
Introduction to Computer Graphics
Dr. Prem Kalra

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 5
Polygon Clipping and Polygon Scan Conversion

We have been basically talking about clipping. So we covered point clipping and then we
talked about line clipping. Today we are going to talk about polygon clipping. Here are
the different kinds of polygons.

(Refer Slide Time: 1:21)

Basically we are looking at simple polygon. What I mean by simple polygon is it is
basically a planar set of a ordered points V1 V2 V3 up to Vn and I do not want lines to
cross for the polygon and also I do not want any hole in that polygon. This is what a
simple polygon is. Here you see the example. So this is an example of a simple polygon.
It could be convex, it could be non convex. So the restriction we are posing here is we
should not have a line crossing, just the way it is happening here V1 V2 V3 V4 and there
is a crossing of the line and there should not be any hole here. So given that I consider a
simple polygon and the reason I am interested in a polygon because they are area
primitives where I can define primitives filling area. One thing which we were talking
about is that can we extend the notion of clipping for the line to the polygon. If you just
consider the polygon to be defined as collection of lines each of the edge being aligned
then all I need to do is process the line of the polygon one by one and do the line
clipping. Let us see whether we can extend these ideas.

(Refer Slide Time: 3:30)

So just to further illustrate the difference between convex and non convex that we have
earlier also seen there is this convex polygon where if I join two points within the region
the line is inside that region that is what I mean by convex polygon. Whereas a non
convex or concave sometimes referred as if I join two points which are inside the
polygon the line joining these two points may not be inside the polygon. This is non
convex. Now let us try to see what is the restriction for the time being we want to impose
on the given polygon we are interested in to clip and the window against which we are
going to perform this clipping. As far as the given polygon is concerned we are taking a
simple polygon, convex or non convex whereas there is a restriction to the window which
we want to use for clipping.

(Refer Slide Time: 4:52)

So we would actually work on a window which is convex. So, we have this restriction
then the window must be convex but the polygon could be convex or not. Here is the
example, we have this window, just for simplicity I have consider here the window to be
just a rectangular region which is convex and here you see a polygon which is non
convex whereas here I have the polygon which is the triangle which is a convex problem.
So what are we trying to do as a process of clipping is, we are interested in getting this
portion of the polygon and this portion of the polygon inside the window and reject or
discard the rest. Similarly I am interested in getting this part of the polygon to be declared
inside the window and chop of the rest. That is what I mean by clipping polygon against
this way.

(Refer Slide Time: 6:10)

That is basically what is shown here. After the process of clipping I get this as the result
for this polygon. Similarly for the second case where I considered triangle to be clipped
the result is this. Now looking back to what we have done in the case of line clipping can
you suggest an algorithm to do this?

Remember one thing, for instance Cyrus Beck Algorithm or Liang Barsky Algorithm
basically got an assumption that it is a convex window. The non convexity of the window
was sort of a special case which was also treated in a similar way so we always had the
clipping against the convex region. So, what this convexity gives you is some sort of a
notion of each edge of the convex window to be a sort of a clipper deciding whether it is
inside or on one side of that edge or not. That is what I mean by saying a clipper is. May
be we can apply a similar concept where the edge of the window acts like a clipper and
then we perform that operation of clipping considering each edge of the window.
Therefore each edge acts as a clipper.

(Refer Slide Time: 8:36)

I consider a non convex polygon to be clipped against this rectangular window. This is an
example. Now what I do is I consider one of the edges of the window to be a clipper.
Clipper means I apply the clipping against that edge and I have this notion defined to the
edge that which is inside and which is outside in a very similar fashion as we have seen in
the case of a line.

(Refer Slide Time: 9:13)

So I define this clipper which is the right edge. Now what I do is I basically take this
polygon use this as my clipper and discard whatever is outside this. So this portion is the
outside portion of the clipper and this portion is the inside portion of the clipper. So

basically I chop of, just slice it by this clipper the polygon. And this is what I get as a
result. This is my resulting polygon after having clipped against this edge. Now I can
apply this operation in succession for all edges from the window.

