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Welcome to programming languages. We will just do a few elementary concepts and broad 
classifications of programming languages without going into too much detail. This is the first 
lecture so let us just look at the notion of a program or a programming language. You are all 
familiar with the notion of a machine or a computer and it is what one would call a bare 
machine. It just has a piece of hardware which is usually in binary. It can be thought of as a 
whole lot of switches connected with complicated circuitry. The memory, the arithmetic unit 
etc. consists of switches activated one way or the other and it is going to be a big problem 
operating those millions and millions of switches. What you have in a bare machine is a 
language consisting of binary strings. 
 
Binary string in what is known as the Von Neumann architecture is called the stored program 
concept. Both data and instructions have the same format and everything is a binary string 
depending upon how you look at it; it is either a data item or an instruction to execute a 
command. The Von Neumann concept means that programming such a machine basically 
helps you to interpret certain sequences of bits either as data or as instructions to manipulate 
some registers or store into the memory, perform some arithmetic or logical operation etc. 
  
In general even that language what we might call the machine language can be called a 
programming language. Let us take a very general view.  What is a programming language? 
A programming language is just some notation for describing algorithms and data. In general 
we could consider a programming language to give you a means of representing algorithms 
and data structures and when you have a representation of algorithms and data structures 
presumably you are able to perform your manipulations. 
 
The first point about a bare machine is that if you are going to use the machine language itself 
then there is really no fundamental difference between the algorithm and the data, which 
means a sequence of instructions could just as well be regarded as a sequence of data items 
provided they have some circuitry that could also be executed as an algorithm.  
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In principle, you could execute even a sequence of data items as instructions by interpreting it 
suitably.  The first distinction we would like to draw is between what constitutes the data 
item and what constitutes an instruction.  Let us take a much more high level view. We are no 
longer in the fifties when the early machines came in and you had to program in machine 
language or assembly language.  So, we will just look upon a programming language as a 
notation for describing algorithms and data.  
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We could look at a program as just a sentence in this language. It is a language like any other 
language. It has certain rules and certain well formed sentences. A program is just some 
sentence of a programming language. A program is not necessarily an algorithm simply 
because you might have a well formed sentence which is not very meaningful. 



For example; the program could be a non terminating program in which case it is no longer 
an algorithm. It is therefore important to realize that an algorithm is a very abstract object that 
does not have any concrete form.  
 
Only what is put down as a program is concrete. The only concrete object that you can have 
is a program. The notion of an algorithm itself is an abstract entity which requires a concrete 
representation in the form of a program and if a program is a sentence of the programming 
language then what you require really is a programming language. 
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Another alternative way of looking at the notion of a program is to think of a program as a 
specification of a computation. This means we have some notion of what constitutes a 
primitive step of the computation and the program gives you a finite representation of 
possibly an infinite sequence of steps in a computation process. 
 
The emphasis in all these cases is in the nature of a finitary specification. A program should 
be a finite object by itself. A programming language itself is not a finite object because there 
are an infinite number of programs that are possible but each program itself is a finite object 
because it is just a sentence of the programming language. 
 
Then we might think of a programming language, if you look upon a computation and the 
steps in a computation as the most basic feature, just as some notation for writing programs. 
In all these cases, we should emphasize the fact that this notation is important because our 
notation is to give you a finitary specification of possibly infinite objects.  
 
We might emphasize that this is actually a finitary specification and these programs 
themselves as concrete objects are finitary but their effects could be infinitary. The moment 
you are trying to represent any infinitary object in a finite manner you require it to be 
machine understandable and you also require certain rules. Let us look at this process of 
essentially giving a finitary representation to what you might consider infinitary objects. 
 



What kinds of infinitary objects are we normally concerned with? In the most general case an 
algorithm is what you want to represent in a program. An algorithm in the most general case 
is a function from some domain to some co domain. A function need not necessarily be 
finitary because the domain could be infinite and the co domain could be infinite. We might 
think of an algorithm in general as computing either a function or a method for computing 
some mathematical function or relation. These functions and relations could be infinitary. We 
are looking at infinitary objects as functions. Basically mathematical functions relations can 
also be considered functions. All relations could be considered functions. In general we will 
concentrate on trying to get finitary representations of infinitary objects and these infinitary 
objects are really functions.  
 
