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Clipping  

 
We have been talking about clipping. The idea there was that we have a window that is 
the extent of the scene which we want to display and then we want to make a sort of an 
answer to a question whether a particular primitive is inside the window or not before we 
decide to display it.  
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For instance we looked at the point clipping. The point is the simplest primitive so we 
wanted to answer this question whether the particular point is inside the window or 
outside the window. So, for the purpose of simplicity if I consider a rectangular window 
then this question can easily be answered by just looking at the coordinates of the point 
and the extent of the window to decide whether a particular point is inside or outside. 
Here P is the point which is outside the window or Q is the point which is inside the 
window so a simple comparison gives us that result. Then we also looked at the 
possibility of extending this idea of clipping a point to a line just applying at the end 
points of the line. And we figured out that it was not always possible that we could 
determine whether a line is inside or outside just by looking at the two end points.  
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In this respect we had a clipping algorithm suggested by Cohen and Sutherland where the 
idea was you are given a window which is shown here as a grey region and you want to 
decide things which are inside that window so what you do is you basically give a bit 
code to this window and the neighboring regions this window has then we actually devise 
a scheme for some trivial cases. Basically this process is, given one boundary of the 
window I can decide whether the line is on this side of the window edge or the other side 
of the window edge.  
 
So, in case if it is on the other side which is actually the side whether the window exists I 
would declare that it is possibly visible. Therefore just by looking at then the bit code 
which I get for the end points of the line I can decide whether I need to trivially reject the 
line or accept the line. If the two end points are inside the window then the bit code for 
the two end points is going to be 0 0 0 0 and then I can basically follow some logical 
operation like taking an AND for the two end points which we figured out earlier where 
if I take the AND for the two end points then if I obtain non 0 bit with only exactly one 
bit on, then I can say that it is trivially rejected by this window. 
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These are the cases which we can see, the cases for trivially acceptance and rejection. 
Therefore this line is trivially accepted because the two end points have 0 0 0 0 as the bit 
code and here the two end points are actually on this side, if you look at this edge of the 
window they are on one side of the window edge and if I take the logical AND of the two 
end points I find out that it is exactly one therefore I can trivially reject it.  
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And however if the case is of this kind where this trivial rejection criteria does not get 
satisfied then I need to do some more work. So these are the cases like where you have 
one end point on this side and one end point is actually inside the window and I get a 



logical AND which is 0 for all the bits then I need to find out the intersection point here 
with the window edge so that I actually get the segments of the line which is inside and 
which is outside. So I can subdivide that line again at the intersection point and again 
check for the trivial rejection and trivial acceptance that is the idea. Here are also the 
cases which are actually not visible from this window, the two end points are here and 
here but they are potentially visible because of not satisfying the trivial rejection criteria. 
So we need to still work on to figure out the segments of the line and therefore check for 
each of the segments for trivial rejection and acceptance. Therefore this was the Cohen 
and Sutherland algorithm.  
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Properties of the Cohen and Sutherland algorithm: this is basically a very simple 
algorithm. Just checking for the end points and it is still popular because most of the time 
when you do clipping it is actually primarily against a rectangular region. It has a very 
natural choice for a window. So this limitation of rectangular region may be all right for 
the most of the practical applications, so still it is popular as a method. And the extension 
to three d as we saw it last time is fairly straight forward. So, instead of having 4-bit 
opcode we have actually 6-bit opcode and basically we are comparing it with the faces of 
the parallelepiped structure whether there is a line which can be trivially rejected or 
accepted. 
 
Now let us try to see some other way of doing this clipping where we can resolve certain 
limitations of this method. One of the limitations is that we are restricting this to a 
rectangular region. May be still we can design certain bit code for the two end points if 
we have a convex region. For instance, if I have a triangular region may be I can still do 
in a very similar fashion the way I did for a rectangular region doing some kind of a 
logical operation for the two end points but it might become cumbersome even for a 
general convex polygon. Hence there is another very popular clipping algorithm which is 
the Cyrus Beck Line Clipping Algorithm.  
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And in fact there is a slight variation to it from Liang and Barsky so they are sort of 
equivalent in terms of the way they work. Therefore this is applied with respect to any 
convex region as a window. You can take up any convex region and we will see later on 
that it could also possibly be extended for non convex regions. Therefore what we do 
here is we consider a line a line in question which is to be clipped as a parametric 
representation of a line. So if I have a line AB so I represent this line as L(t) is equal to A 
plus B minus A(t) where (t) is the parameter which runs between 0 and 1. So the range of 
0 and 1 makes this line a finite line between the two end points A and B. So I have the 
representation of the line which is to be clipped as a parametric representation.  
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Now as far as the window edge is concerned, what I am trying to see it as is the window 
basically consists of several edges so I am trying to answer the question of clipping with 
respect to the window edges. And I represent a window edge using an implicit 
representation. Hence implicit representation basically means that I have a line LQ which 
is given as (Q minus P). n. It is actually giving me the answer to the question; on which 
side of the line the point Q is, given the point, P is on the line and n is normal to the line 
which I consider as defining for the inside of the line or a particular side of the line. It is 
something similar to what we also observed in line drawing algorithm where we were 
trying to answer the question of the location of the midpoint with respect to the line. So I 
have this implicit representation which actually enables me to answer the question as to 
on which side of the line the point Q lies. So this p point is actually any point on the line.  
 
