
Introduction to Computer Graphics
Dr. Prem Kalra

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 25
Ray Tracing (Contd.)

Today again we are going to talk about ray tracing looking at the interface from the users’
prime point of view just like what we did in viewing transformation. So, if we recall what
we saw in the 3D viewing interface the scene was basically defined in World Coordinate
System and the eye or the viewer or the camera was specified in another coordinate
system which was the viewing coordinate system.

In fact this was a left handed system and this was a right handed system. If you assume
that this is the kind of interface we are going to have from the users’ prime point of view
that means the user is going to specify the position of the eye or the camera in this
coordinate system and your world is going to be in this coordinate system. Hence there
are going to be issues in terms of how do we specify the corresponding ray definition in
one of these coordinate systems so that when we get the intersection of the ray with the
world this is consistent with the coordinate system. Therefore again we need to look at
issues of transformation from one system to another system and how do we incorporate
that with respect to ray tracing.

(Refer Slide Time: 00:02:24)

Here this is the eye and that is where the origin of the ray starts with respect to the ray
tracing and this is what we get as our viewing volume.

(Refer Slide Time: 00:04:22)

So we need to have this in one coordinate system. Therefore whatever scene we need to
specify in the viewing volume has to be in the same coordinate system. Now the question
is, would you like the ray to be specified in the world to have the intersection done, that is
one way but we are insisting that the specification of the eye is in another coordinator
system.

So we need to transform that into the world coordinate system so that the intersection
what we get is in the world coordinate system. The other issue is that one could have
done this whole process of finding the intersection and so on in the viewing coordinate
system. So what is the implication of that? At times what happens is that one aspect is to
get the intersection point and another aspect is to get the normal at that point.

(Refer Slide Time: 00:06:39)

At times we are even given the normals for the object or for the faces of the polygons of
the object. So not only just the coordinates of the vertices are given but also the normals
are given so that one does not have to compute that. So in that situation we would like to
use that information which is already there rather than re-computing them. But again
these normals are in World Coordinate System. Therefore it is better to do this
intersection in world coordinate system. Here are some issues to look at with respect to
the viewing transformation. So if this point P which has been now transformed in u v n or
the viewing coordinate system and if I consider a ray coming from the point E which is
the eye then this the point which is on the image plane and which is of interest to us. So
this is what I will render here.

Again I can see this as a ray defined in a parametric form with origin as e and this point P
as the termination of that. So the same thing can be represented as a line parametrically
like this. And we have a similar definition of the ray so there is a match. This eye is in the
viewing coordinating system. I am defining it in this coordinator system. I am just
looking at definition of a line with respect to the point defined e and this point which I
have got after having done the transformation from the world to the eye. This is where I
get the image of the point.

(Refer Slide Time: 00:09:11)

Now we need to have a mechanism of transforming the point from one coordinate system
to another coordinator system. And we have debated on, that it is better to have a point
represented or the ray represented in world coordinate system.

If we consider a point defined as [x y z] in world coordinate system and correspondingly
the points [a b c] in viewing coordinate system then what is the transformation which
takes the point from one system to another system. If this is the point P we are
considering then all it requires is a transmission of the type m which is the top most sub
matrix of the 4 into 4 matrix then there is an offset term or the translation term.

And if I am interested in getting [a b c] given m and r from [x y z] I can obtain in this
way. Therefore I can get this [a b c] from the point given in the world using this because
this inverse of m happens to be a transpose just because we know m is basically formed
by the u v and n vectors which are nothing but these and this is nothing but a matrix
which is orthogonal and therefore the inverse of this is the same as the transpose. So
basically we can get a point in the viewing or the eye coordinate system from the world.
Now the question is how this maps to our ray tracer.

(Refer Slide Time: 00:12:16)

If we have to take the definition of the ray which is coming from the specification of eye
in the eye coordinator system to the world coordinator system is what we want. So, if you
want to have this set up for ray tracing the first thing we require is the definition of the
viewing reference point which in turn defines this offset r which is the user specified
quantity. So you either compute in some sense this VRP or give VRP. Hence this is user
specified. We obtain the matrix M from u v and n.

