
Introduction to Computer Graphics
Dr. Prem Kalra

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 3
Raster Graphics (Contd….)

Last time we were talking about drawing a line using raster graphics and what we looked
at basically was two algorithms one of them was DDA and the other one was midpoint
line algorithm.

(Refer Slide Time: 1:18)

So the basic idea there was we wanted to simplify the process to decide which point to
plot next. and the strategy was that if I have a line given then I define a function form
which is f(x, y) which is nothing but the implicit form of the line ax plus by plus c is
equal to 0 when I define a line using this representation. Then the question we were
trying to ask is that the midpoint between E and NE which are the candidates to be
plotted once I have plotted this point how do I decide whether to plot E or NE east or the
north east point. And it gets reduced to the evaluation of the midpoint M for the function
f(x, y). All one needs to do is check the sign of this f(x, y) substituting for M and decide
whether this is below the line or above the line. If it is greater than 0 it is below the line
and if it is less than 0 it is above the line and that in turn decides whether I should plot E
or NE If it is above the line that means I should plot E because E is closer to the line that
is the main idea. Similarly, if it is below the line then NE is closer to the line therefore I
should plot NE.

(Refer Slide Time: 3:03)

And then we basically formed an algorithm by which this F(x, y) which is actually acting
as a decision variable a decision function how do we update this decision function for the
next subsequent points to be plotted? There if I had plotted E then what is the evaluation I
need to consider? That is, I would evaluate F(x, y) at M prime. Similarly, if I plot NE
then I would do the evaluation for M double prime. So that is the basis of the algorithm
and that why we call this as midpoint line algorithm. So this was about drawing or
plotting a line. Now we move on to some other primitive.

(Refer Slide Time: 4:07)

Now I am plotting this circle, the idea here is that if I am able to address the problem of
plotting or drawing line in one octant that we figure out then we can actually do similar
process for the other octant. So the question was; what happens if I have to plot a line in
the other octant? For instance I can change the role of x and y and keep the algorithm the
same and that will take care of if I have to plot a line in another octant then I can do it. So
now we move on to drawing or plotting a circle. As we know that the circle is represented
in the form like x square plus y square is equal to R square.

Once again one can see the problem of plotting a line as a matter of, I run through x
values from 0 to r and obtain the value of y corresponding to the x value I gave from this
equation I had plotted. Now what is the implication of that? so the implication of that, for
instance if I am considering the first quadrant I start from here somewhere which is the
point at 0 arc and these are the subsequent points which get plotted by using just a
solution of this equation. Now what you observe here is the sampling which I have in y
the points which I plot from this point to this point the gaps keep increasing and that may
not be a good strategy then I have to plot these primitives in somewhat uniform sample.
Therefore here the sampling is somewhat changing when I go from this point to this
point. Now the issue is that, can we device a mechanism by which we can avoid this?

Something similar to what we did in the case of line drawing where we treated the line
given the fact that we know the slope of the line by the specification of two end points
can we break down this problem into octants?

(Refer Slide Time: 7:24)

If I consider a plot of circle, in one octant in this case there is a point in the circle in
second octant it is an interesting property the circle offers that given this point to the
value (x, y) how many additional points I can know from this (x, y)? It is 3 because there
is a reflection to (x, y) and there are also reflections to this where x is equal to y so there
exist what we call as eight way symmetry.

(Refer Slide Time: 8:14)

In case of given this point (x, y) in this option I can know seven other points just by the
value (x, y) which indicates that if I plot the circle in this option I can plot the entire
circle. That is what we are going to look at and we still want to use something similar to
what we did in line drawing. So we have a representation similar to the implicit
representation of the line which was in terms of ax plus by plus c is equal to 0 and here
also we have an implicit representation in terms that x to the power 2 plus y to the power
2 is equal to r power 2 which I can say as F(x, y) which is nothing but x to the power 2
plus y power 2 minus r power 2 and I still want to do this in a very simple fashion where
I just need to, for instance, check a sign for this function to be able to decide what should
I do next.

(Refer Slide Time: 9:27)

And this for instance for a given point (x, y) if I have an evaluation of F(x, y) where it
equals to 0 that means x, y lies on the circle. If it is greater than 0 I know that (x, y) is
outside the circle and if it is less than 0 it is inside the circle. That is what we want to
explain. And then once again if I have a point plotted p xp yp then the candidates which
need to be looked at the point E and the point SE. Remember we are talking in the second
octant which in turn suggests that if I do an evaluation of the point M which is the
midpoint between SE and E and try to answer this question on the value of F(x, y) and
just evaluate the sign of it then it indicates to me whether I should consider E or SE.
Again we are talking in terms of evaluation of the midpoint to this implicit function F(x,
y). So it is a straight forward extension to what we have seen in the case of lines.

