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Last time we started talking about transformation, primarily the 2D transformations. So 
let me recapitulate some of the points which we talked about last time particularly dealing 
with the homogeneous coordinates. One of the motivations which we observed was to be 
able to represent the transformation in the form of a matrix and have the uniform or 
unified representation for all the transformations.  
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So looking at the nature of the transformation for instance in translation and the other 
transformation like scaling and rotations we wanted to combine these. Translation is the 
one which is additive and rotations and scaling and other linear transformations are 
multipliable. So we wanted to put it in the uniform framework. For that we introduced 
homogenous coordinates. And the idea there was we have these transformations like 
scale, rotate, reflect, shear being captured in the transformation T as a matrix and then we 
multiply that matrix to this x. Whereas in the case of translation when we have the offset 
of the translation vector given as T then we need to add that to the point X to get the X 
value. Now what we do is we basically introduce homogeneous coordinates where we 
add an additional coordinate which is W. We have the same point now P being 
represented as x, y, w instead of x, y. So, in turn what we observe that there could be 
multiple values for the same point. So what are we actually trying to say here is that we 
take the representation of the point which was in 2D space into another space with having 
a third dimension of w.  
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And in fact geometrically when we observe we get something like this, a space where we 
have a representation of the point in terms of a ray so we take the 2D space to a 3D space 
which actually has become the projection space because depending on what w I choose I 
get a particular value for the point which is the same point in the homogenous coordinate. 
So that was the symmetrical interpretation. So we basically take the representation of a 
point in a projective space. There is an interesting observation here, what happens when 
w becomes 0? When I have w is equal to 0 the point which I am talking in my Cartesian 
space is a point at infinity. So I have a mechanism now to be able to represent even points 
at infinity which I did not have otherwise in the Cartesian space. And these become more 
relevant when we actually talk about projections and perspective transformations because 
there we will be talking about the vanishing points. Vanishing points are actually points 
which are located at infinity, so how do we represent those points? This basically 
facilitates us to be able to represent even the points at infinity just by giving value of w as 
0. Then we also looked at 3D transformations. So, 3D transformations again in the 
homogeneous coordinate system can be represented through a 4 into 4 matrix. Let us look 
at scaling. 
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Scaling is now a 4 into 4 matrix where the diagonals contain the various scaling factors 
such as Sx Sy Sz. We know that scaling is actually a non rigid transformation. Non rigid 
transformation means that the shape and the size changes. There is a distortion of shape 
and there is distortion of size particularly the size, the shape as such remains the same but 
the size changes. Even when I have the non uniform factors of scaling the shape still 
changes. These are basically non rigid transformation because I am not able to preserve 
the shape. And an interesting thing is that when I look at the inverse of the scaling matrix 
which is represented as S I can construct that inverse transformation just by taking the 
reciprocal of the scaling factors. The matrix consisting of this actually gives me the 
inverse transformation of this scaling because at times we require to perform an inverse 
operation of scaling so there it is very easy to determine the inverse transformation. 
 
And some special values like if I have the scaling factors negative then also I have the 
reflection then we look at the rotation. So the rotation matrix now in fact it is basically 
the same extension what we had in 2D rotation. The 2D rotation implicitly involves the 
axis coming out of the plane where the rotation is taking place. Therefore rotation is 
actually about an axis. When we look at rotation in 3D then we consider the various axes 
about which we can perform the rotations and the matrices we obtain from those 
rotations.  
 
For instance, if I am interested in rotation about x axis, and in fact you can look at 
something like a rotation which would have been performed in this YZ plane. And the 
rotation would have been just this sub matrix here. And remember we have the 
convention of positive rotation in a right handed coordinate system given by the 
orientation of the fingers when the thumb is representing the axis of proportion so we 
keep that convention in mind.  
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Now if I look at for instance rotation about the z axis this is what the scenario is. So again 
I can look at this rotation as something similar to as if there is a rotation in XY plane 
which is given by this. So I get rotation about Z axis. If I was just to do the rotation in 2D 
then I just reduce this matrix cutting down this row for Z and this column. So basically I 
get a 3 into 3 matrix.  
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Now when we talk about rotation about y axis this is the scenario. Again I can think this 
to be a rotation being performed in XZ plane and remember we have this convention of 
positive rotation. Now when I perform in this rotation in XZ plane you see that the 



