  

But this 
( )

;
E N E o E Let Din E
D I E D D

→ |Ι| |
→ = |

 seems a very simple and easy solution to the 

problem of how you can mix semantical elements with syntactical ones in order to 

specify your semantics.  

 

The set of configurations V v
D DΓ =  includes all those mixtures of the abstract environment 

row because they signify intermediate steps in your computation. One way of specifying 

the intermediate steps of your computation is to actually write out the data structures 

completely and write out the algorithms completely. But that becomes too dependent on a 

particular implementation. If you are giving a language definition you would like to 

abstract away from particular implementations and make it as general as possible and you 

need a very simple and neat way of making your specification more expressive so that 

you can specify lower level details without compromising on the abstraction from 

particular implementations. 

  

Now let us look at declarations. The base case of the declarations indicates that we are 

looking at trees. A single node tree is still a tree and not a non terminal in the sense of the 



syntax of the language. The effect of a syntactical construct that represents a tree is to just 

give you a value binding. You do not really require an environment row in order to create 

a new environment, {i = m} but that is beside the point because you will require (the 

row) P anyway as you apply the rules.  

 

What if a construct is a full bodied expression in itself? If a construct is a full bodied 

expression then you have to evaluate the expression in the environment row. If we 

already know the evaluation of expressions in a particular environment then the rule will 

be applied several times till the expression reduces to some constant at which time you 

can apply the prior rule to create the new environment.  Such a construct is like the 

induction step which again depends upon the transition system for expressions. 

  

(Refer Slide Time: 30:15) 

 
I have shown you dependencies in our sequential 

declarations
( )

;
E N E o E Let Din E
D I E D D

→ |Ι| |
→ = |

 . The fact that there is an E means that you get 

the dependencies circularly but of course it is not a circular definition because if you do 

the induction on the syntax, which is finite, the induction on the syntax shows that you 

have a descending chain of complexity of expressions. 

 



The induction is perfect but it is just that it looks circular. Supposing you have complex 

declarations of the form d1; d2 then it will move to some d1 ′ ; d2 provided in an 

environment row d1 can move to d1 ′ . The movement of a declaration from d1 to d1 ′  is 

closely linked to the application of the rule d1 where only the expression moves. If you 

assume that d1 is just a single declaration of the form X = some expression then the 

movement of d1 →  d1 ′  is linked to the movement of e to e ′ . 
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Again as we did in the case of expressions, we are looking at left to right sequential 

evaluations. This means in particular that even though in the domain of configurations we 

have allowed configurations of forms D; P; D in the set Γ D if you strictly follow a left to 

right evaluation of declarations you will not obtain such kinds of configurations ever.  

But that does not matter because in any mathematical specification you might always 

have redundancy. It implies that according to our rules such configurations D; P; D will 

never move anywhere, where the left hand D is a purely syntactical entity and so is the 

right hand D.  



Such configurations will never have any transitions. They will be what are known as 

stuck configurations.  
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Lastly, we have to know what the effect of sequencing is on declarations. Supposing you 

have already evaluated a declaration and produced an environment P1 and then the 

evaluation is sequenced in such a fashion where say d2 cannot move to 2d ′   unless in the 

modified environment with the new set of variables, d2 can move to 2d ′ . In order to 

evaluate sequences of declarations you should have first provided a new environment.  

In a more complex setting where you are not strictly constrained by left to right 

evaluations where you might allow non deterministic transitions, you could add extra 

rules such that the configurations also become meaningful. This aspect is there in all 

programming languages.  
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Supposing you have a sequence of constant declarations; the second constant declaration 

could depend on the first constant declaration. You could for example give a complex set 

of rules which specify that given three declarations of the form d1; d2; d3, if you are 

perfectly clear that there are no free variables in d2 which occur in d1, there is absolutely 

no reason why you should not evaluate d1 and d2 independently. There is absolutely no 

reason then why you should not evaluate d2 first and produce the D; P; D environment 

row and then start evaluating d1 and d3. But as I said we will make it clear that our rules 

are such that you can have a uniprocessor implementation. 

