

Principles of Programming Languages

Prof: S. Arun Kumar
Department of Computer Science and Engineering

Indian Institute of Technology
Delhi

Lecture no 10
Lecture Title: Binding

Welcome to lecture 10. Before we start this lecture on binding we will briefly recapitulate
what we did last time. Last time I discussed transition system for simple expression
language in which there were no identifiers.

[Refer Slide Time: 00:46]

We would like to view expressions as trees and with that in mind we gave the following
transition semantics.
We assumed a transition system, a set of abstract syntax trees of integer valued
expressions of which there was an underlying set of numerals with notations for them.
We defined a transition system in which the set of configurations was the set of all
possible expressions in the language and the set of terminal symbols were the numerals.
I use this general symbol to denote any of these binary operators and we defined the
transition relation by various rules. We had only three rules multiplied by the number of
binary operators that we have.

[Refer Slide Time: 01:30]

There are two numerals along with a binary operator under the understanding that the
binary operator is directly implement-able by the virtual machine on which the
expression language is implemented. It gives you another numeral and these two rules
applied inductively essentially specify that we are allowing only left to right evaluations.
Given a binary operator you cannot evaluate the right operand of the binary operator till
you have completely evaluated the left operand.
This rule applied several times will finally yield a left operand for the binary operator so
that it becomes a numeral and then the right operand is evaluated. It is desirable in many
cases to have a deterministic set of rules and in certain other cases it might be desirable to
allow for a non deterministic set of rules.

[Refer Slide Time: 02:29]

[Refer Slide Time: 03:19]

For example; if you were to allow the extra rule e6 then you get a non deterministic
sequence of evaluation possibilities.
Otherwise if you allow only the first three rules then you only have a left to right
evaluation of expressions and depending upon test you can add to your semantics
whatever you require for parenthesis or you can eliminate parenthesis all together since
you are only dealing with syntax trees.

[Refer Slide Time: 03:34]

Very often for pragmatic reasons we would like to have a deterministic set of rules and
we will assume very often that we will give only a deterministic set of rules because that
ensures that it defines a compiler for a uniprocessor quite unambiguously. Before we start
on declarations it is necessary to give a general impression of what binding means in
programming languages.

[Refer Slide Time: 04:00]

The field of programming languages is cluttered up with a lot of terminologies. Many of
them come from implementation issues, many of them come from theoretical issues and
many of them come because the terminology in different programming languages is

different. So, you require a unified terminology to discuss all programming languages.
The notion of binding is often regarded as a purely pragmatic issue.
Let us now discuss the notions of binding that are prevalent for example, early binding,
compile time binding, runtime binding etc. The earliest notion of binding occurs really in
mathematics without mathematicians being consciously aware of it.

[Refer Slide Time: 05:00]

[Refer Slide Time: 10:30]

You have an expression like a double summation where you have names. Binding very
often has to do with names and declarations. So, it is appropriate that before we discuss
the semantics of declarations we discuss the notions of bindings but then we will discuss
the pragmatic notions of binding too. Let us first concentrate on names.
There are the names ‘a and b’ but what matters to us at this moment are the names i, j, k,
m and n.
We will assume that the summation in mathematics where j goes from 1 to m and i goes
from 1 to n. The ‘i’ is a name and we normally use a name to denote some complex
object. We use a name instead of having a long expression or a long phrase to denote
some complex object especially when we are going to use it again and again to give it a
name. Once having given it a name the issue that arises is what that name means at least
in the context in which it appears.

The meaning of the name is that ‘i’ goes from 1 to n which means that i can range from 1
to n and that is a binding occurrence. There is an introduction of a name along with its
meaning. The entire sigma i = 1 to n has i as a binding occurrence and similarly with j in
this ∑. Having introduced the name and what it denotes, I am now free to use that name
for some purpose. Here ‘i’ denotes an applied occurrence so having defined a binding
occurrence for the name 1 has an applied occurrence and it is similarly the case with j.
However, k has a purely applied occurrence without any binding occurrence.
Presumably, this whole expression was lifted out of context and somewhere else. If it is a
well defined mathematical context then k would have a binding occurrence somewhere
else in the context.

