
Principles of Programming Languages
Prof: S. Arun Kumar

Department of Computer Science and Engineering
Indian institute of Technology

Delhi
Lecture no 1

Lecture Title: Introduction

Welcome to programming languages. We will just do a few elementary concepts and broad
classifications of programming languages without going into too much detail. This is the first
lecture so let us just look at the notion of a program or a programming language. You are all
familiar with the notion of a machine or a computer and it is what one would call a bare
machine. It just has a piece of hardware which is usually in binary. It can be thought of as a
whole lot of switches connected with complicated circuitry. The memory, the arithmetic unit
etc. consists of switches activated one way or the other and it is going to be a big problem
operating those millions and millions of switches. What you have in a bare machine is a
language consisting of binary strings.

Binary string in what is known as the Von Neumann architecture is called the stored program
concept. Both data and instructions have the same format and everything is a binary string
depending upon how you look at it; it is either a data item or an instruction to execute a
command. The Von Neumann concept means that programming such a machine basically
helps you to interpret certain sequences of bits either as data or as instructions to manipulate
some registers or store into the memory, perform some arithmetic or logical operation etc.

In general even that language what we might call the machine language can be called a
programming language. Let us take a very general view. What is a programming language?
A programming language is just some notation for describing algorithms and data. In general
we could consider a programming language to give you a means of representing algorithms
and data structures and when you have a representation of algorithms and data structures
presumably you are able to perform your manipulations.

The first point about a bare machine is that if you are going to use the machine language itself
then there is really no fundamental difference between the algorithm and the data, which
means a sequence of instructions could just as well be regarded as a sequence of data items
provided they have some circuitry that could also be executed as an algorithm.

[Refer Slide Time: 05:01]

In principle, you could execute even a sequence of data items as instructions by interpreting it
suitably. The first distinction we would like to draw is between what constitutes the data
item and what constitutes an instruction. Let us take a much more high level view. We are no
longer in the fifties when the early machines came in and you had to program in machine
language or assembly language. So, we will just look upon a programming language as a
notation for describing algorithms and data.

[Refer Slide Time: 05:05]

We could look at a program as just a sentence in this language. It is a language like any other
language. It has certain rules and certain well formed sentences. A program is just some
sentence of a programming language. A program is not necessarily an algorithm simply
because you might have a well formed sentence which is not very meaningful.

For example; the program could be a non terminating program in which case it is no longer
an algorithm. It is therefore important to realize that an algorithm is a very abstract object that
does not have any concrete form.

Only what is put down as a program is concrete. The only concrete object that you can have
is a program. The notion of an algorithm itself is an abstract entity which requires a concrete
representation in the form of a program and if a program is a sentence of the programming
language then what you require really is a programming language.

 [Refer Slide Time: 06:50]

Another alternative way of looking at the notion of a program is to think of a program as a
specification of a computation. This means we have some notion of what constitutes a
primitive step of the computation and the program gives you a finite representation of
possibly an infinite sequence of steps in a computation process.

The emphasis in all these cases is in the nature of a finitary specification. A program should
be a finite object by itself. A programming language itself is not a finite object because there
are an infinite number of programs that are possible but each program itself is a finite object
because it is just a sentence of the programming language.

Then we might think of a programming language, if you look upon a computation and the
steps in a computation as the most basic feature, just as some notation for writing programs.
In all these cases, we should emphasize the fact that this notation is important because our
notation is to give you a finitary specification of possibly infinite objects.

We might emphasize that this is actually a finitary specification and these programs
themselves as concrete objects are finitary but their effects could be infinitary. The moment
you are trying to represent any infinitary object in a finite manner you require it to be
machine understandable and you also require certain rules. Let us look at this process of
essentially giving a finitary representation to what you might consider infinitary objects.

What kinds of infinitary objects are we normally concerned with? In the most general case an
algorithm is what you want to represent in a program. An algorithm in the most general case
is a function from some domain to some co domain. A function need not necessarily be
finitary because the domain could be infinite and the co domain could be infinite. We might
think of an algorithm in general as computing either a function or a method for computing
some mathematical function or relation. These functions and relations could be infinitary. We
are looking at infinitary objects as functions. Basically mathematical functions relations can
also be considered functions. All relations could be considered functions. In general we will
concentrate on trying to get finitary representations of infinitary objects and these infinitary
objects are really functions.