In other words, it is sort of a side distance of the point Q from the line and the sign of that 
gives me whether it is this side or that side. Now, given the representation which I am 
going to use for the line to be clipped and for the window edges against which I am going 
to check for clipping in implicit form let us see how we can go further for designing the 
clipping algorithms.  
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Here we basically we do an evaluation of a given point Q which is nothing but through 
the equation of the line itself and if we figure out that this point Q is greater than 0 then it 
is towards the inside half space of the line. So I have this notion of designing the inside 
and outside. So inside is this side where I have to find the normal line. This is again a 
similar kind of representation for half space. just by looking at the sign what I have from 
this evaluation if it is greater than 0 I have the point towards the inside half space of the 
line and if it is less than 0 it is on the outside of the half space of the line and if it is equal 
to 0 then the point is actually on the line itself.  
 
Now, in fact if you recall the way we were trying to design this trivial rejection and trivial 
acceptance similarly in the case of Cohen and Sutherland we can actually look at certain 
indications for trivial acceptance and trivial rejections from him. For instance if I figure 
out that the point Q turns out to be inside with respect to all the edges of the window then 
the point is going to be inside the window itself. And if it so happens that for the two end 
points of the line this is the case then the line is inside the window. This is equivalent to 
the trivial acceptance of the Cohen and Sutherland algorithm and similarly for the 
rejection because we basically that bit code was just going to do this inside outside 
operations with respect to the half space defined by the window edge that is precisely 
what it was doing. So we can do it in this fashion as well. These two are basically 
equivalent as far as the computation goes. How do you figure out the line is inside the 
region just while looking at one edge of the window? Basically what we will do is with 
respect to one line we check. If the two end points happen to be outside that window edge 
this is going to be rejected.  
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If I have given the window edge in implicit representation L(Q) is equal to (Q minus P).n 
and the line segment give in parametric representation L(t) is equal to A plus t(B minus 
A) then what I mean by saying trivial rejection is basically looking at the two end points 
of the line which are A and B so they should satisfy the criteria of being outside that line 
and it is negative less than 0. Both of them give me this negative value and similarly for 
the trivial acceptance. I will not be able to declare the line as such inside unless I have 
gone through all the window edges. So now we have basically looked at the cases of this 
nature. 
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We are basically addressing questions with respect to one window edge. So this inside 
outside notion is actually associated to an edge and then we can run through with respect 
to all the edges and that is where we will get the algorithm design. So here this case we 
have resolved, this case also we have resolved and obviously there will be situations like 
this and one requires more work to do similarly as what happened in the case of Cohen 
and Sutherland.  
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Now with the given representations we have can we have these things in a sort of concise 
way. So when I say that I have this line AB in a parametric representation L(t) is equal to 
2(A plus B) minus t and the window edge in the implicit form then finding this 
intersection. Now we are talking about the more work which we need to do when a line 
intersects the particular window edge which basically requires you to find out this point 
of intersection and that you can find out by just substituting this L(t) into the implicit 
equation you have and solve for (t). So it becomes a very simple solution. Here L(t) has 
been substituted and after just rearranging these terms I can figure out this equation (A 
minus P).n plus t(B minus A).n is equal to 0. All I need to do is get this (t). And of course 
t has to be given the range 0 and 1.  
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This (t) is determined as (A minus P).n/(A minus B).n which I can further write like this. 
So remember that when we were trying to address the question of these L(A) less than 0 
L(A) greater than 0 we were basically looking at these (A minus B).n which is nothing 
but the same computation we did; A lid greater than 0 meant substituting A into my 
implicit equation of (Q minus P).n. Therefore as far as the computational aspect is 
concerned it was exactly this. So what I am trying to say is that the computation which I 
did for deciding my trivial acceptance and trivially rejection cases I just have to reuse 
them. I do not have to re-compute these I just have to reuse them and that is the 
advantage I have.  
 
