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So, we will continue on fractals. Last time we were talking about fractals. In fact we 
looked at geometric fractals.  
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So just to recapitulate some of the properties and details we discussed about fractals. One 
of the things is that they exhibit infinite details which basically means that if I try to 
zoom in to the fractal structure I keep finding the details. So the details present inside the 
structure are at infinite level. So as you keep zooming in you keep finding details there. 
Therefore for the purpose of creating these fractals we put a limit to it because of the 
resources we have namely the computational space and things like that. Hence we cannot 
do this at infinite level.  
 
And the other important property they exhibit is the self similarity. So the self similarity 
property is again referring to the situation where one is trying to zoom in to the structure. 
You observe some scaled copy of the same structure when you zoom in. So there is a self 
similarity from what it was originally as a structure and what you keep finding as in the 
details. In fact these two characteristics when one observes also find many of the natural 
phenomena.  
 
For instance, you take a view of a mountain and you try to approach the mountain, you 
zoom in. So first of all you find lots of details coming out and the second thing is the kind 
of structures you observe has some similarity to the over all structure. This is known as 



self similarity. Many of these natural phenomena also show these characteristics. That is 
one of the reasons fractals are chosen for modeling natural phenomena. If we look at the 
process of their generation it turns out that it is a recursive procedure where you start 
from initial state and you consider a transformation function which could be a 
transformation in terms of a geometrical pattern or some other transformation and you 
keep applying that transformation function. So, there is a recursive application, a 
successive application of the same thing so it is a recursive procedure which adds details 
into the structure.  
 
The other observation we had which was particular in the case of geometric fractals is 
that the process of generation is deterministic. You take a copy of the transformation and 
then reapply the same transformation. And it is deterministic which in fact renders in 
these geometrical fractals the regularity in what the pattern gives you. Though these 
fractals demonstrate irregularity in their structure but the way these get applied show 
regularity in that pattern. So there is regularity in the irregularity. That is because of the 
fact they are deterministic in the process of generation. And we also observe that they 
have a dimension like what we observe in Euclidian geometry but this dimension is 
referred to as fractal dimension because of the fact that this could be fractional as a 
number. So you can have a fractal dimension like 1.26, 1.89 and so on. 
 
We also observe that the effect of this fractal dimension in some sense captures the 
amount of roughness of the structure which we obtain and also has a self filling 
characteristic. For instance, we observe that when a fractal dimension goes from 1 to 2 so 
you actually have a fractal dimension of 2 for a curve then the property of self filling ness 
is observed. So, when the fractal dimension is 2 the whole area where it gets applied it 
sort of self fills which intuitively matches to the dimension what we observe as the 
Euclidian dimension of 2 for a planar structure. These are some of the characteristics 
which we observed in the case of geometrical fractals.  
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Again looking back to the construction of Von Koch Curve you have a pattern of this 
kind so we start from a state which was a straight line and this is the transformation 
which is applied which we are referring to as F and then you again apply this 
transformation to each of these segments and so on. This is the recursive procedure. 
Ultimately you get a rough pattern structure. This is the Von Koch Curve.  
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Now the problem with them as we looked at is because of the nature of their generation 
which is deterministic they exhibit the self similarity property in exact form so they are 
exactly self similar structures. When we are referring to them as procedures for 



constructing natural phenomena where we observe that there is no deterministic pattern 
but in fact there is randomness into whatever we observe. Then there is some 
modification to this process where randomness is introduced. So the fractals which have 
some randomness to it are referred to as random fractals. So the whole idea is that the 
process of generation would now have some randomness in it which in turn renders a self 
similarity but in a statistical form.  
  
When you zoom in a fractal structure which has randomness in it then what you observe 
is that the zoom in structure is seemingly similar to the original structure and not exactly 
similar. That is what we mean by statistical self similarity. There are number of ways in 
which these random fractals can be generated. In fact one of the features of the process of 
generation you observe is involving some sort of a subdivision mechanism.  
 