You can think of the whole study of programming or computation as trying to compute or
trying to give finite specifications of computation steps of abstract mathematical functions.
However, if you look at mathematics itself it has a fairly rigorous notation. You could think
of mathematics itself as a sort of programming language except that it has one important
drawback. The drawback is that it does not specify the primitive computations that are
possible within the mathematical language.

Normally when you are talking about an algorithm to compute some function, you have
implicitly defined a set of primitive functions or primitive computation steps in terms of
which you are going to express this algorithm. One obvious case in which a lot of
mathematics does not fit into the general framework of a programming language is the
representation of infinite sets. If you look at them, the standard point in school is to say that
you can either represent a set in a roaster form or in set builder form.

Roaster form just means enumerating a list of elements and a set builder form essentially
means giving a predicate which the elements of the set should satisfy. The main difference
between the roaster form and the set builder form, also called a definition by abstraction
comes up for infinite sets. Supposing in the case of infinite sets you want to specify the set of
even numbers so you open braces, you write 0 or if you do not include 0 then you write 2, 4,
6... That is where the inadequacy of mathematical notation comes because you are not
interested really in any underlying computation process.

As far as mathematics is concerned a large part of it is just that the existence is more
important than a computational method. Whereas the set builder notation or the definition by
abstraction gives you a finitary specification so that you can represent the set of even
numbers through a notation which consists of braces that consists of a bound variable, and a
predicate in terms of the bound variable.

[Refer Slide Time: 14:38]

A typical definition of even numbers would look something like this. Take 2x where x
belongs to the natural numbers. If you look at x, x is like a locally declared variable. In fact
this is a sort of declaration of x and this 2x is a property that the element of this set should
satisfy.

Here is a case of our finitary specification as opposed to this infinitary specification. In fact
this is a finitary specification in more ways than one. Firstly, this represents a logical
predicate expressed in first order logic in a finite sentence of the first order logic. You might
consider this as a succinct finitary specification of essentially an infinitary object, the even
numbers. Whereas this is really open to many. This is really ambiguous in the sense that it is
not at all clear from this enumeration what should be the next one. You are implicitly using
human intelligence and human understanding or human ability to perform induction to claim
that the next number would be eight but we cannot at all be sure that the next number should
be eight. There might be other patterns.

It might satisfy other predicates whereas this is what one might call an accurate succinct
finitary representation using just the language of first order logic built up on a single binary
predicate on sets, which is the binary predicate this belongs to.

A lot of what we are going to do is also going to be related to the language of logic in some
ways. You will see the analogies between programming languages and logic as we go along.
The main motivations of logic are really of a slightly more abstract nature but programming
languages derive mainly from logic in the sense that a language like first order logic does not
allow you the freedom to write these dots and there is no such thing. You have a method of
construction of predicates which is always finitary.

You have rules of inferential logic which are always finitary or they might be infinitary like if
you have axiom schemas, or rules like modes ponens etc. They are finitary representations
again of infinitary objects. Further in a logical language with axioms and rules of inference it
is implicitly understood that those axioms and rules of inference are such that there exists an

algorithm which when given any instance of the hypothesis of these rules, should be able to
tell you whether the conclusion of the rule is a valid inference.

[Refer Slide Time: 19:25]

Let us take a simple logical rule like modes ponens. You have a predicate X, you have a
predicate X -> Y and you have Y. This rule actually specifies a three tube pair of this form
where X and Y belong to (let us say) the language of first order logic, which we may call L1
as opposed to proposition logic which we may write L NAUGHT. You take two sentences of
first order logic and if they have this pattern then call one sentence X and the other sentence
has the pattern X conditional Y then you are able to infer Y and you cannot have all rules of
inferencing logic. They are finitary.

There are also finitary specifications and something that is absolutely essential is that it is
decidable by an algorithm whether a certain step in the proof of a logical statement was
derived by an application of a rule of inference on some preceding steps.

If you claim that you have some predicates of the form A -> B ->NAUGHT C and then you
derive from these premises if you were to claim that by the use of modus ponens you can
infer NAUGHT C then there has to be an algorithm which when given these two as inputs
will be able to tell you whether this is an instance of an application in these two definitions.
In this case the algorithm should actually tell you that it is not an application in this rule of
inference.