And now once I have done this then it is basically a matter of doing this with respect to 
all the edges. What will happen is that I can then redefine my As and Bs according to 
what I get as a point of intersection and give that to the succeeding edge the next edge. 
All I need to do is redefine these end points and go through the entire circle of my edges I 
have and at the end of it I am done. Clearly when you look at this, this does not restrict 
you to the form of the window I have. And the only condition I have is the window needs 
to be convex, it does not matter what shape I have. So it does not really restrict it to the 
rectangular shape of the window and I can apply this to any convex shape.  
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There is a small variation, instead of doing this evaluation of (t) and then updating my 
end points in A and B and then give it to the next window edge I try to find out the point 
of intersection with respect to all the window edges. That is where these two are slightly 
different Cyrus Beck and Liang. Here what I am trying to suggest is that given a line AB 
I have possibly four intersections with respect to I have a rectangular window with 
respect to each edge of the window.  
 
Now the question which is being asked is that I find out these point of intersections 
basically the (t) which gives me the point of intersection then can I figure out anything 
from those (t) to be able to decide what segment of line is inside if at all the line is inside 
the window.  
 
Basically it means, here is the line and you have these window edges and what I am 
trying to do is find out the point of intersection of this line with respect to the window 
edges which are four in this case and just looking at the values of (t) which I obtain can I 
suggest anything for the acceptance or rejection of the segment of the line which could 
possibly be displayed within the window. Basically if I have these four points of 
intersection then I am trying to answer which of these (t) I need to be able to label that 
this portion is inside the window.  
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I have these (t)s which are computed as we have seen in this fashion, I have just actually 
swapped this (A minus P) to (B minus A) and put a negative sign in front, it is exactly the 
same thing. It just gives you a sort of a notion of direction. If I give for A(t) is equal to 0 
and for B (t) is equal to 1 so it is suggesting that I am going from A to B. 
 
Now let us try to evaluate this denominator term which I have here (B minus A).n which 
I call it as D just look at the sign of this. If the sign of this D is positive means D is 
greater than 0 then I label the (t) which I have computed as something like a tE so E here 
is referring to entering. So the idea here is that, if I have a line like this going from A to B 
and this is my normal then it is in some sense saying that it is entering that edge or it is 
entering that space. So I label these (t)s as (t) which I find for D greater than 0. Similarly 
I have (t) for which the D is negative less than 0 then I label this (t) as tL and here L 
referring to leaving. So here is the situation I am trying to illustrate.  
 
Here you have this edge so this is the inside region for this edge and when I find out this 
point of intersection here so the (t) referring to this I label it as tL because here when I 
look at this line it is in some sense leaving that region so I have this notion of entering 
and leaving which I use for labeling the different (t)s I obtain. Now if I can exploit this 
notion in order to decide which (t)s to select.  
 
If I consider this particular line, and you know what portion of the line is actually inside 
the window and what (t)s will have the label E, these (t)s are going to have tE and these 
two (t)s are going to have tL. Therefore if I take that maximum of tEs and the minimum 
of the tLs then it is fine.  
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Therefore this (t) and this (t) both these (t)s are of interest that is to be able to segment 
this line and which is to be clipped. So the (t) of interest is the largest tE which I can call 
it as tE power max and the smallest tL which I call as (t) minimum. Now, in fact this can 
also help me further. Since I am doing just this evaluation of intersection point and then I 
also need to decide whether the line is actually inside or outside this can even help me 
doing this where this tE power max is greater than tL min. 
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If this happens then I reject the line and that is what is happening in this case. This is 
what you will get as (t) max and this is your tL power min so you will just reject that. 



Therefore the evaluation of this tE power max and tL power min can also help you for 
rejecting the line. So this is basically based on finding out the intersection and the trivial 
rejection part comes after the evaluation of these (t)s.  
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Now clearly as we have said there is no restriction to the shape except that the shape 
needs to be convex. So here, there is an example where I have taken a convex window 
which has got eight edges and P1 P2 is the line in question and in a similar fashion I did 
for the rectangular region I can do the clipping of this line and get these points. Now the 
question is that if I you give you a shape, so first if all you need to answer the question 
whether I can perform my clipping against that shape whatever I have given here, so you 
need to answer the question whether the particular shape is convex or not.  
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Therefore what you do is, you look at the cross product of the adjacent edges so here in 
this case when I take a cross product of E1 and E2 and my convention is, the thing which 
is coming out of this plane is positive then I say even cross E2 is positive and so on. So, if 
I just take the cross product of all the adjacent pair of edges it turns out that in this case 
they are all going to be positive or if I had chosen a different convention they could have 
been all negative. So basically what we are saying is that if I find out that the cross 
product of the adjacent edges has the same sign then I declare that polygon as convex.  
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Let us take a shape which is non convex and see that this gets violated. So here is a non 
convex shape so clearly that is where you find the non convexity at this point V4. Then 
what will happen is that you observe that there is a change of sign at some point. All 
these cross products do not give you the same sign. Then you say that the shape is non 
convex. Now the question is, can we still do clipping for a non convex polygon or 
window?  
 