(Refer Slide Time: 10:19)

I take that as an input whatever was given after the first clipper and apply against this
edge now. So this chops of this part of the polygon and so on.

(Refer Slide Time: 10:36)

That chops of the left part of the polygon and this is the top edge.

(Refer Slide Time: 10:43)

Considering each edge of the window as a clipper at the end of this full operation I get
this polygon which is the clipped polygon that I need.

(Refer Slide Time: 11:11)

Approach: Here is what I am trying to do as an algorithm. I consider polygon to be
clipped given as series of points, ordered points taken in one particular order as V1 V2 to
Vn and a polygon edge is basically a pair defined between Vi Vi plus 1 and since polygon is
a closed figure I need to consider the last as to be Vn V1 so there is a rap around from this
sequence I have as points.

Now process all the polygon edges in succession against a window edge. So what it does
basically is, if I consider V1 V2…….Vn as the input polygon and the respective pairs of
these Vi’s defining the edges what I get is a new set of points defined by W1 W2 to Wm
which gives me the new polygon. Then I repeat this process against the next window
edge and when I have exhausted all the window edges whatever I get is my resulting
polygon. So what are we basically doing here is we are trying to output certain number of
points as a process of clipping each edge of the polygon against a window edge. In fact
what we are doing is basically create a new set of points which are referred here as Ws,
they are just the new set of points. So, if we try to see, actually there happens four cases
and before I talk about those four cases which would output 0. or 1. or 2.

(Refer Slide Time: 13:43)

After performing a clipping of an edge of the polygon against the window edge actually
happened to recover by four cases. So, if I do a case analysis of those four cases I would
know what points are going to be given as the output which will then be included in my
series of points of Ws to define a new polygon.

Therefore I consider s which is given as Vi to be the starting vertex of the polygon edge.
And this s could have been previously analyzed, this could have been analyzed in the
previous iteration but for the current edge I am considering s as Vi. And p is the next
point for the edge pair Vi plus 1 which is the ending point or ending vertex of the
intersection. now I define i which may result from the polygon edge and window edge
intersection and there could be an intersection of this polygon edge with the window edge
and as a result I may get point of intersection which I define as i. So this i should not be
confused with the subscript i here and this is a point of intersection. Then what I am
going to have is this point wj which I will declare as the output from the case analysis I
am going to perform. And at the end the collection of these Ws will form the polygon of
my interest. Now let us try to see each of these four cases which would in turn give me
either no output zero point or one output or two outputs that is two points for the output.

(Refer Slide Time: 16:22)

Case one: the polygon is basically as a cyclic kind of a shape. It is a closed shape. Let us
say I have a case where the polygon edge is entirely inside the window edge. So this is
my window edge drawn in blue and I have this notion of what is inside and what is
outside with respect to this window edge and now considering this edge which is given as
S P that is my polygon edge in question, we are having S as the start point and P as the
end point and this edge could actually be related to the rest of the polygon in some
fashion. Now what we are going to look at is just analyze these two end points S and P
for this particular polygon edge. So, if I observe that the polygon edge is entirely on
inside on the side of the window edge which is the situation then I output P so P is the
next vertex of the resulting polygon meaning I assign P to the Wj and I increment j in the
series of the points which I am going to use for defining my output polygon. In this case I
have only one output given as P when both these points are inside the window edge.

(Refer Slide Time: 18:28)

The next case is, when I see that polygon edge crosses window edge going out that is
going from inside to outside. So this is the scenario I have this edge S P which is going
from inside to outside. So clearly when I cross the window edge it is going to have an
intersection with the window edge i find out this point of intersection i and that is what
my output is. I output i therefore I assign this i to the Wj and I increment j. So in this case
also I get one output for the point which is i.

(Refer Slide Time: 19:38)

Now the next case is the polygon edge is entirely outside the window edge so S and P
happen to be outside the window edge. Then I give no output that means no point is given

as output for the polygon. So the last case left is this when the polygon edge crosses the
window edge going in. That means I have this edge from outside to inside. That means S
is outside the window edge and P is inside the window edge.