You can think of the whole study of programming or computation as trying to compute or 
trying to give finite specifications of computation steps of abstract mathematical functions. 
However, if you look at mathematics itself it has a fairly rigorous notation. You could think 
of mathematics itself as a sort of programming language except that it has one important 
drawback.  The drawback is that it does not specify the primitive computations that are 
possible within the mathematical language. 
 
Normally when you are talking about an algorithm to compute some function, you have 
implicitly defined a set of primitive functions or primitive computation steps in terms of 
which you are going to express this algorithm. One obvious case in which a lot of 
mathematics does not fit into the general framework of a programming language is the 
representation of infinite sets. If you look at them, the standard point in school is to say that 
you can either represent a set in a roaster form or in set builder form.  
 
Roaster form just means enumerating a list of elements and a set builder form essentially 
means giving a predicate which the elements of the set should satisfy. The main difference 
between the roaster form and the set builder form, also called a definition by abstraction 
comes up for infinite sets. Supposing in the case of infinite sets you want to specify the set of 
even numbers so you open braces, you write 0 or if you do not include 0 then you write 2, 4, 
6... That is where the inadequacy of mathematical notation comes because you are not 
interested really in any underlying computation process.  
 
As far as mathematics is concerned a large part of it is just that the existence is more 
important than a computational method. Whereas the set builder notation or the definition by 
abstraction gives you a finitary specification so that you can represent the set of even 
numbers through a notation which consists of braces that consists of a bound variable, and a 
predicate in terms of the bound variable.  
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A typical definition of even numbers would look something like this.  Take 2x where x 
belongs to the natural numbers. If you look at x, x is like a locally declared variable. In fact 
this is a sort of declaration of x and this 2x is a property that the element of this set should 
satisfy.  
 
Here is a case of our finitary specification as opposed to this infinitary specification. In fact 
this is a finitary specification in more ways than one. Firstly, this represents a logical 
predicate expressed in first order logic in a finite sentence of the first order logic.  You might 
consider this as a succinct finitary specification of essentially an infinitary object, the even 
numbers. Whereas this is really open to many. This is really ambiguous in the sense that it is 
not at all clear from this enumeration what should be the next one. You are implicitly using 
human intelligence and human understanding or human ability to perform induction to claim 
that the next number would be eight but we cannot at all be sure that the next number should 
be eight. There might be other patterns. 
 
It might satisfy other predicates whereas this is what one might call an accurate succinct 
finitary representation using just the language of first order logic built up on a single binary 
predicate on sets, which is the binary predicate this belongs to.  
 
A lot of what we are going to do is also going to be related to the language of logic in some 
ways. You will see the analogies between programming languages and logic as we go along. 
The main motivations of logic are really of a slightly more abstract nature but programming 
languages derive mainly from logic in the sense that a language like first order logic does not 
allow you the freedom to write these dots and there is no such thing. You have a method of 
construction of predicates which is always finitary.  
 
You have rules of inferential logic which are always finitary or they might be infinitary like if 
you have axiom schemas, or rules like modes ponens etc. They are finitary representations 
again of infinitary objects. Further in a logical language with axioms and rules of inference it 
is implicitly understood that those axioms and rules of inference are such that there exists an 



algorithm which when given any instance of the hypothesis of these rules, should be able to 
tell you whether the conclusion of the rule is a valid inference.  
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Let us take a simple logical rule like modes ponens. You have a predicate X, you have a 
predicate X -> Y and you have Y. This rule actually specifies a three tube pair of this form 
where X and Y belong to (let us say) the language of first order logic, which we may call L1 
as opposed to proposition logic which we may write L NAUGHT. You take two sentences of 
first order logic and if they have this pattern then call one sentence X and the other sentence 
has the pattern X conditional Y then you are able to infer Y and you cannot have all rules of 
inferencing logic. They are finitary.  
 