Binding occurrences could occur somewhere fairly deep inside some mathematical
object. Similarly n and m would presumably have some binding occurrences somewhere
and they are called free occurrences. The whole issue has to do with names, naming, their
meaning and when a name has a meaning.
Take a case where the binding occurrences precede the applied occurrences.
If you were to take a double integral, the applied occurrences actually occur before the
binding occurrences.

For each of the bindings there is a scope. For example; the scope of j starts from its first
binding occurrence to the end of the phrase which can have an applied occurrence.
The scope of i similarly goes to the end of a possible applied occurrence.
In the case of the double integral it starts essentially from an integral symbol and goes
right up to the binding occurrence.

Even as a tree the binding occurrence occurs as a node of some right sub tree whereas the
binding occurrence precedes the applied occurrence if it occurs as a node of a left sub
tree. The definition of a binding occurrence is just that it is the first introduction which
somehow gives it a meaning but meaning is not part of the syntax.
The meaning of a sigma and the definition of that sigma might differ. I will just assume
that it refers to summation but that is not necessarily always valid. A binding occurrence
usually means a declaration in programming.
Binding occurrences and applied occurrences occur everywhere in fact.

[Refer Slide Time: 14:12]

For example, in logic you have these quantifiers. You could have the following
quantifier: for all x, there exists y and some statement in terms of some predicate p which
probably has several free variables.
You could have z, x and you could have y. This is common and you have this binding
occurrence of x here, an applied occurrence of x whatever this predicate is. The predicate
is some statement : : (, ,)x y p y x z∀ ∃ .
Here you have a binding occurrence of y and you have one or more applied occurrences
of y in the predicate p and the scope of x and y are delimited by the respective quantifiers
and z is free. If you look at any of your school problems in mathematics one of the first
statements you would say let x be something and then the rest of the context is probably a
solution towards x or a solution involving x.

That statement ‘let x be something’ is a binding occurrence and all other occurrences
which use that x are applied occurrences. In every problem you might have a statement
‘let x be something’ and ‘let y be something’ then in each case you state that you got a
binding occurrence. In different problems the different ‘x’s have different binding
occurrences and they therefore have different applied occurrences.
So, within a problem when you say let x denote something then that x has a scope
restricted to your solution to that problem. This is very much part of natural language and
to know where to define is very hard but to understand it is reasonably easy.
By first introducing a name and explaining it through some meaning, you give it a
meaning and that is a binding occurrence. Later assuming that meaning, you can always
use that name and every usage of that name is an applied occurrence.
Let us look at a typical Pascal kind of environment.

[Refer Slide Time: 18:16]

I have this constant declaration and in most cases in programming, binding occurrences
occur as parts of declarations when you introduce new variables.
As in the case of mathematics the binding occurrence in several languages could actually
occur after the use of that name.

For example; in mathematics it is also quite common to say let some expression be
something where you have already introduced new names which are all applied
occurrences and then you write where those new names have their meanings.
Those are the binding occurrences. For compiling reasons, many programming languages
like Pascal for efficiency insist that binding occurrences should precede use or should
precede applied occurrences.
Here is a constant declaration in a language like Pascal though I have used commas so
you could equally well take it as a language PL 0.
Say ‘m’=10 where m is a constant, 10 is a literal, pi = “3.14159”, a = pi * m * m. In each
of these cases the first introduction is a binding occurrence and all later uses of those
names are applied occurrences. In the case of a variable declaration you have a binding
occurrence then the variable is first introduced and everywhere that variable is used you
have applied occurrences including on the left side of the assignment. All these are
applied occurrences.

[Refer Slide Time: 20:00]

In a language like M.L., a ‘let’ statement is a typical occurrence of an introduction of a
binding occurrence. “Let x = e0 (not) in ‘e’ end” where I will assume that this expression
‘e’ actually uses the x. There is a binding occurrence of x and any occurrences of x inside
e would all be applied occurrences. In a typical ml session you also introduce names in
the beginning as val y = ….; val pi = 3.149. All these are binding occurrences and you are
creating an environment of names along with meanings and you are using those names in
your subsequent expressions. The most important reason for having binding occurrences
is usually the introductional names.