(Refer Slide Time: 11:36)

Therefore we evaluate F(M) and if it is less than 0 and is inside the circle and being
inside the circle means that the point E is closer to the circle therefore E should be plotted
we choose E and if it is greater than 0 then it is outside the circle then we need to choose
SE. So, now we have the algorithm just the way we had line drawing we have circle
drawing. The only thing is again we have to worry about how we change these d primes.

(Refer Slide Time: 12:27)

What is the update of d primes according to whether we have plotted the E point or the
south east point. So, once again we have the old d which was the evaluation of F(M)
which is nothing but xp plus 1 and yp minus 1/2 so we just substitute that and if it is E

which is plotted which is from the evaluation of the fact that d old is less than 0 we
evaluate new d. That means what we are saying is that E was plotted. If E was plotted
then I need to consider M prime for the subsequent evaluation. I get d new as F(M prime)
which I just substitute x as xp plus 2 and y as yp minus ½. This is what I get by
substituting. And then I get the change in d which I call it as delta e as d new minus d old
which comes out as 2xp plus 3. So similarly I can do this when it is SE.

(Refer Slide Time: 14:24)

If it is SE that means d old is greater than 0 so again the equality you consider in either of
the cases and be consistent. And equality now has been considered as SE so when it is SE
I do the evaluation of F with respect to M double prime that means I had considered SE
for the point to be plotted. Therefore the midpoint which needs to be considered is M
double prime so I evaluate d new through M double prime and I substitute the
corresponding (x, y) values for M double prime and I obtain this. And then again the
change in the value of d which I obtain as d new minus d old comes out as 2xp minus 2yp
plus 5. So I have the basic steps which I need for the algorithm except that I still need to
worry about what happens on the start the initial value of d. So what happens at the initial
value of d?

(Refer Slide Time: 15:54)

We are talking in second octant, so I start from the point which is at 0R. So the next
midpoint which needs to be considered is 1R minus ½. I just do the evaluation for this
midpoint F1 R minus 1/2 which gives me 5/4 minus R. So with this I have all the
necessary steps to come out with the algorithm to plot the circle in second octant and
using the symmetry of the circle I can plot the entire circle. That is what the algorithm
looks like.

(Refer Slide Time: 17:01)

I start from x is equal to 0 y is equal to R the d start is this and right pixel means I plot the
pixel I draw the pixel at that location (x, y) and this while indicates that I am working in

the second octant. So if d is less than 0 I consider the delta E for updating d and I just
change the value of x and when it is otherwise then I am updating d through delta as E
which means I plot the SE point where x is incremented by 1 and y is decremented by 1
and so on. Therefore we have the algorithm. Now once again this evaluation of d
indicates that I am doing a real arithmetic so may be I would like to avoid that.

If I have d is equal to 5/4 minus R the question is that what happens if I just consider d is
equal to as 1 minus R. In other words I am defining some other d which I call it D which
is d minus 1/4 does that affect the algorithm? Comparison would be d less than 0 will
imply that D less than minus 1/4 does that change anything? The fact that we are talking
in terms of incrementing by 1 every time, it actually does not. So the algorithm remains
intact even if when I change this evaluation to 1 minus m.

We will do this comparison in D should be less than minus 1 micron no I am now just
saying that that is what it implies if I am saying small d less than 0 but if I just say instead
of D less than minus 1/4 to D less than 0 it does not really change anything because of the
way I am going to increment. When it is told d less than 0 it implies to doing this
comparison in D less than minus 1 micron. But if I just say instead of D less than minus
¼ say D less than 0 it does not really change anything because the way I am doing the
increments. We already have line algorithm, circle drawing algorithm, now we can move
on to some other primitives for instance an ellipse.