There is a way you can either specify or get n and then there is a way you align the v
vector in conformation to the up vector specified by the user and from these two you get
u so we can obtain the matrix M.

Now if the eye which is defined in the viewing coordinator system as e given as eu, ev
and en is typically defined as a point on the line of sight where the line of sight is
coincident to the vector n and typically we observe that the eye is defined as [0, 0, minus
E]. Now what we are looking at is that where does this point go in the world coordinator
system. So all we need to do is perform the transformation of this through m and r and
obtain eye in world coordinator system.

Now we know the position of the eye in world coordination system. The other thing is we
need to also look at the definition of the window which might be in again the viewing
coordinating system and the corresponding pixel location to the world coordinates.
Therefore this is the eye e in viewing coordinator system through [0, 0, minus E] and
these are the objects, this is the viewing plane where the window is specified through Wl
Wr along u and Wb Wt along v.

(Refer Slide Time: 00:15:39)

This is just the extends of your viewing of the window. So typically when you specify the
zone of the screen which you want to render you would specify the pixels along x on
horizontal axis and the pixels in the vertical axis. So typically you will define the region
of the zone of the window through pixels basically. This is how we specify that we are
looking at these many rows and these many columns on the screen which we want to
render. What is the number of pixels we want to render in horizontal axes and what is the
number of pixels in the vertical axis, so it is that window. Hence the window is defined as
pixel array.

Now the question is, for a pixel located at ijth location in this array would it correspond
to the point ui vj 0. Let us assume that this is that n is equal to 0 the viewing plane. Then
it is just a matter of figuring out what are ui and vj. So I can compute this ui and vj
through Wl and Wt which is just a matter of mapping this into the window size defined
through the Ws namely Wl, Wr and Wd and Wt. that is how it is done here. Therefore it is
Wi plus ji delta u and vj is Wt minus j(delta v) where delta u and delta v are defined
through this. All it is doing is it is basically locating the pixel in this coordinate system.

Now we have to define ray. So the point of the origin through eye has been defined of the
ray but we have to define the direction now and that is where the role of ui vj comes in
because that is where it is passing through and that defines the direction of the ray. So we
basically look at the parametric equation of ray through the point of origin which is the
eye. There is a direction which corresponds to the ijth pixel and this is the parameter t. So
it is the same as R0 Rdt form.

(Refer Slide Time: 00:17:27)

We have already figured out how we get the eye given the eye point in the viewing
coordinate system. The direction is nothing but the pixel position minus e which is the
eye position in viewing coordinate system transformed through m. Since it is the
direction I do not need r. so this way I get direction ij. In case if I am considering eye to
be [0, 0, minus E] that means along the axis n I get direction ij as ui vj e transformed
through M. Therefore now the ray is defined in World Coordinate System which we were
trying to achieve and which is in the same format which we have been looking at for
performing the intersections.

The next step is to find the intersection with the object that gives you the point here as ri,
find the normal at ri as some rn, find intensity eye at the point which is nothing but
applying illumination model and then find the pixel color.

(Refer Slide Time: 00:19:23)

Therefore, what may happen is that when you are computing this eye it may give you a
certain range. So one thing is, this eye is a scalar value where you are rendering a gray
scale kind of an image single color image with tones of intensity or it could also be a
color vector having components of r g b then you have a colored image. And there could
be a certain range which you get for your image which you may require to remap to a
certain range of your device color maps. Therefore some eye min eye max for this could
then be mapped to some 0 to 255 whatever range you have for the depth of pixels in your
system. So that way you decide the final color of the pixel. This is how the whole set up
is done for ray tracing.