 

The interpretation of d1; d2 is just that you have a given environment row and then you 

elaborate d1 in P to yield a new environment P1. Then you elaborate d2 in row updated 

with P1 yielding P2 and then the result of elaborating d1; d2 in P is just P1 [P2]. 

 

The interpretation does not preclude certain possibilities which are not allowed in most 

languages. But for example they are allowed in ML. Take an ML like program of the 

form: 



3; 1
*

Let x x x
in x x
end

= = +
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It is not allowed in a PASCAL constant declaration. You cannot have the same identifier 

occurring in the same sequence of constant declarations twice on the left hand side. But 



in the way we have defined the declaration, it really allows you to first declare it and use 

it. So, the updated environment will have x = 3 after you have processed the declaration 

and that x = 3 will be used in x = x + 1 to give you a new updation of x which is x = 4 

and in that updated environment x * x will be evaluated and you are going to get 16.   

 

Let us just go through a small example. Here is an example of a nested ‘let construct’. 

You have let x = 3 in let y = x +2; x = y +1 in x + y and you have various syntactical 

elements in it which I have named e0 e1 e2 e3 e4.  

It is a complete ML program in itself and I would like to evaluate it in an empty 

environment. 
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The program is not hard to analyze but what you require to do are a few examples to 

make sure that your rules are right and that you do not get any configuration that is stuck.  



Rules also give you a reasoning mechanism which you can do in a top down fashion or a 

bottom up fashion. Let us do it top down.  
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Essentially, you want to know what e4 goes to in the empty environment φ with no 

predefined set of variables. Assume there is an empty set of variables φ . The ‘e4’ is an 

expression and it has a transition in the expression transition system. You also want to 

know what it does.  You would like to know where a given transition goes to. If you have 

the answer to any of the transitions you have the answer to the final transition. You can 

think of it either as a top down recursively questioning or if you know the final answer 

you can think of it as a theorem that you have to prove with an intermediate step.  

 

Supposing you know the value in the first transition then it is like a theorem that you can 

prove. I can prove that the first transition goes to a value 11 provided I can prove that the 

next transition goes to the value 11 by an application of some of the rules specified. 

Similarly, I can prove that the next transition goes to the value 11 provided I can prove 

that the transition after it goes to the value 11 etc. So, the transition depends upon 

evaluations in the updated environment and finding out what e3 goes to. The φ updated 

with x = 3 is just the environment x = 3.         



You want to know in the environment x=3 with x as a single variable in the environment 

what the next expression yields and this process is tedious because it is just pure symbol 

manipulation. If you are strictly applying the rules that we have given, it is a very tedious 

process. But the whole point is that it hides an execution of an algorithm in it somewhere 

and it is really meant to be done by a machine.  
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Take two claims which are really obvious and can be proved using the rules that in the 

environment, x = 3 y = x + 2 yields environment {y = 5}. The claim might be proved in 0 

or more steps of proof of the original transition systems for expressions and declarations. 

You may or may not be able to prove it in a single step of proof but in some finite 

number of steps you can prove it by a purely mechanical process of application of the 

rules. There is a further fact which I will highlight later. The next claim is that if you have 

x=3 updated with y=5 which is of course equal to the environment consisting of x = 3 and 

y = 5 with the variables x and y then x = y + 1 yields the environment x = 6 and it can 

again be proved in a purely mechanical fashion.  

 

Finally we might conclude that the main body of the expression really has to be evaluated 

in the environment x = 6 y = 5 which is of course obtained by the fact that x has been 



redefined. So, you are considering an environment x = 3 y =5 updated with x = 6 and the 

result of that updation is just {x = 6, y =5} and it yields 11. The whole problem boils 

down to just evaluating x + y in the environment and that finally yields 11.  
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In all cases assume that the environment is duplicated in all the steps before the tag.  