(Refer Slide Time: 20:44)

In anything if we have some implicit representation we can actually think in a similar
way. Here we have the equation of the ellipse given as x square/a square plus y square/b
square is equal to 1. The only difference here is that I do not have this nice 8 way
symmetric which I had in the case of circle. But I do have some properties by which I can
partition the computation. One instance is, if you look at one region here, here if I had a
plotted point then the next point which needs to be considered are E and SE whereas in

this region if I have a point this is plotted then I need to consider the point S which is the
south and SE and that is basically governed by the fact the slope of the curve. If I
consider a tangent here, so if this is the break then I have the slope equal to minus 1. Or
in other words I can also talk in terms of the gradient which is the sort of easier to
compute the fact that I have this representation in an implicit form which is basically f(x,
y) and the gradient of f(x, y) can be computed straight forward. So again I can map the
problem of plotting ellipse in a similar fashion the way I did for a circle. This is what we
have as the midpoint algorithm used in different primitive slots. This is about drawing
primitives or rasterization of primitives.

Next thing which we are going to talk about today is the clipping. So we are now moving
if you recall the rendering pipeline so we had the last process as rasterization and just
before that we need to perform clipping.

(Refer Slide Time: 23:50)

What we mean by clipping? Clipping is basically extraction of the primitives for the data
you have inside a region which we generally call it as the window. So whatever comes in
that window that is what we are interested at which in turn means that we are looking at a
scheme by which we can discard part or fully the primitives which are outside the
window. This is what we mean by clipping. Again we can look at in terms of the
complexity of the primitives to answer this question whether that primitive is inside or
outside that window. That is why we talk about the smallest primitive which is a point.

Therefore we are trying to answer this question whether that point lies within the region
of interest of the window or it is outside that window. Now for the purpose of simplicity
and convenience let us assume that the window is a rectangular window. There is no
reason that window is always rectangular but for the purpose of simplicity we consider
that window to be a rectangular window. We are looking at the question of whether a
particular point is entirely within that window or it is outside that window. And typically

if we have a rectangular window we define the window through these points which are
the lower bottom most left most point and the top most and right most point.

Now, through this given that I have the coordinate of point in question as (x, y) the
simpler evaluation of (x, y) with respect to the extent of the window which is defined in x
and y I can answer this question. Just looking at whether x is greater than or equal to xL
and less than equal to xR and y is greater than or equal to yb and less than or equal to YT
I am able to answer this question whether the point is inside the window or not. With this
we can easily see that the point Q is inside and the point P is outside the window.

(Refer Slide Time: 27:17)

Line: Is another primitive which is slightly more complex. We would want to perform
clipping of line. That means again looking at if there is a portion to be removed or not
which is outside the window. Now the question is that since I know how to clip a point
that means to answer this question whether a point is outside or inside the window can I
extend that idea to answer the question whether a line is inside or outside the window. If
the frame is rectangular it is possible to say so. Obviously there are cases where this
formulation allows me to do the clipping of line. For instance in this case let us say this
point is out, this point is out, this point is out, this point is out and I can perhaps say that
this is inside and this is outside.

 But what happens to these? Of course there is a point which is inside. So when I am
talking about the point clipping to be used in the context of line clipping I am basically
considering the end points of that. So I am trying to answer the question with respect to
the end points of the line and then see whatever answer I get for the end points whether I
can declare that the line is inside or outside. So clearly these cases where one of the point
turns out to be inside and one of the point turns out to be outside I have to do something
more. I cannot say that the line is rejected or line is accepted, similarly for this.

But here is the case that the two end points turn out to be outside the window if I do the
evaluation in the manner which we have seen but the line is not outside the window
completely. This suggests that I cannot simply use point clipping to do line clipping I
need to do something more about it. But then first of all I may be interested in devising a
mechanism through which I can reject or accept certain simple cases and do further
evaluation if need be. May be the first pass could be such that I have the mechanism by
which I can suggest this is not possible to be inside or this is completely inside. That is
what we are trying to look at first.

(Refer Slide Time: 30:41)

In fact Cohen and Sutherland introduced the clipping algorithm. And once again there is
the assumption of the window to be rectangular. And if you extend this window and
define the adjoining zones to the window and then decide from the fact that where the
particular line lies in the zones around that window then may be you can answer this
question whether I should consider the line which is inside or outside. For instance, if I
have these two points which are in the same zone here and which turns out to be outside
the window I have a way to say that the line is outside. And similarly when I have these
two end points inside this then I have a way to say yes the line is inside. What are we
trying to do is we are trying to assign some sort of a scheme by which we have the notion
of these zones around this window and then we do the evaluation of the end points with
respect to these zones.