(Refer Slide Time: 20:07)

Therefore clearly I have a point of intersection of this edge with the window edge which
is given by i again. Then in this case I would output this i and P. These are two outputs
now I have. I output i and P as the two vertices of the polygon. That basically means
assigning i to Wj, P to Wj plus 1 and j is incremented by 2.

Example: When I make this polygon as a collection of my vertices Wis then how do you
I give the sequence of these points. I always have a definition of my polygon I go in an
order basically. It is not just a collection of sorted points. If I go in an order of these
points I get a polygon. This algorithm is called as Sutherland Hodgman algorithm where
we consider the window to be convex and polygon to be any simple polygon.

(Refer Slide Time: 22:23)

Example: here is an example where I consider a non convex polygon S1 S2 S3 S4 S5 these
are the vertices of the polygon. And again I consider the window to be a rectangular
region. Remember this has no restriction to be rectangular it could be any convex region
because the way we are performing the operation of inside outside does not really restrict
us to have a rectangular region as long as we have the region to be convex. Let us say S1
is the point to start that is the first point I have in that definition of my polygon and all we
are trying to do here is do this clipping for each of the window edges and we analyze
these four cases and we output the points appropriately to be considered as the polygon
for the next iteration. Given this as an input polygon let us see how to proceed.

(Refer Slide Time: 23:44)

This is my first clipper the top edge of the window, this is my first clipping. What will
happen is that if I consider from S1 to S2 I go from outside to totally inside because I am
not considering with respect to the window I am basically considering with respect to the
edge. Therefore the outside inside operation is with respect to the window edge. I go
from S1 to S2 which are both inside. So when I have inside to inside I output t which will
be S2 then I go from S2 to S3 again both happened to be inside the window edge then I
output S3, I go from S3 to S4 I go from inside to outside and I find a point of intersection
which is i1 so I output i1, when I go from S4 to S5 both happened to be outside the
window edge I output nothing and then I go from S5 to S1 I find the point of intersection
is i2 so I output i2 and S1.

(Refer Slide Time: 25:23)

Therefore what I get as the resulting polygon is this. I just change the S to t now and
basically change the suffixes. This becomes t1 t2 t3 t4 t5. So this becomes my polygon for
the next window edge to be considered. Now what happens is with respect to this window
edge all the points are inside. So if I start from t1 to t2 I will output t2, t2 to t3 I will
output t3 and so on.

(Refer Slide Time: 26:07)

Therefore that is what I will get as a sequence u1 so again I change from t to u and
change the respective suffixes. Therefore it is u1 to u2, u3 and u4 and u5. Again if I
consider this window edge all these points are inside therefore nothing really changes
with respect to these vertices except the numbering or enumeration that changes. So when
I say u1 to u2 then u2 will be given as the output so I will start from here.

(Refer Slide Time: 26:49)

Now I get the output as V1 V2 V3 V4 V5. Now this is my last window edge. I start from
V1 to V2 which is from inside to outside, I find the point of intersection i3 so when I go
from inside to outside I basically output i3, when I go from V2 to V3 both are outside I

output nothing, I go from V3 to V4 which is from outside to inside I find this point of
intersection as i4 and I output i4 and V4 and when I go from V4 to V5 again I go from
inside to outside, I find this point of intersection i5 and I output i5, when I go from V5 to
V1 I go from outside to inside find the point of intersection as i6 and I output i6 and V1
and that completes the entire set of points. So, at the end of this I get my polygon as this
W1 W2 W3 W4 W5 W6 and that is my resulting clipped polygon.

(Refer Slide Time: 28:22)

The algorithm is fairly straight forward. And the idea which we actually used in the case
of line clipping is being reused. Now one may say that this is not really a good polygon
for various reasons because if I consider one single polygon where I have these two
points laying on the same line it is sort of degenerative. Particularly it can cause problem
when I do the shading of the polygon. So there is also a modification to this algorithm
wherein instead of having output given as this as a single polygon sequence of W points
they have the notion of fragmenting the polygons wherein actually you get this as one
polygon and this as another polygon so there is a fragmentation. But that fragmentation
actually requires much more book keeping in order being able to define these fragments
right.