If you just work back 11 and fill up all those question marks that were given earlier with 

11 then you have a top down proof. What is a top down proof?  I have a theorem 

statement and I prove that statement by saying that a theorem is proved if I can prove the 

next statement down to the last line.  

 

You can prove a theorem also as a sequence of goals to be achieved till you have finally 

achieved the goal or you can first make a guess about what you claim is to be achieved 

and actually prove it in a normal manner but we have used these alternate forms of proofs 

in mathematics always. In many trigonometric proofs you start with ‘we have to prove a 

statement and therefore we can prove it provided we can prove the next statement…etc’. 

You start with a left hand side and you start with a right hand side and make them meet, 

but it is not a good presentation of proof. However, we know that that proof can always 

be converted into a rigorous proof once you know the final answer.  
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It is really in that sprit that you can look upon the rules as giving you rules for proof. 

More importantly, given a certain set of assumptions there are probably lots of theorems 

that you can prove. The important point here is that these rules are purely deterministic.  

In fact if you look at any individual step you know exactly which rule you have to apply 

whether you are going about it in a top down fashion of proof or a bottom up fashion of 

proof. It is purely deterministic and in that sense it is very different from a mathematical 

proof.  

 

If it is deterministic it means that, if you can somehow encode the rules as algorithmic 

productions, then you have a deterministic algorithm which will give you unique 

answers. The form of these rules is like a mathematical theory. The forms of proofs that 

you want to do manually are also like that but at any point in that proof there is only one 

rule available and it is deterministic. It is predetermined what rule you should apply in 

order to obtain the next goal from the previous goal. In that sense it is not just a proof to 

be done by human beings, it has at least the potential for being implemented in a very 

deterministic manner and what actually enables this determinism here is the fact that our 

transition systems are deterministic.  

 



The rules allow only left to right evaluation of expressions, only left to right evaluation of 

sequential declarations and that itself makes them deterministic and that makes the proof 

process also deterministic. Given a conclusion there is actually a unique proof which is 

not necessarily true of a mathematical theory. This uniqueness is guaranteed by these two 

points. One is the deterministic nature of our rules and the second is that you are always 

doing only induction on the syntax or in the case of the rules we are doing induction on 

the extended syntax where we included row also in the syntax. You are doing only 

induction on the syntax and there is only one way of obtaining a proof if your rules are 

deterministic and that means that you can actually evaluate it by an algorithm.  
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What makes theorem proving a difficult task is that given a set of assumptions you do not 

know what theorem your mechanical theorem prover can prove.  So, the theorem prover 

has to be guided at all points of non determinism in order to give you a deterministic 

answer to work towards the goal that you are interested in. Most theorem provers are 

interactive because there are two kinds of non determinism. If you did not give it a goal it 

might prove some theorem but that may not be what you want. If you gave it a goal there 

might be too many different ways of proving it and so it requires a user to guide it along 

some path.  



In the case we have taken up the rules are such that it is purely deterministic; there is only 

a single way of reasoning by induction on the syntax trees and therefore it has a potential 

of having a deterministic algorithm. It means that the rules themselves give you 

essentially an interpreter design where you want reversible changes in environments. 

Data structure, which allows for reversible changes in environments, is a stack but that is 

a matter of implementation. That is not preached by the semantics and the fact that it is 

all done by induction on the syntax tree means that you can implement the control 

algorithm, either the interpretation or the code generation followed by interpretation both 

in a recursive descent manner as part of your parser for the language. Except for the fact 

that the parser of the language has a more refined grammar which takes into account 

various factors that you will have to patch up, you have the glimmerings of an algorithm 

to implement.  
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Note that our semantics is defined on the syntax trees and not on the actual syntax that 

the parser uses, which is a much more refined and sophisticated grammar than what we 

are considering in our semantics. It means that the main glitch in going to the algorithm is 

to determine exactly in which point of that parsing routine you will have to include the 

code generation. You might have to distribute the code generation across various routines 

in your recursive descent parser.  
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