Adding details in some sense is a method of subdivision. Then what you do at the level of 
subdivision is something different. But as a process you are doing some sort of a 
subdivision even when we are generating the geometric fractals. We will be looking at 
the various ways of process of subdivision which in turn gives you a generating 
approach. Let us look at the process of generation and one of the ways in which one can 
think of generating these random fractals is a mid point subdivision.  
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Here is an example where we are interested in creating fractal curves. So again one can 
start from a line A to B which is like an initiator to the fractal and you want to add details 
to this line similarly as we did in geometric fractals. When we are saying that it is a 
midpoint subdivision the idea here is that we would consider the midpoint of this line and 
do an action to that so that is why we call this as a midpoint subdivision. So we actually 
take this midpoint which is at M displace it to point C so this initial AB line now is 
transformed to two segments AC and BC.  
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Now clearly there are issues concerning as to how do you displace, what is the magnitude 
of MC and the other issue is in what direction do you displace? These are the two basic 
issues. When we are displacing this M to C remember that this process has to continue. 
Next time what will happen is I will consider this as a segment, take the midpoint here 
and do a displacement of that. Similarly, this segment, take a midpoint of this and 
displace it. So at every level I am performing this process of subdivision and a 
displacement of that midpoint for that level. So at various levels this issue would arise, 
how much do I displace and in what direction do I displace. So one of the things which 
need to be looked at is that the displacement has to capture the level or the scale where I 
am. So at this level this is the displacement because of the fact that this is the scaling, this 
is the initial length I have so this has to in some sense scale with this.  
  
Similarly, when I do a displacement here this has to scale with this and the second thing 
is the direction. Some suggest that you could do this displacement only in one direction 
which is in 2-D if considered this as X and this as Y then this is Y direction or it could be 
the direction of the normal of this segment. So it will be normal here and it will be 
normal here. The other parameter to the generation is the flipping of it. Remember we 
could actually go positive offset or we can also go negative offset. That is also an 
additional parameter, something like a flipping what we used in the construction of a 
dragon. These are the various parameters one can play with.  
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Therefore may be at the end of the whole thing we get something like this. So this seems 
to be of some interest if you are trying to use them for modeling some natural phenomena 
for instance coastal line unlike Von Koch curve which was extremely a regular structure. 
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You consider having a coastal line of this where what you have done is you have supplied 
an initial structure which gives you a gross shape so it is like the initiator where you want 
to start the generation of fractal curves and then you apply this random fractal generation 
on the initiator so you may get this.  
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So clearly this should not be confused with the exact GIS data of Indian map. But if you 
are doing a simulation or doing some computer generated synthesis then this is a freely 
acceptable approximation. This was concerning the curves. A similar idea can be now 
used for surfaces. In fact there are number of ways we can look at the process of 
subdivision again.  
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For example, you have an initiator of the kind where you divide or you construct the 
surface as collection of triangles. So at some iteration N you have a configuration like 
this. There is this triangle and there is another triangle here and you have the positional 



data of these. Now there is a type of triangle edge subdivision where you do something 
very similar to what you did in the case of curve where you obtain the midpoint of each 
of the edges in the triangle so this is the midpoint, this is the midpoint, this is the 
midpoint and so on. Now that becomes your next level of surface then appropriately you 
construct the triangles using those points.  
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So the next iteration N plus 1 has got these additional points which are nothing but the 
midpoints of the individual edges of the triangle which are there and then you have these 
as new set of triangles and this can be repetitively done. From this iteration you can go to 
the next iteration where you subdivide each of the edges here and then again do a 
reconstruction of set of times. This is what is happening in a topological fashion as to 
how these triangles and points are being added.  
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Again at a surface construction level for example if this is a triangle to start with, this is 
the initial triangle, these are the midpoints you had and because of these points this whole 
triangle becomes as four triangles so this is the topology of triangles which have been 
constructed. Now you have to also do the height assignment that is where the 
perturbation to the surface would come.  
 