We will look at that algorithm when we talk about hidden surface elimination because
that is in conjunction with hidden surface elimination and the algorithm is given by
Weiler and Athreton to modify this Sutherland and Hodgman algorithm where you do not
have degenerate polygons.

Now that since we have been talking about polygon let us try to see how we draw these
polygons. We have basically looked at drawing algorithms for lines, drawing algorithm
for circle, ellipse but we have not really looked at drawing of a polygon. one may say that
polygon drawing is basically a line drawing because if I just define a polygon to be just a
set of connected points through these edges then all I am saying is that consider each

edge and do a plot of each edge using line drawing. But I then do not get the feeling of
that polygon to be an area because I need to fill that with some color or with some other
display attributes. So you would like to see some sort of a drawing algorithm where I can
fill these polygons with some color. Just a collection of line drawing doing the polygon
edges for drawing is actually also known as some sort of a wire frame display of the
polygon. Here we are trying to address the polygon display using filling. This is known
as the scan conversion of the polygon. Each of the pixels of the polygon is basically
getting converted into some value.

(Refer Slide Time: 32:32)

Polygon scan conversion is basically for drawing polygons using filling. If I consider a
simplest polygon which is triangular, here you see the examples of filled polygons, this is
a filled triangle. Now if I am able to design an algorithm for filling a triangle then I can
actually use that even for that other polygons because I can decompose a polygon into set
of triangles irrespective whether the polygon is convex or non convex as shown here then
I can just replicate my triangle filling algorithm if I am interested only in the filling
algorithm for a triangle.

(Refer Slide Time: 33:37)

Here is the pixel which is inside the triangle and if I figure out that this pixel is inside
then I can assign the desired attributes of color or any other display attribute to this pixel.
So the question I am basically asking is, whether this pixel is inside that triangle or not?
In other words it is a matter of doing a containment test of points or the pixels. So
whatever is contained in the triangle I just give the necessary attributes of this plane.

Now the question of whether a point is inside or outside a triangle can be well taken care
of by what we have seen earlier. If I define the normal to these edges of the triangle then
it is a matter of inside outside of these edges and if I get the answer that with respect to
all the edges it turns out to be inside then I know that the point is inside the triangle.
Therefore I can give the color to that pixel and if I find that point it is outside the triangle
I just discard it. I cannot start with all pixels in this screen. You basically bound your area
by considering the minmax of the points of the triangle so create a virtual window around
it and do the scan conversion of that window.

(Refer Slide Time: 36:06)

Basically we are looking at some sort of a extend which is defined around that triangle
and we sort of also exploit the fact that scans are horizontal so we go one scan line by one
scan line. We sort of exploit this property which is in some sense a coherence along the
scan line because if I find that the two extremes of that scan line happen to be inside the
triangle then all the points which are spanned with that scan line can be colored. in turn it
means that if I find out an extent here which I define as xl for a particular scan line, here
when I refer to scan line it is a basically a horizontal line with respect to the window
which I am trying to scan convert around this triangle.

So, for this particular scan line I find out these xl and xr which could be just the
intersection of this scan line with respect to this edge and this edge and then once I find
out this xl and xr then all the points here can be colored. This is particularly useful when I
just need to assign one color to all the points.

Another thing is that I can cover one scan line like this. So the next question is I go to the
next scan line, next scan line means I go vertically down. From here I come to this scan
line. One may say that find out the point of intersection explicitly with respect to this
edge and the other edge and do the same thing but that could turn out to be an expensive
thing. Therefore what we can do is we can exploit the knowledge of the edge slopes. The
edge slope can actually give me the next point here. Remember we have actually used
that knowledge while doing line drawing Bresenham’s or midpoint algorithm.

Therefore I actually get the next point for the next scan line using the slope of this edge.
Similarly I can get this point using the slope of this edge. And once I have these two
extremes the rest is done. The only thing is that this particular point I will have to change
the edge. Here I was considering this edge, now it is basically between this edge and this
edge. But that is also simple. All I am doing is going scan by scan finding out the two

extremes in the horizontal span and fill them and for the next horizontal span I use the
information from edge slopes.