What we have done is only one level of ray tracing in the sense that you are not looking
at the secondary rays, it is just an intersection of the ray which starts from the eye and
hits the object or a series of object and then you consider the front most object to be
rendered. Now there is an interesting issue here, so far what we have looked at in terms
of objects are fairly simple objects. Now it might be useful to see if there could be objects
which could be derived from those simple objects without doing too much and still be
able to use your ray tracing.

If I am using a description of hierarchical scene where the instance of an object is
obtained applying a modeling transformation to a primitive then I know how to handle
that primitive which could be one of those simple primitives like sphere, plane etc which
we have dealt with for ray object intersection. But the question is when I have performed
modeling transformation to those primitives can I still use ray tracing without adding too
much of a problem.

What I am referring to is that, if we are transforming objects which mean applying a
modeling transformation to an object and the object is sort of a simpler primitive which
we know how to deal with the respect to ray object intersection.

(Refer Slide Time: 00:23:38)

Hence if I look at the ray as a parametric defined line which is s plus c t and the object
which we have already looked at are of the kinds sphere, plane, box, cone etc we call
these to be some sort of a generic or a normalized class of objects or primitives. For
instance, if I am dealing with that object which is a normalized sphere in the form x
power 2 plus y power 2 plus z power 2 is equal to 1 then I know that finding intersection
is relatively simple. Now the question which is being imposed is that if I take this sphere
and perform a transformation to this how does the ray tracing change?

(Refer Slide Time: 00:25:08)

This is particularly pertinent if we have hierarchical description of a scene where we
would like to have instances of a simple primitive using modeling transformation. Then
the question is, can we still handle the ray object of intersection in the same way?

The kinds of transformations we are trying to observe are affine transformations. The
class of transformation which we want to deal with is affine transformation. So, if we see
that these affine transformations are applied to this simple primitives what change do we
need to be able to perform those ray object intersections so that we can incorporate them.

We know how to handle the ray intersection with sphere which is normalized in the form
of x square plus y square plus z square is equal to 1. Now I have some transformed shape
which has been applied on this sphere and I know this transformation. But now my
interest is to find out the ray intersection with this transformed object because that is what
I am going to render. Objects when transformed are not any more this simple primitive.
Therefore I cannot apply. So you have already written a ray sphere intersection routine
which is dealing with only a simple normalized form of sphere and I still want to use the
same routine.

(Refer Slide Time: 00:28:33)

I have a sphere here and I perform a transmission through t as that is the transformation I
have and since I am talking about the class of transmission as affine transformation I can
see this to be a composition of some matrix m which is linear transformation and there is
some translation d which would give or make this object a sphere transformed in this
way.

Now the fact is that, I have this transformation known to me I also know the inverse of
this transformation or I can know the inverse of the transmission which is t inverse which
is nothing but m inverse in minus t. So from here I can go back here. Hence if I have a
point here as q prime for the sphere then I know the corresponding point q through this

transformation t as this q is equal to q prime M plus d. Now when I look at what happens
to the ray, so my definition of the ray is some s plus ct. This is the ray I have computed
by all your set up in world coordinator system whatever coordinator system you were
using. This would be the point of intersection p with this ray or this object.

(Refer Slide Time: 00:33:19)

So all I need to know is what point it corresponds to here. In other words, what ray I have
which would give me the point p prime which corresponds to the point p. thus all I need
is to render the point p which is a consequence of the ray intersection defined ray as s
plus ct to this object and unfortunately I do not know how to compute intersection with
this object.

What I know is how to compute intersection with this object. So the trick here is that I
would like get the corresponding ray to this which would give me the point of
intersection p prime corresponding to the point p which I am actually interested in.
Therefore the corresponding ray in this for this object which I define as s prime plus c
prime t is nothing but the inverse of the transformation which I would apply to this ray
which is m – because it is just a ray, a vector, direction.

Then it is just a matter of comparing the coefficients of the two sides and figure out what
is s prime and what is c prime. So in a way I have obtained the corresponding ray for this
primitive. Now this newly obtained ray can be fed to the standard routine I have for rays
sphere intersection. And then I obtain the point p to be rendered. Now there is still a
problem.