So what you are going to do is you are going to displace this point to a certain height, you 
are going to displace this point to a certain height, you are going to displace this point to 
a certain height something very similar to what was done in curves. You have this height, 
this height and this height. So the new surface is this triangle, this triangle, this triangle 
and this triangle. Again there are issues. What are the issues? One of the things is that the 
direction in which you displace these points. Therefore let us look at these issues. Again 
one of them is the amount of displacement. So the amount of displacement is relevant, we 
go to the next level where we take this triangle and we take this triangle.  
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So there will be a midpoint here somewhere which would be shared between this and this 
so the amount by which I displace for this set of triangles has to be the same as for this 
otherwise there is going to be an inconsistency. And when I am using the randomness 
which is primarily obtained by some random number generator one has to be consistent 
in getting these random numbers or the random heights for the two adjoining triangles 
otherwise I would end up getting inconsistency. If you are using some seed based 
generation of random then one has to may be use the indices of the edge to determine the 
seed. 
 
It has to associate the edge so that you are consistent in the height you assign. So once 
again if I have the mid point which is being shared and I displace this along the normal of 
this triangle and the other one along the normal of this triangle then I would have a 
rupture, I will need a hole so there also you require consistency. Therefore one has to 
address the issue of consistency whenever you are doing these both in terms of settings 
the amount of displacement and choosing the direction in which you displace. Here are 
some of the results. If you consider this as your base triangle this is at level two, so 0 
level is the base triangle, level 1 is when you have four triangles and level 2 is after that 
so this is the level 2 and this is level 4 and so on so at the end you get something like this. 
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It does not still look like a mountain but it seems okay. Now what is the rendering or 
shading model one should be using for rendering fractals? Would you be doing Phong 
shading or would you be doing Gouraud shading or would you be doing flat shading? 
Actually you should be using flat shading. If you were using Phong shading or Gouraud 
shading what kind of result you would have had? If you were to use Gouraud shading and 
Phong shading what would that have done is in fact smoothened the rendering thereby 
removing the details so the whole purpose is lost. At one point you are trying to add 
details through subdivision and when it comes to rendering them you just do the reverse 
process but it does not work. So you would be actually using flat shading.  
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The previous one was one of those kinds you would have generated in your assignment. 
Here this was the base triangle and then these are all the perturbations added as this 
height during the subdivision.  
 
What has been done is that this 0 height or the height at the base is given a blue color like 
something giving you an impression of water and again in fact when you change this 
height you can vary the color. So there could be different gradation of colors, it could be 
green to brown or whatever. So this looks reasonable. Let us discuss about some other 
ways of doing this subdivision. One was this triangle edge. There is another way which 
you can use for subdivision which is the diamond square method. What is diamond 
square method? This is the configuration you have at an iteration N so these are the 
points given to you.  
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Now in the case of diamond square subdivision this is what happens topologically. You 
obtain this point which is the average of these four points. Similarly you obtain these 
points which would be the average of these four points. This point is the average of these 
four points and this point as the average of these four points.  
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So there is a middle point for this square which is the average of the corner points. And 
then you have this point which is obtained from these two points. You have this point 
which is obtained from these two points, you have this point which is obtained from these 
points and so on. So what you could sort of construct is, this shape is on the top of this 



shape so these are sort of diamonds on the top of squares so that is why they are called as 
diamond square subdivision.  
 
This is another way of doing the subdivision. One of the thing which is common between 
this and triangle edge subdivision is that you end up getting points onto the edges here. 
There is a point here, there is a point here, there is a point here and so on. Now to retain 
the consistency what might happen is that you may have some sort of an artificial edge 
getting appeared in the final structure to maintain the consistency because of the points 
which are being created now along this edge you would see some lining on the final 
structure. That is in some sense an artifact which may be there in the case of diamond 
square subdivision and also in the case of triangular subdivision. That is also referred to 
as creeze effect. It is an artificial creeze which is being formed at the edge. So in order to 
avoid this there is another scheme of subdivision which is called as square square 
subdivision.  
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Again what is done here is you have these points at an iteration N so what we have to 
look at is what happens in the next iteration. This is what happens. Here we create these 
four points within these squares, another four points within this square and so on.  
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Basically this square is in some sense getting replaced by this square and so on. And 
these two squares are again joined so there is a square here, square here, square here so 
from squares you get squares structurally. 
 