It should be able to give you both yes and no answers in finite time. Most programming
languages that we will study will have a lot of their motivations actually derived from logic.
A large part of logic was actually concerned with the notion of how much of mathematics is
actually doable by a machine and what kinds of theorems in mathematics can be actually
proved by algorithms by a machine whose basic primitive operations are that they are able to
do pattern matching and substitution. This is an instance of doing pattern matching and
substitution.

An inference rule is really an infinite object. A relation of this kind is a finite representation.
A proof is a finite object. A theorem itself is a sentence of logical language and is a finite
object representing possibly an infinite number of instances.

The finitary nature of all these will actually influence the nature of our logic. For example;
you cannot give axioms and rules of inference which are infinitary in a logical language.
Everything that is infinitary should have a finite representation. There are of course infinitary
objects which will have no finite representations. They are clearly not going to be part of our
computational process. For example; generating an infinite sequence of random numbers, not
pseudo random numbers but pure random numbers is not a computational process period. We
are interested in those kinds of infinitary objects which somehow have finitary
representations. It can be infinite sets represented as predicates like unary, binary, and ternary
but some finitary sets with a finitary representation. We are interested in infinitary
computational processes which have finitary representations. We are interested in
programming languages which allow for finitary representation of inherently infinitary
objects.

Let us go ahead. This much of philosophy is perhaps sufficient for the moment but it is
important to realize that right from nineteen hundred when the mathematician David Hilbert
posed this problem to the congress in mathematics the main emphasis of logicians has been to
try; to define the notion of an algorithm, to define the notion of the computational process, to
be able to exactly define what is possible by a computational process and what is not possible
by a computational process.

Everything that is possible by a computational process should have a finite representation and
anything that is infinitary is not part of the computational process with some restrictions. If
we just come down from logic a bit then we can look at a logical language itself as a
mathematical object for example; there exists only a finite number of rules for generating an
infinite number of sentences of that language.

Let us take a language like first order logic. We have only a finite set of formation rules,
which allow you to generate an infinite number of logical sentences. A finitary nature of the
rules also gives you an algorithm to check whether a given string of symbols is a syntactically
valid sentence of the logical language.

An important element of that logical language is that the generation process should be
finitary. There should be only a finite set of rules and there should be an algorithm which can
clearly tell you whether a given sentence is a well formed sentence of the language. If you
look at propositional logic, it does not allow you to specify infinitary objects that we require
for applying propositional logic to some area of mathematics like number theory.

It does not allow you to specify infinite sets or certain properties of infinite sets easily. Very
often, an extension of proportional logic to first order logic, which allows you to do this in a
finitary way is the use of quantifiers. So, you can for example specify the whole of set theory
in first order logic, the axioms of set theory and the predicates that are valid for all possible
sets. By set theory I mean axiomatic set theory in the sense that we do not assume numbers or
any predefined set of objects.

The only notion is the notion of a set. You generate all sets, numbers and everything from the
notion of an empty set and a single binary predicate called belong stood. They have these

formation rules and so we are interested essentially in capturing infinitary processes within
finitary languages. You can see a progression of ideas. Firstly, there is pure mathematics
which is platonic in nature in the sense that the notion of a computation itself is not an
important element of the formal discipline of mathematics. Then you have logic which
actually gives you a loose notion of what is possible by a machine and what is not possible
and allows you to specify infinitary objects in some finitary ways. Lastly, we have
programming languages which specify with a great deal of accuracy exactly the primitive
computational processes that you are allowed to use. A programming language also has to
satisfy all the constraints of a logical language and in addition it should be consistent with
what might be called the primitive computational processes.

For example; one primitive computational process that you must all have studied in school is
that of ruler and compass constructions. There are only two primitive computational steps.
We are able to draw lines with the ruler, mark off segments. We are able to use a compass to
draw certain angles or to draw arbitrary angles. One impossible computation in this case is
an algorithm using only this primitive concept to trisect an arbitrary angle.

For example; you are not allowed to use protractors etc. and you are not allowed to measure
the angle. You can only prove that an angle is of a certain measure if you draw a line
perpendicular to another line; with a construction proof it shows that it is perpendicular and
then you bisect that. You can then claim that the bisected angle is let us say, forty five
degrees. But given just an arbitrary angle to be raised from a point to be able to trisect it with
just these primitive tools is an impossible task.

You might think of the algorithms of ruler and compass constructions as the only two
computational processes you have in a programming language.