rotation is happening in this direction and often we measure the angle in this direction. In 
effect we are performing the rotation by the negative angle and that is why this minus has 
now come here. In the earlier rotations you had seen that the minus was here so this is a 
positive sign. Now there is a flip of it because basically I am preserving my convention of 
positive rotation and therefore this rotation is in effect by in an angle minus pi. Now the 
rotation is happening in this direction that is my positive rotation because then I would 
have the y axis acting as a thumb. If I were to measure the angle from x to z what would 
have happened which would give me the rotation? There the y axis would have acted in 
downward direction so I just reversed that. Therefore the changes sign occurs.  
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Let us say if I am taking about rotations in general. It could be rotation about x axis, it 
could be rotation about y axis, or it could be rotation about z axis so it is a class of 
rotation transformation, basically they are rigid transformation because there is no change 
in shape or size.  
 
Another interesting observation is that if I have to invert my rotation therefore I am trying 
to find out the inverse transformation for the rotation then all I have to do is perform a 
rotation by the negative angular rotation and that is easy to verify. Similarly, I also 
observe that the inverse matrix for a rotation by an angle theta is actually the transport 
matrix of rotation by the angle theta. Therefore when I am trying to find out the inverse 
of a transformation all I have to do is just transpose that matrix. And in fact that gives me 
that the matrix is basically an orthogonal matrix. So what can you say about the 
determinant of this matrix? The determinant is unity. So orthogonally you know what that 
means. In fact you can consider the column of a matrix and then you can check that 
orthogonality using a dot product of that column matrix. So these are some properties of 
the transformation and the corresponding matrix of a transformation.  
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Now, similarly for translation when I am to perform the translation basically an object is 
translated to this location by an offset vector. Then again translation happens to be a rigid 
transformation and the inverse of the translation matrix can be obtained just by taking the 
negative offset. So l, m, n which was the offset of translation now if I use just use as 
minus l, minus m, minus n in the same matrix it gives me the inverse of the matrix of 
translation using l and m as the offset.   
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Again when we see the transformation of shear basically here we have the non 0 off 
diagonal terms that give us the shear transformation and shear is a non rigid 



transformation we observe a distortion in the shape. Now just in a similar way as we had 
seen for other transformations how we find out the inverse of this matrix course in 
general we need to find out the inverse as a general matrix. But for special cases we can 
again find out the inverse as a simple transformation in the values of the transformations.  
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Here is an example where we consider a simple shear where the object is basically 
sheared in X. If I just look at the plane XY and I assume that there is a no change in the Z 
values then the point XY is changed to X prime Y prime. Now if I see what X prime Y 
prime becomes and I assume that there is this angle which is made by this line so I take 
the projection of this point on the X axis and this is the angle which is made by this X 
prime and Y prime from the X axis theta. Then I get X prime is equal to X plus Y cos 
theta Y prime is equal to Y and Z prime is equal to Z. So there is no change in Y and Z 
values. The only change is in the X value. So in order to have this transformation this 
axis should be strongly placed. In order that I obtain this where this is my coordinate axis 
having X and Y. This should be actually located at the center of those because it is a 
symmetry then the transformation is a symmetry point. 
 
Now, using this as a transformation I construct my matrix of transformation for shear 
where I get this term of cos theta here. Now for such a type of a shear transformation and 
I call this as shear YZ because I am not changing YZ so there could be convention saying 
that this actually shear in X and there could also be conventions saying that there is no 
change in YZ so let us say I have the convention that when there is no change in that 
coordinate I call this to be Hyz and there is no change in YZ. Now if I have to take the 
inverse of this, this is equivalent to just change the sign of the angle. Once again the 
inverse of this is obtained just by changing the sign of the angle theta. But in general if I 
have a shear and mix of shear then I may not be able to do this direct substitution of sign 
of a value. Hence then I may have to do an inverse of a matrix as I would do for a general 



matrix. As we saw the composition of transformation in 2D the same concept extends 
here.  
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Now let us say I have a sequence of transformations given as T1, T2 and T3 there could 
even be more but I just have these three transformations to perform. Then the 
transformed value X prime is basically T1 applied to X and whatever I obtain I apply T2 
on it and then whatever I obtain I apply T3 on it. This I can write as simple multiplication 
of T1, T2 and T3 because I have law of associativity. So I can just write like 
multiplication of matrices T1, T2, T3 to X. So, in some sort of a pipeline architecture I 
can think this to be X given as an input and I have these pipeline units where this units 
contain a transformation T1 then the result goes to the other unit where I apply the 
transformation T2 then the result goes to the other unit when I apply the transformation 
T3 and I obtain the result X prime.  
 