The question which is being basically asked, can I map the problem of solving for non 
convex to convex by doing some sort of a preprocessing. So the first observation could be 
that if I generate convex polygons out of it, that is one way to look at and then I actually 
do this clipping with respect to the entire decomposed convex polygon. But often what 
happens is that when we are given such a non convex polygon the non convexity arises 
only at a few points may be 1. So may be what we can do is we can do some corrections 
to that non convexity and still apply the algorithm which is for convex and arrive at a 
solution. So with respect to the particular polygon what we can do is something like this, 
I make this polygon convex.  
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So, making convex the polygon may actually involve in finding out the convex hull of the 
points. In this situation may be it is just a matter of finding out where the change of sign 
occurred and then I take the two end points which were adjacent to it and join by line and 
make that polygon as convex. But this situation could not be that simple and you actually 
require finding out the convex hull. At the moment we are not really concerned of the 
exact algorithm of finding out a convex hull. We have a set of points and these set of 
points are nothing but nails, nails on a floor. You take a thread start from a nail and just 
wrap it around then what you see is whatever is given by that thread gives you the convex 
hull.  
 



In such cases where we are interested in applying this clipping we are able to figure out 
the convex equivalent without going through an elaborate algorithm of convex hull. In 
this case we figure out just by looking at the adjacent points to the point which had given 
the difference sign and I join this line and I get a convex polygon. Then what I am trying 
to do here is, for the line which was given to me as P1 P2 and that is the line in question 
which was to be clipped I first find out the line which is clipped against this polygon the 
new polygon including this blue line. Therefore I basically get the points P3 and P4.  
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Then I consider this polygon which was sort of the additional polygon for making the 
other polygon convex. Then I do a clipping against this polygon for the resulting line I 
obtained which was from P3 P4 and I get the point P5. So I just do a clipping of the line 
with respect to this polygon and then I subtract this from what I had obtained earlier. So 
at the end I obtain the line P3 P5 which is the resulting line to my interest. This is 
basically applying the same convex region algorithm and doing some preprocessing and 
post processing to get the line clipped.  
 
There is the another interesting aspect to it, when I say that this is the portion I had got or 
the way we have seen the clipping algorithm which actually gives you the line which is 
clipped against the polygon which is inside the window I may call it as something like a 
interior clipping. In fact when I did interior clipping to find out P4 P5 I can do the exterior 
clipping that means the line which is not inside but outside that region to give me P3 P4. 
Therefore I can just have interior clipping and exterior clipping. 
 
If you have seen exterior clipping being applied somewhere, what happens to your 
window management system? You have a window management system so one window 
overlays other window so on and so forth. And what you see is actually the exterior 
clipped display from the window which is in front. One can think that in terms of 
clipping. So this basically covers line clipping with respect to a polygon which is 



generally a convex but even if it is non-convex for simple non convexity we can still 
apply a modified version of the same algorithm.  
 
We started with points then we went to line and now I want to do polygon. I have a 
polygon as an input primitive, I want to do a clipping of this polygon against the window. 
So the question which is here is, can I extend the line algorithm to do polygon clipping? 
One thing we have not talked about is that this polygon could also possibly be filled, they 
may have shade, they may have color, and then there might be some problem. 
 
Polygon clipping: this is the portion to be discussed next. So, given a polygon as an input 
primitive how do we clip that against a window? Once again when we talked about the 
Cyrus Beck and Barsky Line Algorithm just the way we had seen the extension to 3D in 
the case of Cohen and Sutherland. Here also it is straight forward. Here we have 
considered window edges as the lines against which we are trying to find out the clipping. 
There we will have window planes. So we will have a volume given by these convex 
regions and each of the faces of that volume is going to be a plane. But the test we are 
going to have will have exactly the same computation because we are basically 
answering the question of inside outside or this side or that side. So instead of saying that 
with respect to a line we will say that with respect to a plane. Therefore again it is a 
matter of checking the sign of that computation. So that can be applied even for 3D. 
Therefore 3D clipping is a just a straight forward extension of what we have seen as 2D. 
Non convex regions in 3D could slightly be more difficult making them convex.  
 
    