It is not machine readable. It is meant to be human readable so you write it in a lose fashion
but essentially you use only those computations which are possible within the domain of
Euclidean geometry which means you are not allowed to measure out angles yourself. You
are only allowed to prove that a certain angle has a certain measure. You are not allowed to
measure out lengths in terms of centimeters or meters. You are only allowed to measure out
an arbitrary unit and take multiples of that arbitrary unit. You could bisect that arbitrary unit.
You could trisect that arbitrary unit of length measure. You can therefore claim that it is
actually one third of the unit you took but you cannot claim that you have constructed one by
PI of a unit of length, unless you can prove that just by this process you are going to get
something that is one by PI of a unit. Our programming language has in grained in it a
normal computational process which we associate with a digital computer.

It is not the last word because you could have other computational process such as the ruler
and compass constructions. You could have analog computers etc. We are interested
primarily in the computational processes associated with digital computers. We could look at
even the machine language as a programming language but we are not really interested in
machine language because it is a very simple sort of a language. It is very difficult to get any
program right but the language itself is a very simple language and probably that is why it
makes it so difficult to program and what we are interested in primarily are what are known
as high level languages where the primitives of the computation or what you might say is the
machine that is made available. Once we have implemented a language on a machine you
could think of that as a machine of that language.

Supposing when we are doing PASCAL programming we are not really worried about the
underlying machine language, the underlying architecture or about anything for that matter.
As far as we are concerned what we have is a PASCAL machine. There is a level of
abstraction at which PASCAL is the hardware machine language or it is just some software
language. As far as we are concerned it is a PASCAL machine.

It is important to realize that we can actually take some bear machine and cover it up with
layers and layers of software and think of just one abstract machine which gives us certain
capabilities. If you look at the bear machine it gives you only the capabilities to manipulate
switches to write programs in binary. If you look at a PASCAL machine it gives you no extra
computational power but it gives you the ability to look upon the whole unit as a single
machine allowing construction of complicated structured programs.

It allows various kinds of abstraction mechanisms, procedures, functions and it allows you to
express differently from what the bare machine would have given you. Let us look at why we
should study programming languages because all the time we are looking at the construction
of some virtual machine and facilities that the machine gives us which we are not really
interested in. We are interested in various kinds of features that are there. In the case of a
bare machine you are interested in its architecture. If you have a PASCAL machine its
architecture is really the features of PASCAL. If you have a LISP machine its architecture is
really the features of LISP.

[Refer Slide Time: 39:20]

Our study of programming languages is mainly to understand why certain features have been
included in the programming language. You want to understand for example how best those
features could be used. If you want to understand how that language is implemented
presumably you would be able to learn new languages easily. You could design a new
language which is more important and perhaps you would also be able to understand the
underlying implementations. May be you would be able to incorporate new features in a
programming language.

[Refer Slide Time: 40:19]

Let us just look at languages. We sort of classify what kinds of languages there are. Firstly,
we have these low level languages, some machine and assembly languages which are not of
our interest. You will learn about them in some course on architecture or organization but we
are interested in primarily these high level languages of which we can think of three broad
classifications: One is a class of imperative languages towards which most of the last forty
years since the first digital computers has gone in their design.

Then there are functional or applicative languages. It is then possible to use logic itself as a
programming language. You can actually mix up all of them and you can have impure
functional languages. An imperative language means that it uses the notion of the command.
It uses the notion of a state to change a state. So the commands change states. That is what an
imperative language would do. A functional language is one which allows you to program
something that is as close to mathematics as possible. We will get into these notions a bit
more in detail later. A broad classification of languages is just in terms of high level
languages imperative, functional, logic etc.

[Refer Slide Time: 42:27]

You could also classify languages by features and by features in the sense of what the most
glaring feature in the language is. A large part of our languages are really what might be
called sequential languages. Most of the languages that you have programmed in are purely
sequential languages. Then you have parallel languages which are very often languages
meant for certain specialized architectures. For instance you have a single instruction
multiple data and you execute instructions in parallel and there are implicit methods to
implement them in a parallel fashion. You have what are known as distributed languages. In
the case of a parallel language you assume that there are so many processors which will
execute the same instructions in a synchronous lock step fashion.