Here if I have an object represented by some hundred points or maybe thousands of 
points so what I will be doing? I will be taking them point by point and apply these 
matrices to this point in this pipeline fashion where each unit is actually a transformation. 
Now there is a problem in this formulation in terms of computation I am performing. So 
alternatively what I can do is actually combine all these transformations just by 
concatenating these matrices of transformation and I obtain the final transformation 
which is the concatenated form of all the transformation as T and I just apply that T to the 
given point X.  
 
So this pipeline is actually now changed to a structure like this where I have an input X 
and the pipeline unit contains the concatenated or the multiplied transformation T1, T2, 
T3 and I obtain X prime. Therefore here once I have done this multiplication of matrices I 
just need to apply one single matrix to all the parts which is computationally beneficiary.  
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Again the way we had seen in 2D composition of transformations can also be illustrated 
in 3D if I take an example let where I have to perform rotation about a fixed point. 
Normally we have seen the point about which the rotation is happening is the original. 
Now I want the rotation to happen about a fixed point which is not to worry. So let us say 
this point is the center of the object these cuboids and I have to perform rotation about Z 
axis. Therefore I am again considering the rotations to be about one of the coordinate axis 
X Y Z. So, if I have to do this then I just have to make this point to be the origin and in 
order that I do this I need a translation. So once I do the translation of this point C to the 
origin here and then I perform my regular rotation and then I take this point back to the 
point where it was then I am done. Therefore that is what is done here, we have the three 
transformations, one translation which is taking the offset which brings this C to the 
origin therefore I have the offset given by minus C rotation by angle theta and then again 
I translate it back. 
 
Here is a more complex scenario where I would like to have the rotation about an 
arbitrary axis. So far we have seen rotation about the coordinate axis. Let us say I want to 
perform rotation about an arbitrary axis. So how would I do it? Remember that since we 
know the rotation about the coordinate axis we need to map the problem to one of the 
coordinate axis. The basic thing is that I need to align the arbitrary axis to one of the 
coordinate axis then I can perform the regular rotation and then I do the necessary inverse 
transformation to put that axis back that is the basic idea.  
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Here I am given the axis by the point P0 so the axis is passing from a point P0 given as 
X0 Y0 Z0 and its direction cosines Cx, Cy, Cz so these are basically the direction vector of 
the axis and I want to rotate about this axis by an angle delta. So this is the statement of 
the problem. So here there is a small illustration where a rotation is basically being 
performed about an axis given by this red line and you get a rotated [k….] 29:28 like this. 
Now what I can actually do is first of all I can make this point the origin and that is the 
first thing I can do that is easy, I just need to make this point the origin which basically 
requires a translation by minus x0 minus y0 minus z0. So what I have obtained now is this 
axis here passing through O and specified by this unit vector OP whether direction of this 
unit vector coincides with what I have here from the direction cosines of the axis.  
 
Now if I have to rotate about this arbitrary axis OP we said that we would like to 
basically align this to one of the axis and I choose this to be the Z axis so I want to align 
this OP vector to Z axis so how can I do that? Will that give you the alignment? First of 
all try to identify what transformations will be required to do this. Rotations are required. 
Now what we do is we perform rotations align this line to Z axis. Therefore as a first step 
what I do is I get this line in XZ plane which basically mean I rotate about X axis. If I 
have to do this rotation let us try to see the values of angles by which you have to do the 
rotation so that we can form our matrix.  
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Now if you see this line in the YZ plane you would find this line being a sort of a 
projection of this on to the YZ plane given by d where d is the length of this line. And 
now if I perform the rotation of this line by the angle alpha the angle can be measured in 
this plane now. So, if I perform a rotation of this line by an angle alpha about X axis I 
would put this in the XZ plane. So when I am performing the rotation by the angle alpha 
the alpha basically can be computed through here in the YZ plane because I have this as 
Cz and this as Cy and this is d so cos alpha is actually Cz by d and sin alpha is Cy by d 
and these are the terms I need for performing a rotation. I need not explicitly compute the 
angle but all I need to do is get the relevant terms which I require in the rotation matrix. 
So I get cos alpha and sine alpha from here. Now as a consequence this axis OP has 
actually come on XZ plane. Now another rotation of that about Y axis would give me the 
necessary alignment.  
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This is the axis in the XZ plane, remember it is a unit vector and that is why I have a 
length as 1. Now this side is nothing but d because when I perform a rotation about x axis 
if we go back here this d will actually come on the Z axis. So I have this distance given as 
d and now if I perform the rotation about Y by an angle beta I will align this to the Z axis. 
Now again we compute the terms which are necessary for the computation of rotation 
matrix which are cos beta and sin beta so cos beta is nothing but d and sin beta is nothing 
but Cx. So I have basically obtained all the necessary terms which I require to perform 
these rotations. Once I have done the alignment to Z axis then I can do rotation about Z 
axis for which I know what transformation to use and then I do the necessary inverse 
operations to put the axis back.  
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Therefore the whole pipeline of transformation would basically look as something like 
this. I have a first translation then I have the rotation about x by an angle alpha then I 
have the rotation about y minus beta again to keep our convention in place then I have the 
rotation about Z axis as I require doing the rotation by an angle delta and then I just do 
the inverse of these. Therefore the inverse of Ry minus beta is Ry minus beta, inverse of 
Rx alpha is Rx minus alpha and the inverse of T minus P0 is T(P0). So this gives me the 
entire chain of transformations which I need. And after multiplying these matrices I get 
one single matrix. So I can do rotation about any arbitrary axis which is very relevant and 
useful because you would like to have rotations about a certain axis in space and not 
necessarily the coordinate axis.   
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Now again we look at the general transformations in 3D basically captured by a 4 into 4 
general transformation matrix where I can see certain elements of different variety of 
transformations we obtained.  
 