Now how do you get this point that is the question we should answer. Now this in fact is 
obtained using bilinear interpolation. These are the four corner points we have and we are 
trying to locate this point. Now let us say I just enumerate that as 0 0, 1 0, 1 1, 0 1. So this 
particular point is located at 1 by 3 and this particular point is located at 2 by 3 and so on. 
 
So, if I perform a bilinear interpolation, one parse in this direction and another parse in 
this direction so this point can be located in some sense from the weights which are 
shown here like the weight of 9 3 3 1 which are nothing but the weight coefficients which 
one needs to apply to the respective points. This point is basically obtained as nine times 
this point, three times this point, three times this point and one time this point which you 
can further normalize divide the whole thing by 16. And in some sense it is all telling you 
the proximity of this point with respect to the four corner points which is what happens in 
bilinear interpolation anyways.  
 
Similarly, the corresponding weights would get determined for this point which you are 
trying to obtain here and this point and this point. So each of these four points now can be 
computed using bilinear interpolation from the corner points of the square. Once you 
have obtained this point and all the points of the square then you have obtained a new 
configuration for the iteration N plus 1. Now again this can be repeated. What is 
happening is, in some sense from this boundary I have reduced the boundary to these. In 
further iteration I would come here somewhere. But if you want to preserve these 
boundaries then you have to do something extra within this range. So you can obtain 
extra points which would locate points here, locate points here and so on so you have 
extra squares for the boundary cases. 



 
In fact if I were to use this process of repetitive bilinear interpolation to a curve or to a 
surface in this fashion like a subdivision what is the limiting surface we have? Here is an 
example of a curve, if I were to use some sort of a midpoint subdivision, this is the 
situation to start with. Now I am obtaining a point here and obtaining a point here which 
is the midpoint of the two.  
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I also preserve the boundaries. So in some sense I have a new set of points like this. 
Again I can do the same thing so what happens is this. So what is the limiting curve I 
have? This is the subdivision of a Bezier curve, it is a quadratic curve, so it is a Bezier 
quadratic curve. You keep subdividing it.  
 
Here what we are doing is we are actually perturbing them. Therefore this is what is 
happening topologically. But then you are perturbing the heights and that is what will 
create a structure like a terrain or a landscape. But this actually does not give you the 
artifact of creezing because every time you compute these new points these points are not 
aligned to one of the edges so this removes the artifact of creezing. This was due to given 
miller who introduced it in graph in 86 or so. 
 
Here I am computing the height of this from this part and similarly the height for this 
with the same weight structure so there is no issue. Basically it is 1 by 16 times height of 
this, 3 by 16 times height of this, 9 by 16 times height of this and 3 by 16 times height of 
this. So there is no issue of consistency here. We have seen examples of coast lines, we 
have seen examples of landscape but this is a much better example now which even has 
some fogginess to the atmosphere.  
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You can also do clouds in a similar manner. In the case of cloud what you need to change 
is the opacity. It is the opacity which would determine the thickness of the cloud. We can 
even do candies. Some slides contain examples of candies. It is the cover of the candy we 
have as an example and which can be generated using a similar process. Also stones and 
many other things like plants, trees which we have already seen. These were random 
fractals and we can see the relevance of these random fractals towards the modeling of 
natural phenomena. There is another kind of fractals which are also referred as algebraic 
fractals. The Mandelbrot’s set or Mandelbrot’s function is again some sort of a generating 
or a transformation function.  
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Here z is equal to z power 2 plus c where z and c both are complex, they both are 
complex numbers. So the idea here is when we are saying algebraic fractals we are 
basically doing a visualization of this function as to how this function iterates. So, for that 
there is a very simple algorithm. Consider c to be the point on the region you want to 
display. The fact that these are complex numbers they can be written as something like x 
plus iy which is the position in two dimensions. So if I consider c to be the point in 
question for the region to be displayed and z0 given as an initial value to z so this is the 
function I am going to use so there has to some initial value of z which I call as z0 then 
what is happening is the evaluation of this function which is zn is equal to zn minus 1 
square plus c.  
 