There are also finitary specifications and something that is absolutely essential is that it is 
decidable by an algorithm whether a certain step in the proof of a logical statement was 
derived by an application of a rule of inference on some preceding steps. 
 
If you claim that you have some predicates of the form A -> B ->NAUGHT C and then you 
derive from these premises if you were to claim that by the use of modus ponens you can 
infer NAUGHT C then there has to be an algorithm which when given these two as inputs 
will be able to tell you whether this is an instance of an application in these two definitions. 
In this case the algorithm should actually tell you that it is not an application in this rule of 
inference. 
 
It should be able to give you both yes and no answers in finite time. Most programming 
languages that we will study will have a lot of their motivations actually derived from logic. 
A large part of logic was actually concerned with the notion of how much of mathematics is 
actually doable by a machine and what kinds of theorems in mathematics can be actually 
proved by algorithms by a machine whose basic primitive operations are that they are able to 
do pattern matching and substitution.  This is an instance of doing pattern matching and 
substitution.  
 



An inference rule is really an infinite object. A relation of this kind is a finite representation. 
A proof is a finite object. A theorem itself is a sentence of logical language and is a finite 
object representing possibly an infinite number of instances. 
 
The finitary nature of all these will actually influence the nature of our logic. For example; 
you cannot give axioms and rules of inference which are infinitary in a logical language. 
Everything that is infinitary should have a finite representation. There are of course infinitary 
objects which will have no finite representations. They are clearly not going to be part of our 
computational process. For example; generating an infinite sequence of random numbers, not 
pseudo random numbers but pure random numbers is not a computational process period. We 
are interested in those kinds of infinitary objects which somehow have finitary 
representations. It can be infinite sets represented as predicates like unary, binary, and ternary 
but some finitary sets with a finitary representation. We are interested in infinitary 
computational processes which have finitary representations. We are interested in 
programming languages which allow for finitary representation of inherently infinitary 
objects. 
 
Let us go ahead. This much of philosophy is perhaps sufficient for the moment but it is 
important to realize that right from nineteen hundred when the mathematician David Hilbert 
posed this problem to the congress in mathematics the main emphasis of logicians has been to 
try; to define the notion of an algorithm, to define the notion of the computational process, to 
be able to exactly define what is possible by a computational process and what is not possible 
by a computational process.  
 
Everything that is possible by a computational process should have a finite representation and 
anything that is infinitary is not part of the computational process with some restrictions. If 
we just come down from logic a bit then we can look at a logical language itself as a 
mathematical object for example; there exists only a finite number of rules for generating an 
infinite number of sentences of that language. 
 
Let us take a language like first order logic. We have only a finite set of formation rules, 
which allow you to generate an infinite number of logical sentences. A finitary nature of the 
rules also gives you an algorithm to check whether a given string of symbols is a syntactically 
valid sentence of the logical language. 
 
An important element of that logical language is that the generation process should be 
finitary. There should be only a finite set of rules and there should be an algorithm which can 
clearly tell you whether a given sentence is a well formed sentence of the language. If you 
look at propositional logic, it does not allow you to specify infinitary objects that we require 
for applying propositional logic to some area of mathematics like number theory.  
 
It does not allow you to specify infinite sets or certain properties of infinite sets easily. Very 
often, an extension of proportional logic to first order logic, which allows you to do this in a 
finitary way is the use of quantifiers. So, you can for example specify the whole of set theory 
in first order logic, the axioms of set theory and the predicates that are valid for all possible 
sets. By set theory I mean axiomatic set theory in the sense that we do not assume numbers or 
any predefined set of objects.  
 
The only notion is the notion of a set. You generate all sets, numbers and everything from the 
notion of an empty set and a single binary predicate called belong stood. They have these 



formation rules and so we are interested essentially in capturing infinitary processes within 
finitary languages. You can see a progression of ideas. Firstly, there is pure mathematics 
which is platonic in nature in the sense that the notion of a computation itself is not an 
important element of the formal discipline of mathematics. Then you have logic which 
actually gives you a loose notion of what is possible by a machine and what is not possible 
and allows you to specify infinitary objects in some finitary ways. Lastly, we have 
programming languages which specify with a great deal of accuracy exactly the primitive 
computational processes that you are allowed to use. A programming language also has to 
satisfy all the constraints of a logical language and in addition it should be consistent with 
what might be called the primitive computational processes. 
 