What are all the possibilities? A binding occurrence usually either defines by introduction
or redefines an existing name. So, names are identifiers. Identifier is the more common
term and an applied occurrence just refers to or denotes the meaning defined by the
appropriate binding occurrence. In general the semantics of the language should actually
specify what a binding occurrence is and what an applied occurrence is.

You could think of a declaration like this in Pascal as defining some binding occurrences
and also applying them somewhere. Essentially we require names because we cannot
always be using arrows. You could in theory completely get rid of names if you had some
complex way of referring to some object or some meaning. In a language like Pascal
which insists that all declarations precede use, the arrows will all be upwards. Further in a
complete program of Pascal all variables will eventually be bound; all identifiers will be
bound.

[Refer Slide Time: 20:55]

[Refer Slide time: 21:20]

There will be no free identifiers and by a complete program of a language I also include
the libraries which you might be using.
In a typical Pascal program or a FORTRAN program if you use the function ‘sin(x)’ that
‘sin’ has an applied occurrence in your program.
However, you might never actually define it within the program because it is already
available as a library.

A typical environment of a FORTRAN program includes not just your program but also
all the binding occurrences that are defined in the global environment through libraries or
through the initial global environment that is provided by the system.
Let us look at the various kinds of bindings and let us look at the meanings of bindings
more closely.

Let us just consider two simple instances. We will take a Pascal like and an ML like
language. A Pascal like language has constant declarations say, ‘const m=10’ and has
variable declarations of the form ‘var x: integer’.
An ML like language or a functional language has declarations of the form ‘val m = 10;’
and within ‘let’ expressions which are unnamed functions.
You also have function names for example; function f (y :…): … and you have
expressions like this, ‘fun fy = ….’
In the case of an imperative language the constant declaration m gives you the binding
occurrence of m which binds the name m to the value 10.
It is a name-value binding and in fact the functional language declaration of this form is
exactly the same. It gives you a name value by name.

[Refer Slide Time: 30:14]

That is what binding means. The meaning of m is just the value 10 within the scope in
which it is declared.
In imperative languages further there are these variable declarations which actually
denote locations. The variables in an imperative language actually have name-location
bindings. When you have a ‘begin end’ with the variable being updated then the variable-
location binding remains unchanged however there is also a location-value binding in the
case of a variable which can be changed by commands. In a functional language in
general there are no locations. The whole idea of a functional language is that it is
abstract enough not to include the notion of a memory as part of the language and
therefore updates and assignments are prohibited.

A variable in a functional language is like a constant in an imperative language. A
variable in a functional language is just a name-value binding and in languages in most
cases you can also look upon the function itself as a value and a function declaration
itself as another name-value binding.
Whereas variables in imperative languages implicitly assume the existence of a notion of
memory or store and they actually consist of two bindings; a name-location binding,
which is pragmatically speaking just a memory address.
There is a name-location binding and then there is a location-value binding which might
be changed depending on what are the contents of the location or how you update that
location.

In a functional language this complication of locations or memories is completely
abstracted away and you have just name-value bindings throughout and that is the
essential difference between a functional language and an imperative language.
What people consider a variable in mathematics is really a variable constant. It is variable
in the sense that it is unknown but that its binding is the same. Over the scope in which
you have a variable it represents the same value in a mathematical problem.
Similarly, in a functional language in a functional program over the scope in which a
variable is declared, it represents only one value unlike an imperative program where the
variable actually gets updated.

Only the name-location binding remains constant. The location-value binding keeps
changing constantly. The notion of a variable in a functional language is really the notion
of a variable in mathematics which really does not vary over time. It is a variable in the
sense that in mathematics usually the name variable is used as something that is unknown
but something that has a constant value. In a functional language since it is just a name-
value binding it is always constant over the scope in which the binding is effective as
opposed to a variable in an imperative language where what is constant is only the
binding between the name and the location or the address in which that variable is stored.

The name x just denotes a particular address in memory pragmatically speaking and that
alone remains constant over the scope in which this binding is effective. It does not say
anything about the location-value bindings that loosely speaking, in the case of memory
locations, means the contents of that memory location which can keep changing.
Since the issue of bindings came up it was necessary to point this out but we are really
more interested in bindings from the point of view of declarations because we eventually
have to give the semantics of declarations of let us say some language like PL0.