Most of the vector processors actually have sequential languages vectorized or made parallel
like in the case FORTRAN 90, VECTOR PROCESSING FORTRAN etc. Distributed
languages are those in which you actually assume that the different units of a program are
going to lie geographically distributed across a network and they have to somehow co-
operate to achieve some common task. Then in both parallel and distributed languages the
notion of a process of a computational process into which a program is split is inherently or
intimately related to the computational power to the number of units of computation. That
number of units is of the CPUs that you have.

The notion of a process and a processor are really the same. You are writing one process per
processor in both these cases. In the case of concurrent languages you are basically taking the
notion of the process to be a loose entity completely different from the existing process which
does not necessarily have to be mapped on to the existing processes. The notion of the
process gets de-linked from the notion of the processor. You have other kinds of languages
whose primary feature is that of modules of separate compilation and more recently you have
what might be called object-oriented languages. These add extra features on top of the
existing languages usually but there is something fundamental about the new feature that they
introduce.

[Refer Slide Time: 46:48]

Let us quickly go through some of these languages. If you were to take the history of
programming languages, you would find that there is a certain chronological dependence.
The first high level languages so to speak were FORTRAN which is mainly meant for
scientific computation and then COBOL which is meant for business.

It was more verbose. It actually used full English sentences to represent computations. It
made the first division distinction between data and program and was meant to use a large
amount of data and do very low processing. They were IO bound programs whereas
FORTRAN was meant for minimal IO and maximum computation. These languages gave
rise to one important class of languages called the ALGOL like languages which came from
the ‘ALGOL 60’ Report.

FORTRAN also had its offshoots in basic. Then there were these ALGOL like languages.
Among the ALGOL like languages you have PASCAL, PL1 and Simula etc. PL1 was an
attempt at a unified language for both scientific and business commercial processing and
from PASCAL you get extra features like Modula and Ada. From Simula you have got these
object oriented languages starting from Smalltalk-80. All these and somewhere in a parallel
stream you have BCPL and C. Actually BCPL was a transformation of a language called B
which itself was a transformation of a language called A. The programming language ‘C’ was
derived from BCPL by modification. Then when Smalltalk-80 came up object- oriented ness
became a big buzz word. You had C++. That is briefly the pedigree of languages that we
have covered. We also have functional languages.

[Refer Slide Time: 48:53]

Let us let us look at functional languages. Apart from these imperative languages you had
basically the first functional language which was LISP from which we derived various
versions MacLisp, Scheme Common Lisp. MacLisp and Common Lisp are really impure
versions of LISP. When we understand functionality we will come to what we mean by
impure versions but many of you have probably studied Scheme.

Scheme is a cleaned up version of LISP and is meant for LISP processing. There was also a
language designed in the 60s called the SNOBOL which was meant for string processing. It
allowed efficient pattern matching constructs to be programmed and these have actually
yielded along with the emphasis on tied checking to a language called ML. It came up in the
80s and all these languages like LISP and ML were inspired by what is known as Lambda
(λ) calculus which we will study. It is the basis of all functional languages.