Then what you do is you examine the size of this zn, the size could be just the squares of 
the real part and the imaginary part so this is the size. So what you are like basically 
looking at is some sort of a divergence characteristic of this function z is equal to z2 plus 
c. So clearly there is this self squaring which is happening to the function. One would 
imagine that this function would diverge soon. But it turns out that there are points that 
never grow after a certain value.  
 
This is what actually gets defined as Mandelbrot’s set. Here we are just looking at the 
mechanism of displaying this process. When we do the evaluation of this size if the size 
turns out to be a tolerance defined by you then you assign a color which is actually a 
function of this N which is the iteration count to this point c in the region. And if it turns 
out that it never grows after a certain size that means you have crossed a certain limit of 
number of iterations you assigned for then again you assign color to that N which is the 
limit of your iteration. So this would give you the set of those points which stops growing 
after a certain number of iterations.  
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The kind of structures you would observe is something like this: This is the start where 
you have the region starting from minus 0.5 to minus 1.25 to 2 to 1.25 so there is a radius 
of 2.5 region and you obtain something like this. And these yellow points are the points 
which do not grow after a certain number of iterations. This is Mandelbrot’s set.  
 
This is the similarity of these fractals the algebraic fractals [….]49:52 the other fractals 
we have observed is that if you zoom into the structure if you take a small part here and 
try to zoom in here this is what you obtain. So, by zoom in what you mean is that you 
take a small region here increase the resolution of your computation for the region c you 
define and obtain this. This is what you get after zooming. And what you observe is that 
there are similar structures like this which are of the similar shape which you had 
obtained at the first level from where you have zoomed.  
 
Again you can keep doing this process zooming in so you again you find details so there 
is infinite details to the structure that is one observation which is what is shared by other 
fractals. And also there is a recurrence or reappearance of a similar structure which you 
had started with. So there is this property of self similarity. For the purpose of looking at 
as a process of generating these patterns and structures they are in the same category.  
 
We are perhaps ignoring the mathematics of this function. In fact there are people who 
have attempted looking at the generalization of this where z is actually coming as z to the 
alpha plus c rather taking a z power 2 plus c consider some power of z and this alpha 
could be an integer, it could be a real, it could be positive or it could be negative and 
interesting patterns can be generated using this. 
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One characteristic which is observed is that you define L as a lobe structure. Now when 
you see here this is one lobe structure. So if I say this is one lobe structure then the 
number of these lobes structure is basically given as the floor of absolute value of alpha 
minus 1. So when I had alpha to be 2 then the number of structures I had is 1 then if I 
consider alpha to be 3 then the number of lobe structure is going to be 2 and so on. In 
these slides which are circulated around, you can see there are patterns where a different 
alpha is considered other than 2 and you have these various lobe structures. Another 
interesting observation is that even the fractional part signifies some sort of a beginning 
of the growth of a small lobe structure which is like a baby lobe structure. This is one 
lobe here (Refer Slide Time: 54:35) and this is another lobe and so on. 
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So, for alpha is equal to 10 you would have nine such structures so it is 1 2 3 4 5 6 7 8 9. 
And even in the case of negative number this alpha is minus 10 and this is what I am 
referring to as a lobe structure. There will be eleven of such like 1 2 3 4 5 6 7 8 9 10 11. 
 
(Refer Slide Time: 55:28) 
 

 
 
Anyway we are not actually looking at the implication of this number in terms of the 
mathematics behind it but we are just trying to display that. In fact there are very 
interesting properties with respect to what happens mathematically to this. So one can 
take other complex functions and see this .and clearly this would not happen to all 



structures. There are only certain structures which exhibit the property of self similarity 
and details inside so there is a class of functions which would give you this.  
 