For instance, this part gives me the translation, this part gives me the linear 
transformation where the diagonal gives me the scaling and off diagonal gives me the 
sharing and all these together may also give me rotation. This particular element gives me 
the global scaling of the object or a scene and these values in the last column basically 
are the projective terms. So this part of the matrix where we have the linear 
transformation and the translation combined together gives us a fine transformation.  
 
 After having seen these transformations particularly in the context of geometrical 
alterations geometrical changes which happened to the object we also have the set of 
transformations which are relevant in terms of viewing. These transformations what we 
have seen are basically used when I have to change the shape of the object or move the 
object somewhere. But I also have transformations in a very similar framework where I 
can apply the transformations for performing the viewing operation. Now let us try to see 



what we mean by viewing in general. I am basically trying to tell you what we mean by a 
3 dimensional image. And then we will see the various viewing transformation in the 
context of 3D viewing. The 2D viewing is simple, 2D viewing is saying that I have a 2 
dimensional scene and I want to view that scene in a given display. So it basically 
requires a window to window map, one rectangular space to another rectangular space 
nothing more than that whereas then I have a 3 dimensional viewing it is more 
involvement.  
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3D viewing is something what we also perform. We have the idea of what a 3 
dimensional scene is and there is a 2 dimensional image which gets formed in our visual 
system so the analogy is similar. Now let us say I have a line AB it could just not be a 
line but any object or any part of the scene which is being viewed from some point here 
and I have the projection plane where I would like to see this line as an image on to this 
plane. So this is projection plane or a viewing plane or an image plane. So, when we are 
looking at from this center of projection and the center of projection is nothing but where 
if I see the rays coming from the scene or the object and in this case the line they tend to 
meet at some point which is the center of projection and for practical reasons we use this 
center of projection as the viewer or the camera. 
 
Therefore now what we have is these projectors coming from the 3D scene passing 
through the center of projection. And as a result I get an image here A prime B prime. 
Therefore these projectors which we have in this scenario are the projectors which meet 
at a point and they are not parallel to each other. So the type of projection we get is the 
perspective transformation or a perspective projection. So what we observe here is that 
the projectors are not parallel to each other. Here the point to be noted is that in the 
projectors the rays coming from the 3D scene are not parallel. Now I change this to a 
scenario where I have these projectors parallel.  
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These projectors are parallel now. Then the resulting projection what I get on to this 
projection plane is parallel projection. And if I now see as to where these projectors meet 
they will actually meet at infinity. So the center of projection has now gone to infinity.  
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One of the very commonly used projection is the orthographic projection which is 
actually the parallel projection. It is a more restricted parallel projection. So here what we 
have is, if I have an object like this then I consider my projection plane as a plane 
perpendicular to one of the coordinate axis or parallel to one of the principle planes, these 
are all also called as principle planes which are formed by the two coordinate axes. So I 



consider a projection plane perpendicular to y axis then I get a projection which we 
referred to as the top view basically viewing from the top and similarly we have the side 
view and the front. These are nothing but parallel projections. You observe that these 
projectors are parallel.  
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So while viewing 3D using orthographic projection we note that it may require multiple 
views to be able to see the 3 dimensionality of the object. So I require planes like X is 
equal to 0 or Y is equal to 0 or Z is equal to 0 which generates number of views where I 
can view the 3 dimensional objects. And we also know that the size and shape does not 
change using orthographic projection so the two lengths are preserved. Now if I have to 
perform this orthographic projection one thing we want is that we want these projections 
also like transformation matrix so that we can use these as transformations just the way 
we had looked at the geometrical transformations by multiplying by some matrix.  
 