For example; one primitive computational process that you must all have studied in school is 
that of ruler and compass constructions. There are only two primitive computational steps. 
We are able to draw lines with the ruler, mark off segments. We are able to use a compass to 
draw certain angles or to draw arbitrary angles.  One impossible computation in this case is 
an algorithm using only this primitive concept to trisect an arbitrary angle.  
 
For example; you are not allowed to use protractors etc. and you are not allowed to measure 
the angle. You can only prove that an angle is of a certain measure if you draw a line 
perpendicular to another line; with a construction proof it shows that it is perpendicular and 
then you bisect that. You can then claim that the bisected angle is let us say, forty five 
degrees. But given just an arbitrary angle to be raised from a point to be able to trisect it with 
just these primitive tools is an impossible task.  
 
You might think of the algorithms of ruler and compass constructions as the only two 
computational processes you have in a programming language. 
  
It is not machine readable. It is meant to be human readable so you write it in a lose fashion 
but essentially you use only those computations which are possible within the domain of 
Euclidean geometry which means you are not allowed to measure out angles yourself. You 
are only allowed to prove that a certain angle has a certain measure. You are not allowed to 
measure out lengths in terms of centimeters or meters. You are only allowed to measure out 
an arbitrary unit and take multiples of that arbitrary unit. You could bisect that arbitrary unit. 
You could trisect that arbitrary unit of length measure. You can therefore claim that it is 
actually one third of the unit you took but you cannot claim that you have constructed one by 
PI of a unit of length, unless you can prove that just by this process you are going to get 
something that is one by PI of a unit.  Our programming language has in grained in it a 
normal computational process which we associate with a digital computer.  
 
It is not the last word because you could have other computational process such as the ruler 
and compass constructions. You could have analog computers etc. We are interested 
primarily in the computational processes associated with digital computers. We could look at 
even the machine language as a programming language but we are not really interested in 
machine language because it is a very simple sort of a language.  It is very difficult to get any 
program right but the language itself is a very simple language and probably that is why it 
makes it so difficult to program and what we are interested in primarily are what are known 
as high level languages where the primitives of the computation or what you might say is the 
machine that is made available. Once we have implemented a language on a machine you 
could think of that as a machine of that language.  



Supposing when we are doing PASCAL programming we are not really worried about the 
underlying machine language, the underlying architecture or about anything for that matter. 
As far as we are concerned what we have is a PASCAL machine. There is a level of 
abstraction at which PASCAL is the hardware machine language or it is just some software 
language. As far as we are concerned it is a PASCAL machine. 
  
It is important to realize that we can actually take some bear machine and cover it up with 
layers and layers of software and think of just one abstract machine which gives us certain 
capabilities. If you look at the bear machine it gives you only the capabilities to manipulate 
switches to write programs in binary. If you look at a PASCAL machine it gives you no extra 
computational power but it gives you the ability to look upon the whole unit as a single 
machine allowing construction of complicated structured programs.  
 
It allows various kinds of abstraction mechanisms, procedures, functions and it allows you to 
express differently from what the bare machine would have given you. Let us look at why we 
should study programming languages because all the time we are looking at the construction 
of some virtual machine and facilities that the machine gives us which we are not really 
interested in.  We are interested in various kinds of features that are there. In the case of a 
bare machine you are interested in its architecture. If you have a PASCAL machine its 
architecture is really the features of PASCAL. If you have a LISP machine its architecture is 
really the features of LISP.  
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Our study of programming languages is mainly to understand why certain features have been 
included in the programming language. You want to understand for example how best those 
features could be used. If you want to understand how that language is implemented 
presumably you would be able to learn new languages easily. You could design a new 
language which is more important and perhaps you would also be able to understand the 
underlying implementations. May be you would be able to incorporate new features in a 
programming language.  
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Let us just look at languages. We sort of classify what kinds of languages there are. Firstly, 
we have these low level languages, some machine and assembly languages which are not of 
our interest. You will learn about them in some course on architecture or organization but we 
are interested in primarily these high level languages of which we can think of three broad 
classifications:  One is a class of imperative languages towards which most of the last forty 
years since the first digital computers has gone in their design.  
 