	Principles of Programming Languages
	Prof: S. Arun Kumar
	Department of Computer Science and Engineering
	Indian institute of Technology
	Delhi
	Lecture no 1
	Lecture Title: Introduction
	Welcome to programming languages. We will just do a few elementary concepts and broad classifications of programming languages without going into too much detail. This is the first lecture so let us just look at the notion of a program or a programmin...
	Binary string in what is known as the Von Neumann architecture is called the stored program concept. Both data and instructions have the same format and everything is a binary string depending upon how you look at it; it is either a data item or an in...
	In general even that language what we might call the machine language can be called a programming language. Let us take a very general view. What is a programming language?
	A programming language is just some notation for describing algorithms and data. In general we could consider a programming language to give you a means of representing algorithms and data structures and when you have a representation of algorithms an...
	The first point about a bare machine is that if you are going to use the machine language itself then there is really no fundamental difference between the algorithm and the data, which means a sequence of instructions could just as well be regarded a...
	[Refer Slide Time: 05:01]
	In principle, you could execute even a sequence of data items as instructions by interpreting it suitably. The first distinction we would like to draw is between what constitutes the data item and what constitutes an instruction. Let us take a much ...
	[Refer Slide Time: 05:05]
	We could look at a program as just a sentence in this language. It is a language like any other language. It has certain rules and certain well formed sentences. A program is just some sentence of a programming language. A program is not necessarily a...
	For example; the program could be a non terminating program in which case it is no longer an algorithm. It is therefore important to realize that an algorithm is a very abstract object that does not have any concrete form.
	Only what is put down as a program is concrete. The only concrete object that you can have is a program. The notion of an algorithm itself is an abstract entity which requires a concrete representation in the form of a program and if a program is a se...
	[Refer Slide Time: 06:50]
	Another alternative way of looking at the notion of a program is to think of a program as a specification of a computation. This means we have some notion of what constitutes a primitive step of the computation and the program gives you a finite repre...
	The emphasis in all these cases is in the nature of a finitary specification. A program should be a finite object by itself. A programming language itself is not a finite object because there are an infinite number of programs that are possible but ea...
	Then we might think of a programming language, if you look upon a computation and the steps in a computation as the most basic feature, just as some notation for writing programs. In all these cases, we should emphasize the fact that this notation is ...
	We might emphasize that this is actually a finitary specification and these programs themselves as concrete objects are finitary but their effects could be infinitary. The moment you are trying to represent any infinitary object in a finite manner you...
	What kinds of infinitary objects are we normally concerned with? In the most general case an algorithm is what you want to represent in a program. An algorithm in the most general case is a function from some domain to some co domain. A function need ...
	You can think of the whole study of programming or computation as trying to compute or trying to give finite specifications of computation steps of abstract mathematical functions. However, if you look at mathematics itself it has a fairly rigorous no...
	Normally when you are talking about an algorithm to compute some function, you have implicitly defined a set of primitive functions or primitive computation steps in terms of which you are going to express this algorithm. One obvious case in which a l...
	Roaster form just means enumerating a list of elements and a set builder form essentially means giving a predicate which the elements of the set should satisfy. The main difference between the roaster form and the set builder form, also called a defin...
	As far as mathematics is concerned a large part of it is just that the existence is more important than a computational method. Whereas the set builder notation or the definition by abstraction gives you a finitary specification so that you can repres...
	[Refer Slide Time: 14:38]
	A typical definition of even numbers would look something like this. Take 2x where x belongs to the natural numbers. If you look at x, x is like a locally declared variable. In fact this is a sort of declaration of x and this 2x is a property that th...
	Here is a case of our finitary specification as opposed to this infinitary specification. In fact this is a finitary specification in more ways than one. Firstly, this represents a logical predicate expressed in first order logic in a finite sentence ...
	It might satisfy other predicates whereas this is what one might call an accurate succinct finitary representation using just the language of first order logic built up on a single binary predicate on sets, which is the binary predicate this belongs to.
	A lot of what we are going to do is also going to be related to the language of logic in some ways. You will see the analogies between programming languages and logic as we go along. The main motivations of logic are really of a slightly more abstract...
	You have rules of inferential logic which are always finitary or they might be infinitary like if you have axiom schemas, or rules like modes ponens etc. They are finitary representations again of infinitary objects. Further in a logical language with...
	[Refer Slide Time: 19:25]
	Let us take a simple logical rule like modes ponens. You have a predicate X, you have a predicate X -> Y and you have Y. This rule actually specifies a three tube pair of this form where X and Y belong to (let us say) the language of first order logic...
	There are also finitary specifications and something that is absolutely essential is that it is decidable by an algorithm whether a certain step in the proof of a logical statement was derived by an application of a rule of inference on some preceding...
	If you claim that you have some predicates of the form A -> B ->NAUGHT C and then you derive from these premises if you were to claim that by the use of modus ponens you can infer NAUGHT C then there has to be an algorithm which when given these two a...
	It should be able to give you both yes and no answers in finite time. Most programming languages that we will study will have a lot of their motivations actually derived from logic. A large part of logic was actually concerned with the notion of how m...