Now, is there a way by which we can assign a certain representation by which we capture
these nodes? So here is the suggestion; since we have the extent of that window then we
can define these zones in terms of comparing with respect to the extent of the window
these zones. What I am also interested in is that some coding scheme in which I assign
some code to this window or the zones of the window which actually gives me a very
easy way of checking or comparing the end points whether they are outside or inside or
which side or which zone. In other words I am trying to assign some code to various

zones I have around this window and as well for the window. So what are we trying to
say is, there is this line and all I need to answer is that things which are above this line
they are out if they are below this line they are in with respect to this line.

Similar question is answered with respect to this line, a similar question is answered with
respect to this line and a similar question is answered with respect to this line so all I am
saying is a one bit on and off with respect to these four edges of the window. So I can
have some kind of a four bit code which would decide about the various zones I have
including the window. That is what Cohen and Sutherland exactly did. They came out
with this four bit code indicating the zone of the end points with respect to the windows.

(Refer Slide Time: 34:49)

For instance, I may designate 0 0 0 saying that this is my window and this bit is on for the
region which is above the window, this bit is on for the region which is right to the
window and so on. So now I can have the complete coding scheme for all the zones.

(Refer Slide Time: 35:40)

This is basically a combination of the fact that it is left to the window and above the
window that is why there are two bits which surround. So now have a coding scheme
which we can designate to the end points of the line and by which we locate the end
points of the line in various zones. Now the question comes that how do I decide whether
I can reject a line easily or I can accept a line easily? Some bit wise operation can
actually guide us to this. The simple acceptance is rather easy, the two end points have to
have 0 0 0. That is basically an example of trivially accept.

(Refer Slide Time: 37:04)

The two end points have the end code as all bits 0. Now a suggestion is given that some
bit wise operation actually indicates to me what should I do for rejecting a line and that is
what we are looking at. So we have a mechanism by which we trivially accept a line and
similarly we are trying to find a mechanism by which we trivially reject a line bit wise
AND.

(Refer Slide Time: 37:55)

So if I do a logical AND, and if it does not turn out to be all 0s then I have a trivially
reject case 0. So these are the cases where I can consider a trivially rejection. Now we
have a case known as potentially visible.

(Refer Slide Time: 38:30)

Potentially visible means this logical AND operation is 0. So if it is potentially visible we
have these cases. Now if we have such a case it demands something extra.

(Refer Slide Time: 39:23)

If we now have something extra to do we can actually do a simple strategy where we can
divide this into segments the line in question which is potentially visible we subdivided
into segment and then apply trivially acceptance of rejection tests to these segments. For
instance, in this case if this is the division of the segments I can then find out that BD
segment would get trivially rejected whereas AB segment will get trivially accepted. So
we need to some subdivision of the line and keep performing this trivially rejections and
acceptance operation.

There are various ways in which one can look at it. One may be that you just have a fixed
subdividing strategy which could be just divided by two and then keep doing in those
segments. What you are having eventually is some sort of a fragmentation of these lines
and then each fragment in turn gets tested. And here one needs to be just cautioned that
you can choose any order of the edges you have but be consistent to it. Therefore this
basically gives you the entire algorithm for Cohen and Sutherland. It is an extremely
simple algorithm and is still a popular one because from the fact that this assumption of
rectangular window is relevant.

(Refer Slide Time: 41:53)

In most applications we have the windows are rectangular. That is why it is still popular
though with this limitation. Now, if one wants to extend this idea of clipping encoding
the different zones you can extend this idea to 3D clip. All you are saying is that there is a
3D volume and each phase of this volume is basically acting as the edge of the window
we had in 2D case. So the test which we need to perform is with respect to a plane but it
is exactly the same test. And what is the size of the bit code you would get? It is 6
because you are going to answer this question with respect to each phase of this
orthographic one. So the size of the bit code you have is 6. Similarly if you have a
window which is a triangle in a 2D case all you need is 3 bits. This is very simple but an
elegant way of doing clipping.

Next let us try to relax this limitation of rectangular region and come out with an
algorithm of clipping where the region of the window is not necessarily rectangular. The
constraint which we will still impose is the region is convex. Now the question is how do
we find out the point of intersection with respect to edge of the window? The size of the
window is defined in terms of the extent of the window. you have this xL, YB, xR, yT
that always define these equations of edges which is just a matter of checking the value of
(x, y) with respect to this. So you have the equation of edges, you have the equation of
line the fact you have the end points and you can find intersection. Here we are
addressing the issue of real arithmetic and not integer arithmetic.