How do we get the first scan line? That is the initial computation you need to do. The
best thing is, you get a window around this which is like finding out the minmax of this
area which gives you the window so you start at the top of the window. One thing for the
general polygon is to use this triangle filling algorithm by decomposing that polygon into
various triangles and apply to each of those triangles. But can we design an algorithm for
a general or simple polygon or convex or non convex? The question which we are trying
to answer is always the containment.

(Refer Slide Time: 41:29)

Let me pose the problem here: Now I have this polygon which is a non convex polygon
and this is the current scan line in question and all I am trying to answer is what are the
pixels intercepted by this scan line or inside this polygon. The moment I answer that
question I have my filling algorithm. Now given this scenario can I devise some
algorithm saying that what are the points which are inside the polygon and what are the
points outside the polygon? Let us say I am able to find these points of intersection.
These points of intersection of the scan line with the edges are known to me.

Therefore what we observe here is that this part is to be filled, this part is not to be filled,
and this part is to be filled. Basically it is actually a parity check. What we are saying is
that, if I find the segments as we usually call them, this is one segment, this is another
segment, this is another segment and so on. So if I do a parity check then all I am saying
is that if the segment is odd fill it, if the segment is even do not fill it. This principle even
holds when I have a convex filling because I am going to get only one that is odd.

(Refer Slide Time: 44:26)

But does it work always? What happens here? If I just apply the same parity check then I
am going to display only this part and not this.

(Refer Slide Time: 44:58)

Now what happens here? I go back to this and I actually give you a modification to the
algorithm that in such situations you duplicate this point. Duplicate this point means I
have basically virtually added a segment there. Then what will happen is this will become
one, this is second right there but I do not draw that and this becomes third and I draw
that. So what I am suggesting is that whenever you have an intersection with a vertex for
the polygon you duplicate it. But the question is, does it work always? What happens

here? This is duplicated I do not plot at this point but I plot this, this is not inside, it does
not work. There has to be some topological issue here. It is not just that I duplicate the
vertex. So, one way I can look at is that if the vertex in question is either a minimum or a
maximum vertex of the incident edges on that point then I duplicate. Here this vertex is a
minimum vertex, minimum in terms of when I say y of that is minimum with respect to
the two instant edges at this point that is this and this. So here I duplicate.

Here what happens is that there are this edge and this edge so for this case it is the
minimum and for this case it is the maximum therefore I do not duplicate it. So when it
intersects to a vertex of the polygon I need to do this extra checking. But the rest of it is
just the same. I just label these segments to be drawn or not to be drawn. Now there is
another way to look at the filling problem. What are we trying to do basically when we
fill the polygon is, we basically look at the pixels which are inside a polygon and if I can
in some way grow that point using the neighborhood information around that point and
ask that question to the neighbors and propagate that then also I will do the filling. The
propagation is basically constrained by the boundary edges of the region.

(Refer Slide Time: 49:07)

Therefore here is an example where I have this polygon and the black points are showing
the boundary of the polygon. I get this seed which is plotted here as the pink point. So
once I establish that this point is inside then I can consider the neighborhood of this point
so neighborhood could be in different ways, here I am talking about the left and the
neighbor the bottom and the top neighbor or the low and the up neighbor. Therefore you
call this as four neighbors of the point and you can also consider eight neighbors if you
consider the diagonal pixels around. So all I am trying to do is get these neighbors and
ask this question whether it is inside or outside and then in turn get the neighbors for
these points and just keep growing. In image processing you must have seen a similar
thing.

It is a pixel aggregation or a region growing which is used for segmentation because there
what we are doing is this boundary is actually given by certain features of the image or
the segment and within that boundary everything is homogenous. So those pixel
attributes within that segment are very similar. All I am trying to do there is find out the
connected pixel to the seed and keep growing that region till I hit the boundary. Again we
can actually use certain information from the pixel itself.

For instance, if I find out this pixel is inside the explicit check which I will do for the
inside outside I may actually restrict to only part of the boundaries not all the edges of the
boundary. So I can actually add more information to the point knowing that where this
point is. So computationally it may be more costly than what we have done earlier. But
this shows you a different way of thinking. You are actually doing a filling but in a
different thought.