	An inference rule is really an infinite object. A relation of this kind is a finite representation. A proof is a finite object. A theorem itself is a sentence of logical language and is a finite object representing possibly an infinite number of insta...
	The finitary nature of all these will actually influence the nature of our logic. For example; you cannot give axioms and rules of inference which are infinitary in a logical language. Everything that is infinitary should have a finite representation....
	Let us go ahead. This much of philosophy is perhaps sufficient for the moment but it is important to realize that right from nineteen hundred when the mathematician David Hilbert posed this problem to the congress in mathematics the main emphasis of l...
	Everything that is possible by a computational process should have a finite representation and anything that is infinitary is not part of the computational process with some restrictions. If we just come down from logic a bit then we can look at a log...
	Let us take a language like first order logic. We have only a finite set of formation rules, which allow you to generate an infinite number of logical sentences. A finitary nature of the rules also gives you an algorithm to check whether a given strin...
	An important element of that logical language is that the generation process should be finitary. There should be only a finite set of rules and there should be an algorithm which can clearly tell you whether a given sentence is a well formed sentence ...
	It does not allow you to specify infinite sets or certain properties of infinite sets easily. Very often, an extension of proportional logic to first order logic, which allows you to do this in a finitary way is the use of quantifiers. So, you can for...
	The only notion is the notion of a set. You generate all sets, numbers and everything from the notion of an empty set and a single binary predicate called belong stood. They have these formation rules and so we are interested essentially in capturing ...
	For example; one primitive computational process that you must all have studied in school is that of ruler and compass constructions. There are only two primitive computational steps. We are able to draw lines with the ruler, mark off segments. We are...
	For example; you are not allowed to use protractors etc. and you are not allowed to measure the angle. You can only prove that an angle is of a certain measure if you draw a line perpendicular to another line; with a construction proof it shows that i...
	You might think of the algorithms of ruler and compass constructions as the only two computational processes you have in a programming language.
	It is not machine readable. It is meant to be human readable so you write it in a lose fashion but essentially you use only those computations which are possible within the domain of Euclidean geometry which means you are not allowed to measure out an...
	It is not the last word because you could have other computational process such as the ruler and compass constructions. You could have analog computers etc. We are interested primarily in the computational processes associated with digital computers. ...
	Supposing when we are doing PASCAL programming we are not really worried about the underlying machine language, the underlying architecture or about anything for that matter. As far as we are concerned what we have is a PASCAL machine. There is a leve...
	It is important to realize that we can actually take some bear machine and cover it up with layers and layers of software and think of just one abstract machine which gives us certain capabilities. If you look at the bear machine it gives you only the...
	It allows various kinds of abstraction mechanisms, procedures, functions and it allows you to express differently from what the bare machine would have given you. Let us look at why we should study programming languages because all the time we are loo...
	[Refer Slide Time: 39:20]
	Our study of programming languages is mainly to understand why certain features have been included in the programming language. You want to understand for example how best those features could be used. If you want to understand how that language is im...
	[Refer Slide Time: 40:19]
	Let us just look at languages. We sort of classify what kinds of languages there are. Firstly, we have these low level languages, some machine and assembly languages which are not of our interest. You will learn about them in some course on architectu...
	Then there are functional or applicative languages. It is then possible to use logic itself as a programming language. You can actually mix up all of them and you can have impure functional languages. An imperative language means that it uses the noti...
	[Refer Slide Time: 42:27]
	You could also classify languages by features and by features in the sense of what the most glaring feature in the language is. A large part of our languages are really what might be called sequential languages. Most of the languages that you have pro...
	Most of the vector processors actually have sequential languages vectorized or made parallel like in the case FORTRAN 90, VECTOR PROCESSING FORTRAN etc. Distributed languages are those in which you actually assume that the different units of a program...
	The notion of a process and a processor are really the same. You are writing one process per processor in both these cases. In the case of concurrent languages you are basically taking the notion of the process to be a loose entity completely differen...
	[Refer Slide Time: 46:48]
	Let us quickly go through some of these languages. If you were to take the history of programming languages, you would find that there is a certain chronological dependence.
	The first high level languages so to speak were FORTRAN which is mainly meant for scientific computation and then COBOL which is meant for business.
	It was more verbose. It actually used full English sentences to represent computations. It made the first division distinction between data and program and was meant to use a large amount of data and do very low processing. They were IO bound programs...
	FORTRAN also had its offshoots in basic. Then there were these ALGOL like languages. Among the ALGOL like languages you have PASCAL, PL1 and Simula etc. PL1 was an attempt at a unified language for both scientific and business commercial processing an...
	[Refer Slide Time: 48:53]
	Let us let us look at functional languages. Apart from these imperative languages you had basically the first functional language which was LISP from which we derived various versions MacLisp, Scheme Common Lisp. MacLisp and Common Lisp are really imp...
	Scheme is a cleaned up version of LISP and is meant for LISP processing. There was also a language designed in the 60s called the SNOBOL which was meant for string processing. It allowed efficient pattern matching constructs to be programmed and these...