Then there are functional or applicative languages. It is then possible to use logic itself as a 
programming language. You can actually mix up all of them and you can have impure 
functional languages. An imperative language means that it uses the notion of the command. 
It uses the notion of a state to change a state. So the commands change states. That is what an 
imperative language would do. A functional language is one which allows you to program 
something that is as close to mathematics as possible. We will get into these notions a bit 
more in detail later. A broad classification of languages is just in terms of high level 
languages imperative, functional, logic etc.  
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You could also classify languages by features and by features in the sense of what the most 
glaring feature in the language is. A large part of our languages are really what might be 
called sequential languages. Most of the languages that you have programmed in are purely 
sequential languages.  Then you have parallel languages which are very often languages 
meant for certain specialized architectures. For instance you have a single instruction 
multiple data and you execute instructions in parallel and there are implicit methods to 
implement them in a parallel fashion. You have what are known as distributed languages. In 
the case of a parallel language you assume that there are so many processors which will 
execute the same instructions in a synchronous lock step fashion.  
 
Most of the vector processors actually have sequential languages vectorized or made parallel 
like in the case FORTRAN 90, VECTOR PROCESSING FORTRAN etc. Distributed 
languages are those in which you actually assume that the different units of a program are 
going to lie geographically distributed across a network and they have to somehow co-
operate to achieve some common task. Then in both parallel and distributed languages the 
notion of a process of a computational process into which a program is split is inherently or 
intimately related to the computational power to the number of units of computation. That 
number of units is of the CPUs that you have.  
 
The notion of a process and a processor are really the same. You are writing one process per 
processor in both these cases. In the case of concurrent languages you are basically taking the 
notion of the process to be a loose entity completely different from the existing process which 
does not necessarily have to be mapped on to the existing processes. The notion of the 
process gets de-linked from the notion of the processor. You have other kinds of languages 
whose primary feature is that of modules of separate compilation and more recently you have 
what might be called object-oriented languages. These add extra features on top of the 
existing languages usually but there is something fundamental about the new feature that they 
introduce. 
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Let us quickly go through some of these languages. If you were to take the history of 
programming languages, you would find that there is a certain chronological dependence.  
The first high level languages so to speak were FORTRAN which is mainly meant for 
scientific computation and then COBOL which is meant for business.  
 
It was more verbose. It actually used full English sentences to represent computations. It 
made the first division distinction between data and program and was meant to use a large 
amount of data and do very low processing. They were IO bound programs whereas 
FORTRAN was meant for minimal IO and maximum computation. These languages gave 
rise to one important class of languages called the ALGOL like languages which came from 
the ‘ALGOL 60’ Report. 
 
FORTRAN also had its offshoots in basic. Then there were these ALGOL like languages. 
Among the ALGOL like languages you have PASCAL, PL1 and Simula etc. PL1 was an 
attempt at a unified language for both scientific and business commercial processing and 
from PASCAL you get extra features like Modula and Ada. From Simula you have got these 
object oriented languages starting from Smalltalk-80. All these and somewhere in a parallel 
stream you have BCPL and C. Actually BCPL was a transformation of a language called B 
which itself was a transformation of a language called A. The programming language ‘C’ was 
derived from BCPL by modification. Then when Smalltalk-80 came up object- oriented ness 
became a big buzz word. You had C++.  That is briefly the pedigree of languages that we 
have covered. We also have functional languages.  
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Let us let us look at functional languages. Apart from these imperative languages you had 
basically the first functional language which was LISP from which we derived various 
versions MacLisp, Scheme Common Lisp. MacLisp and Common Lisp are really impure 
versions of LISP. When we understand functionality we will come to what we mean by 
impure versions but many of you have probably studied Scheme. 
 