Let us look at the various kinds of bindings that are possible. You could have nested
bindings. For example; in a typical Pascal like program fragment let us suppose you have
a declaration of the identifier i and you have another declaration of i as a variable. All
applied occurrences of i within the ‘begin end’ block refer or mean whatever name-
location binding has been specified. All occurrences of i denote whatever name-value
binding has been specified.

In the normal lexical scope rules the scope of the variable ‘i’ declared extends through a
procedure. The scope of the constant ‘i’ extends through the entire fragment provided
there is no other declaration of i in an inner scope and any other declaration of i is a hole
in the scope of the constant i. So, in the case of what are known as statically scoped
languages, a scope just gives you an extent in the program text over which a binding
occurrence applies.

[Refer Slide Time: 32:10]

Also as a language designer the one question that arises is ‘are nested bindings
necessary?’ Why does a language like Pascal which for example boasts of simplicity a
good language for learning programming and why do almost all block-structured
languages allow nested bindings which can only be confusing?
For example; they affect readability because every time there is a reference in the main
core to an identifier, you have to find the declaration where the actual binding appears
and if you allow nested scoping and the creation of holes in the scope of a given
identifier, then you are spoiling the readability of a program.

Secondly, it also makes it necessary for a compiler or a parser, every time there is an
applied occurrence to look for the appropriate binding occurrence and verify various
aspects. For example; within a scope are you using let us say, ‘i’ only as a real variable or
as a character or a string or are you using it as a pointer? It puts an extra overhead on the
compiler and the runtime system especially in a language like Pascal which does type
checking as to where exactly the binding occurrence is and whether the meaning
specified by the binding occurrence is being explicitly followed.

A simple solution could be to just ban all nested bindings so that every time you declare a
new scope you have only new names and there should be no problem at all.

But very often when you have a program developed by a team what you would like to
give a programmer of an individual procedure, which might go deep into some program
is the flexibility to use his own names for the variables that he is using. This means that if
you disallow nested bindings then that programmer would have to know all the global
names before deciding what should be the new names to be used locally within that
procedure, which can be a difficult task.
The entire programming team should first decide what the names are for various global
variables. In a really large software project that can be a constraint rather than facility.
However, it spoils readability; it is quite disastrous in languages with default bindings
and it complicates debugging.

[Refer Slide Time: 38:23]

[Refer Slide Time: 38:44]

For example; if you intended to introduce the name in your scope but you actually forgot
to declare it the debugging process becomes quite complicated because every time that
name is considered to be global. In this case if you were the writer of the procedure and
you forgot to introduce the declaration then it will be taken that the name always refers to
some global occurrence and you will be wondering why your program does not seem to
work as you expect. It really complicates the matter and the name may not be in just one
outer scope; it might be global and your procedure might be deeply nested inside
somewhere.
So, nested bindings complicate matters quite a bit both in terms of debugging and
readability but what really clinched the issue in the case of Ada, for example is that
everybody uses i, j and k as counting variables in a for loop.

[Refer Slide Time: 38:58]

It was actually stated in a discussion on the Ada language that everybody in the world
uses i, j and k as counting variables. So, you should give the programmer the flexibility to
decide especially when the counting variable has no other significance except as a
counter for a ‘for loop’ statement for example. All of us use just i, j and k if it has no
particular significance. Nested bindings are here to stay even though they complicate
some matters.

In languages like FORTRAN for example, they had a different rule.
They said that you do not need to have a declaration which means that you need not have
binding occurrences; you need to have only applied occurrences.
However, the applied occurrences will have default bindings in this fashion. Any name
that starts with i, j, k and l which does not have a binding occurrence is taken to be an
integer variable.
Further any identifier that starts with any other letter and which does not have a binding
occurrence is taken to be a real variable.
They had these conditions which actually make matters really bad because what can
happen without these binding occurrences is that you choose your identifiers so that they
reflect the problem context.