Therefore now if I have to perform this orthographic projection and let us say I consider 
one of the examples where I take the orthographic projection on Z is equal to 0 plane then 
what it means in terms of the matrix which I would require is this where I have the third 
column where all entries are to be 0. Similarly, if I have to take an orthographic 
projection for y is equal to 0 plane then I will have this second column where all entries 
are 0 and so on similarly for x is equal to 0. I can construct a matrix corresponding to the 
orthographic projection on to different planes. Now the problem which we observe here 
is that either it requires multiple views or we are not able to see the 3D aspect of an 
object. Now let us say I am interested in parallel projection but projections which will 
give me some more idea about 3 dimensional aspects of the object.  
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In fact there is a class of projection known as axonometric where what is done is that you 
have an additional rotation or translation or both and then you perform the projection of Z 
is equal to 0. So, by combining some transformations like rotation and translation before 
you perform the standard orthographic projection it can actually render the 3 dimensional 
aspect of an object. Remember that a projection actually can lead to certain changes in 
the ratios of the lengths. In the case of orthographic projection everything was preserved. 
here what may happen is due to this transformation they could be distortions or what we 
are call it as the foreshortening in each of the dimensions. Therefore in order to see that I 
construct this matrix T which is a combination of rotation or translation and a projection 
on Z is equal to 0.  
 
This T is actually a combination of these transformations now what I am saying is that 
the transformation actually can give me a certain foreshortening. Now, in order to 
observe this foreshortening or in order to compute this foreshortening what I have is a 
unit vector in X, a unit vector in Y and a unit vector in Z. So 1 0 0 is the unit vector in X, 
I am saying that it starts from origin so I can have this in the homogenous coordinates 1 0 
0 1 and similarly this is my unit vector in Y and this is my unit vector in Z. So this is 
what I mean here by saying U and then I apply this T which I had constructed. Now the 
result would give me some entries where the last column is going to be 0 because I am 
taking projection on Z is equal to 0 plane. So that particular column is going to be 0 and 
there will be some terms here. 
 
Therefore you can also look at as an individual transformation, I have put this in the form 
which looks like a matrix but what we are saying is that take this particular unit vector, 
perform this transformation T on it and you will get this. Similarly we take this unit 
vector you will get this. So these are the corresponding transformed unit vectors with 
these entries which in turn give me the idea about the foreshortening in each of the 
directions. What do I mean by foreshortening is basically what is the distortion which has 



happened in each dimension or in each direction. So, if I have the unit vector 1 0 0 
transform to Xx Yx so suffix x is basically referring to the unit vector in x direction then 
the foreshortening or the scaling or the distortion which has happened is given just by this 
which I call it as fx so it is foreshortening in X. Similarly this is what I get as the change 
in unit vector in Y which I can compute as foreshortening in Y and similarly 
foreshortening in Z. Now, once I see that the addition of rotation translation are basically 
giving me different foreshortenings then I can characterize these foreshortenings to be 
able to define different types of axonometric transformations.  
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What I mean here is that basically I can define three types of axonometric projections. In 
the trimetric transformation no foreshortening is the same. That means fx and fy and fz 
are different. Similarly, dimetric transformation is which two foreshortenings are the 
same and the isometric transformation is where all foreshortenings are the same.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 57:25) 
 

 
 

This is isometric where I have fx is equal to fy is equal to fz. So, all the foreshortenings 
are the same. In dimetric I have two of the foreshortenings as the same. So I had basically 
taken a unit queue and I transformed them using these projections these transformations. 
So here basically I have fy is equal to fz and here I have all of them different which I call 
as trimetric. So what we have is basically combination of rotation translation added to the 
orthographic projection where we can have the 3D viewing containing the 3 dimensional 
aspects. And depending on the type of the foreshortening we obtain we have isometric, 
dimetric or trimetric transformations.  
 