Scheme is a cleaned up version of LISP and is meant for LISP processing. There was also a 
language designed in the 60s called the SNOBOL which was meant for string processing. It 
allowed efficient pattern matching constructs to be programmed and these have actually 
yielded along with the emphasis on tied checking to a language called ML. It came up in the 
80s and all these languages like LISP and ML were inspired by what is known as Lambda 
(λ ) calculus which we will study. It is the basis of all functional languages. 
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	It does not allow you to specify infinite sets or certain properties of infinite sets easily. Very often, an extension of proportional logic to first order logic, which allows you to do this in a finitary way is the use of quantifiers. So, you can for...
	The only notion is the notion of a set. You generate all sets, numbers and everything from the notion of an empty set and a single binary predicate called belong stood. They have these formation rules and so we are interested essentially in capturing ...
	For example; one primitive computational process that you must all have studied in school is that of ruler and compass constructions. There are only two primitive computational steps. We are able to draw lines with the ruler, mark off segments. We are...
	For example; you are not allowed to use protractors etc. and you are not allowed to measure the angle. You can only prove that an angle is of a certain measure if you draw a line perpendicular to another line; with a construction proof it shows that i...
	You might think of the algorithms of ruler and compass constructions as the only two computational processes you have in a programming language.
	It is not machine readable. It is meant to be human readable so you write it in a lose fashion but essentially you use only those computations which are possible within the domain of Euclidean geometry which means you are not allowed to measure out an...
	It is not the last word because you could have other computational process such as the ruler and compass constructions. You could have analog computers etc. We are interested primarily in the computational processes associated with digital computers. ...
	Supposing when we are doing PASCAL programming we are not really worried about the underlying machine language, the underlying architecture or about anything for that matter. As far as we are concerned what we have is a PASCAL machine. There is a leve...
	It is important to realize that we can actually take some bear machine and cover it up with layers and layers of software and think of just one abstract machine which gives us certain capabilities. If you look at the bear machine it gives you only the...
	It allows various kinds of abstraction mechanisms, procedures, functions and it allows you to express differently from what the bare machine would have given you. Let us look at why we should study programming languages because all the time we are loo...
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	Our study of programming languages is mainly to understand why certain features have been included in the programming language. You want to understand for example how best those features could be used. If you want to understand how that language is im...
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	Let us just look at languages. We sort of classify what kinds of languages there are. Firstly, we have these low level languages, some machine and assembly languages which are not of our interest. You will learn about them in some course on architectu...
	Then there are functional or applicative languages. It is then possible to use logic itself as a programming language. You can actually mix up all of them and you can have impure functional languages. An imperative language means that it uses the noti...
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	You could also classify languages by features and by features in the sense of what the most glaring feature in the language is. A large part of our languages are really what might be called sequential languages. Most of the languages that you have pro...
	Most of the vector processors actually have sequential languages vectorized or made parallel like in the case FORTRAN 90, VECTOR PROCESSING FORTRAN etc. Distributed languages are those in which you actually assume that the different units of a program...
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	Let us quickly go through some of these languages. If you were to take the history of programming languages, you would find that there is a certain chronological dependence.
	The first high level languages so to speak were FORTRAN which is mainly meant for scientific computation and then COBOL which is meant for business.
	It was more verbose. It actually used full English sentences to represent computations. It made the first division distinction between data and program and was meant to use a large amount of data and do very low processing. They were IO bound programs...
	FORTRAN also had its offshoots in basic. Then there were these ALGOL like languages. Among the ALGOL like languages you have PASCAL, PL1 and Simula etc. PL1 was an attempt at a unified language for both scientific and business commercial processing an...
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	Let us let us look at functional languages. Apart from these imperative languages you had basically the first functional language which was LISP from which we derived various versions MacLisp, Scheme Common Lisp. MacLisp and Common Lisp are really imp...
	Scheme is a cleaned up version of LISP and is meant for LISP processing. There was also a language designed in the 60s called the SNOBOL which was meant for string processing. It allowed efficient pattern matching constructs to be programmed and these...