You might actually have something starting with i; you intended it to be a real variable
but you forgot to declare it and the FORTRAN compiler also compiled it, the runtime
system is executing it but you are getting disastrous results and you may never know
about it. You may never know about it especially if you are solving a problem for which
there are no known test results. There is a legend that some of the space disasters of one
of the satellites was due to the fact that it was written in FORTRAN where there was
a ‘do’ statement in which a comma was mistakenly replaced by a period and therefore
that entire ‘do’ statement was taken as a real variable.

So, ‘do 10 i = 1,15’ means you execute that loop 15 times but if the comma is replaced by
a dot then this ‘do 10 I’ is taken as a real variable since it starts with d and there is no
binding occurrence with an initial value of 1.15.

[Refer Slide Time: 42:39]

There is a legend that one of the Venus disasters was due to a FORTRAN program bug
which definitely is never detected by a compiler; it is definitely not detected by a runtime
system because there are no binding occurrences due to the default bindings.
What it means is that small typographical errors and spelling errors which we are making
all the time in our programs would get bound by default to something other than what we
intended them to be. That is one of the reasons why later languages like Algol 60 insisted
that there should be binding occurrences for every new identifier.

[Refer Slide Time: 44:05]

There are certain bindings which are implicit for example; a constant declaration is not
really intended to be in a scope, it could be in some outer scope. You could have two
records say, ‘r and s’ in a Pascal like language.
Let us say c is a component of a record declaration which has some type and c has a
binding occurrence within the record but however c is only bound to all variables having
that record and is of a particular type. So, c is not explicitly bound either to r or s both of
which are of a record type.
The binding occurrence can actually be stretched out or decentralized. Part of the binding
occurrence can be in one statement, the other part of the binding occurrence can be in a
‘with’ statement. Within the ‘with’ statement for example, c actually gets perfectly bound
to r. Within the ‘with’ statement all references to c actually get bound to the s and the
normal scope rules apply.

The ‘begin end’ is a scope; ‘with s do begin end’ is another scope and ‘with r do begin
end’ is a hole in the scope of the scene which is bound to s.
Pragmatically speaking, even binding occurrences can actually be stretched out but the
full meaning need not appear at a single binding occurrence. It might be distributed
across 2 or more constructs which is actually not very surprising in the case of variables.
There the name-value binding occurs at one go and the location-value binding occurs
several times in different places.

Even the name-location binding in the case of variables does not fully occur at that point
in many cases. If you look at the implementation of a language like Pascal, a name
relative-location binding occurs at compile time and relative location to absolute-
location binding occurs at runtime because the structure of a block structured language is
such that you never know at compile time when you are using a dynamic memory
allocation, when you are going to call that procedure and what is going to be the base
address relative to which that variable has to be located.

Even when you look at the name-location binding purely pragmatically, it can be
stretched out across the entire spectrum from compile time to runtime.
There are other kinds of bindings. For example; in all kinds of binding that we have
discussed so far you have an identifier denoting a single object whatever that object
might be but you have also what is known as overloading and the most common
overloading available in all programming languages is the overloading of addition,
multiplication and subtraction.

[Refer Slide Time: 48:59]

The operators are also identifiers and their binding occurrences are in the global
environment in most high level programming languages.
However, even in the global environment they have two different meanings depending
upon the operands. There are actually two different identifiers, integer addition and real
addition or floating-point addition, integer multiplication and floating point
multiplication. Within the same scope these identifiers have two different bindings
simultaneously available. So, there is no creation; there is no overriding of one binding
by another, the overriding is completely local and it depends entirely on the types of the
operands. This is known as an overloading.

In the case of Pascal, another obvious overloading is that you have a function name and a
variable with the same name which stores the result of executing the function. So, that is
a case where you have a function name which denotes a function object but the same
name within the same scope also denotes a name-value binding in which the value of the
function is returned. Besides, the overloading has been carried across more modern
languages also much further.
For example; in languages like Ada you can have the same name bindings representing
different objects which are distinguished just by something simple like the types of
parameters.

In the case of procedures; within the same scope you can define two or more infix plus
operations for example; you might do plus for matrixes of some kind, you might do some
plus to denote concatenation of strings etc.