There is a point q here in this object which has a corresponding point q prime in this
object through the transformation t so I can always map q prime to q or vice versa. That
is precisely what we want to do and that is done using transformation of the ray. But now
there is still some problem. We have obtained the point of intersection. That means we
know what point to render and there is something else required which is the normal.
Therefore we have been able to do the transformation to the object and now can we
obtain a transformation which would necessarily be applied to the normal without re-
computation of the normal of the transformed object. Therefore we need these normals to
be able to render them for the transformed object. Now the question is, can the normal be
computed using the old normal and the transformation?

(Refer Slide Time: 00:35:23)

So what is that transformation which takes the normal defined for the normalized
primitive to give us n prime which is the normal of the transformed object?

(Refer Slide Time: 00:37:44)

So what is happening is that, if I consider two points Pa and Pb which are very close to
each other so it could be applied to any object we are not specifying the type of the object
so these are the points which are very close enough then we basically define the tangent
of that point and that is why they need to be close enough. So, if have Pa and Pb two
points which are close enough then the condition which needs to be satisfied for the
normal is nothing but the dot product with this has to be 0.

Now this can be re-written in this format. If I consider a point being defined as a row all I
need to have is a transpose here. Now what we are saying is that we apply a
transformation t which is consisting of the component m and d which would get applied
to Pa and Pb when we apply that to the object which in turn would give you the
transformation as (Pa minus Pb) M so keeping the same condition here that the tangent
and the normal gives you 0 as a dot product and the same thing is here so this is for the
transformed points or they give you a transformed tangent. And if I define n prime to be
the new normal then this also should give me 0. Now getting n prime is what the problem
is. Hence, basically we are looking at the solution for n prime through this.

(Refer Slide Time: 00:38:54)

Now if I define N to be the transmission which is required from the normal n which was
for the object which was transformed to n prime which is the normal of the transform.
This is the transformation N. So I am just substituting here, instead of n prime I just
substituted as n(N) so this gives me this (Pa minus Pb) M n transpose is equal to 0. This
holds true when I have n transpose to be the inverse of M. Therefore n which is the
transformation I am looking for is nothing but M inverse transpose. So you have the
solution of your question here.

(Refer Slide Time: 00:42:23)

If it is orthogonal then it makes sense. If it has a rigid transformation rotation and then if
you apply that transformation to the object then the same transformation would be
applied.

In 2D this is some plane and the normal of this is this. Now I give some kind of a scaling
in one direction so clearly it is not the same transformation which will get applied to the
normal. If I do that the normal is going as something like this whereas now I have the
normal as this. Therefore that is a powerful thing. Now you can handle transformation
applied to the simple primitives. Therefore you can construct much more interesting
scenes rather than just having these unit spheres and planes and so on and so forth.

(Refer Slide Time: 00:43:00)

This is just a matter of defining a tangent like difference of two points close enough. It is
a tangent vector. Therefore it will have two components where one will be in this
direction and another will be in the other direction as two tangents and the orthogonality
holds with both the normal. Whatever vector I have in that tangent plane the
orthonormality holds therefore the dot product is 0.

(Refer Slide Time: 00:43:12)

The d is the offset. When we are dealing with the affine transformation if I define this t
using this M matrix is the linear transformation part and d is the offset of the translation
which I may apply. So that in combination gives me the affine transmission. If I am
talking about 4 into 4 matrix in a 3D case then the top most 3 into 3 sub matrix is the
same.

(Refer Slide Time: 00:43:38)

When we deal with recursive ray tracing we would also like to consider the secondary
rays namely rays due to reflection, rays due to refraction etc. Let us also see the effect of
shadow rays when doing the computation of illumination. We will also see that if we

detect that the point is actually on the shade what happens to the illumination or what
kind of illumination you would use.