In addition to the global bindings of plus which denote integer addition or real addition
you have two more new bindings and all four of them occur simultaneously in the same
scope and the only distinction is either based on the types of the operands or the types of
parameters which is mathematically the same though in terms of language
implementation, it is different. It depends on the types of operands or order of operands.
Just on those syntactic bases you have a distinguishing capability between different
bindings for the same name available within the same scope.
Lastly, let us look at the various kinds of bindings from an implementation view point.

[Refer Slide Time: 50:40]

You can have constant variable bindings where some of them are compile time and some
of them are runtime mostly in languages which believe in a static type checking or at
least which allow the facility of static type checking.
You try to do the bindings as early as possible at compile time. In many other languages
you actually do the bindings at runtime languages. Even the identifier value and identifier
location- bindings are often done at runtime.
This is typically with dynamic data structures. Even in Pascal you have various name-
location bindings occurring at runtime.
The language, Lisp for example carries it much farther so languages like SNOBOL and
Lisp believe in runtime bindings as opposed to compile time bindings.

[Refer Slide Time: 55:37]

They believe in what are known as late bindings. As a result you can take the entire
spectrum of doing bindings and you can actually, loosely speaking, order languages.
FORTRAN and COBOL do very early bindings. Everything is done at compile time. The
complete memory allocation is done at compile time.
Even if the FORTRAN program has re-locatable code, the bindings are completed.
For example; the bindings of variables such as name memory address, absolute address
bindings are done at loading time before runtime begins.
A compile FORTRAN program might still give you a re-locatable code that means it
might only give you relative addresses but during linking and loading the entire address
calculation is completed for every variable.

For every name the address calculation is completed before. As a result FORTRAN also
has a static memory allocation. Since you do very early binding you have to decide on
exactly the kind of memory allocation well before you start running the program.
A static memory allocation is done very much like in the case of assembly language.
Every code segment is followed by a data segment for that code and so you have very
early bindings well before runtime.
There are no allocations done at runtime. You have a completely statically partitioned
memory and all absolute addresses are calculated well before the execution of the
program. At the most they are delayed till loading time.

So, FORTRAN has this property and as a result FORTRAN programs are very fast
because the overhead of memory allocation and changing bindings is not there.
But they are also quite inflexible in various ways. You cannot have dynamic arrays.
You cannot have dynamically created data structures, so, at the cost of flexibility you
have very fast executions. In SNOBOL and Lisp since the bindings are all late and most
of them are done at runtime, you have to do fresh memory allocation.

You have to do all the bindings like name-address bindings at runtime which means that
you also require a garbage collector which tells you exactly what part of the memory is
being used, what part of the memory is not being used and the request for more memory
that are all done at runtime. As a result these languages are in general very slow but they
are highly flexible. You can do the data structuring completely dynamically with
absolutely no static allocation. Most of the allocation is on the heap in such languages.
Languages like Pascal, Modula, Ada and ML actually follow an in-between policy. They
do a name-relative address binding at compile time but they postpone the relative
absolute-address binding to runtime.

In the case of C, actually most of the allocation and mostly static allocation is done as in
the case of FORTRAN except where the C compiler detects recursion. It detects
recursion by a graph construction process and the moment it detects recursion it realizes
that you really cannot do the static allocation that you do in the FORTRAN because you
do not know how many recursive activations of that function are required. You need to
do fresh allocations each time you activate. So, whatever is not recursive follows a policy
of FORTRAN and only for recursive invocations it takes a late-binding view and actually
there is a graph construction process by which it detects cycles in the graph and therefore
it also detects recursion.

C programs are very fast because they do most of the bindings at compile time.
In the case of Pascal, Modula, Ada and ML there is an extra overhead in the form of type
checking which has its own overhead.
At least in the case of Pascal it is just type checking; in the case of ML it is type
inferencing which means there is a huge computational process involved in just
compiling a function. Since you do not need to specify types in the function there is a
type inferencing system which actually solves the system of equations on types and so
there is an extra overhead at compilation.
In the next lecture we will start off with actual declarations in PL 0.

	Principles of Programming Languages
	Prof: S. Arun Kumar
	Department of Computer Science and Engineering
	Indian Institute of Technology
	Delhi
	Lecture no 10
	Lecture Title: Binding

