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We have been talking about surface generation. Last time we actually looked at methods 
of displaying surfaces in terms of its representation. So parametric surfaces could 
possibly be rendered by either breaking them into piecewise linear or co planner elements 
or you have subdivision of the parametric surfaces. So what we looked at basically was 
the polygonal representation of objects and the motivation to have polygonal 
representation could be many. And one of the main motivations is the rendering of 
polygons in general is hardware supported and also for the acquisition of data from 
various scanners.   
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Therefore you primarily get the point clouds for which you establish the connectivity and 
form triangles or any polygons. That is the kind of data for which you would like to again 
use a polygonal representation. So what we basically looked at is that if there is an object 
of this kind it could actually be made of several surfaces. So in this case there is a surface 
which is the sides of the object and then there are caps of the cylinders.  
 
And each of these surfaces in turn could be represented as polygons or collection of 
polygons which we refer to as polygonal mesh. So this is represented using several 
polygons and this top and bottom are again represented by polygons.  
And often for the purpose of simplicity we use triangles as polygons because we can 
always break down the polygons in to triangles and computations on triangles are again 



more efficient. So what we basically looked at is the various ways of representing data 
structure pertaining to these polygons or the polygonal meshes.   
 
When we are talking about polygonal representation we are looking at representation of 
the edges which connect the vertices and the polygons which again is a sequence of 
edges.  
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So the explicit representation we looked at is basically a way of representing a polygon as 
a collection of individual vertices to form that polygon. And you write it in a sequence so 
that the last edge which will be formed is between the last point and the first point. 
Therefore the coordinates of each of these vertices is given explicitly.  
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Therefore the limitation of such a representation is that the manipulation for such a 
polygonal mesh is restricted if you want to delete a point or delete an edge you need to 
get more information so that you can localize your manipulation. In this case it is very 
difficult. So you will have to again re-form the whole list of vertices to get the polygon.  
So we looked at incremental enhancement to this representation which is explicit 
representation to add this facility of manipulation.  
 
The next we looked at was basically a pointer to a vertex list which is very commonly 
used. So what we have is a table of vertices where all the coordinates which are used for 
defining the mesh are listed in this manner and it is just a table. Then you have polygon 
just as an entry reference to that table which could be like V1, V2, V3 these are just the 
index numbers. In this case if I have P1 it is just 1, 2, 3 these are the entries in the table.  
 
Now again this representation all though facilitates some manipulations or to the mesh 
but if I am interested in finding out what are the polygons which are sheared by an edge it 
is difficult to answer because I actually have to go through the entire list to be able to 
derive this information.   
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So what we do is we try to modify this data structure where we facilitate this 
manipulation. And also there is a notion of redundancy. In the explicit representation 
there were lots of redundancy, points were repeated just to define an individual polygon.  
 
So, that is another parameter or aspect for deciding the data structure you want to use. 
Now in order that we facilitate the adjacency information to get the information about 
what are the polygons sheared by an edge we modify the data structure which is sort of 
edge based and we build an edge list where an edge is defined in terms of the two vertices 
it joins and the polygons which are sheared by this edge. 
 
 Therefore the whole information is available.  
 
 In the case of a triangle the polygon is nothing but a collection of three edges which 
constitute the polygon. So in this case if I am interested in finding out polygon P1 it is 
nothing but E1 E4 E5. And similarly the individual edge here E1 is defined through the 
point V1 V2 the polygon which is sheared, since there is only one polygon here I just 
write P1 and for the other polygon I just say null. In a way it also gives you information if 
I am interested in finding out a boundary of the polygonal mesh. Through this 
representation if somebody asks you to find out the boundary of the polygonal mesh, it is 
very easy. You just scan the edge list and find out what are the edges which are sheared 
by only one polygon and you have the answer.  
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A slight variation could also be done if I am also interested in finding out holes. Hole is 
also some sort of a boundary. May be you need to have an orientation in which you 
traverse the list. So, this is in order to distinguish between hole and a boundary. You can 
always get hole and boundary using this data structure.  
 
And then again the problem is that if I am interested in finding out more information in 
terms of what edges are incident on a vertex that is again difficult to find out. I will have 
to again traverse through the entire data structure. Therefore for that we looked at another 
data structure which was winged edge data structure where the information was added 
also about the auxiliary edges to the vertices.  
 
There is an edge for which the data structure is written which is defined between X and Y 
and you also have additional information about the edges which you get through the 
traversal of the polygon sheared by this edge a.  
 
For instance, you have information about the predecessor edge for the polygon which is 
obtained by left traversal and this succeeding edge b. Through this now if you are 
interested in finding out the edges which are incident on a vertex is relatively easy. You 
do not have to travel through all the mesh. So again the overhead which you pay is in 
terms of the information you store so the data structure becomes heavier.  
 
What we are trying to do is we are trying to actually derive some sort of a navigational 
scheme. So I go from here to here so I have a notion of how I am traversing these edges 
in a polygon. Thus, if I look from this side I am actually going in a clockwise manner and 
so is the case here. So my traversal is always clockwise about a polygon. And I am again 
basing my data structure on the edge.  
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This is the connectivity link between points. That is what establishes the connectivity of a 
mesh. So I just traverse through that and I can derive information about the polygons 
which would be adjacent to an edge or sheared by that edge. And I also have the explicit 
information about what vertices the edge constitutes so X to Y I know that.  
 
The additional information for which I am interested at any point of time, for instance 
getting the edges which would possibly be incident here on this vertex just a traversal 
scheme would give me the information about the edges here because this edge is given by 
this traversal, this edge is given by this traversal so from here now I can go to the other 
traversal that is this polygon and so on. So the number of polygons or edges which I need 
to traverse is limited. It is not a function of the number of edges in the mesh. So in some 
sense it is again Constantine. Now we will basically look at the models which can get 
formed using the combination of surfaces. What are we trying to do is ultimately we are 
building these models which could possibly be the solids.  
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So we have the solids constructed using the surfaces which are the boundaries of that 
solid. So eventually if we are doing this CAD CAM kind of an application we deal with 
solids. And surfaces could be the boundary representations of those solids. So if I have a 
representation for solid models using surfaces as its boundary then I try to make this solid 
models using wireframe representation. So when I am talking about wireframe 
representation I am looking at two data structures or two kinds of information which 
would give me the vertices which are there in the solid and information on how those 
vertices are connected so it is only the connectivity of points.  
 
In this case if I have an object of this kind a cuboid then all I am having as the 
information is these vertices 1 2 3 4 5 6 7 8 the red dots and these links. And I render 
them using only these links. There is a problem with such a representation? This is the 
way I am going to display it using the links of the vertices. Now the question is, is there 
any problem with this? 
 
In some sense it is it could be ambiguous. For example, if I have a wireframe 
representation which is given like this the only thing I have is the information about the 
links joining to the various points. Then this could be like this, this could be like this and 
this could be like this so there is lot of ambiguity about what do I see from here. 
Therefore, just having the information about the vertices which are giving you the 
boundary of a solid and the respective links is inadequate to be able to know what solid 
could possibly be there.  
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Now what we are looking at is some better boundary representation. In fact the polygonal 
representation is also a boundary representation. What we are trying to say is that now we 
will have three elements vertices, edges and faces. In a more generalized sense these 
edges could be curves and these faces could be surfaces. But we need information about 
these to resolve the ambiguity of a solid. Now when we are talking about these boundary 
representations for solids often we actually consider those boundary for the solids which 
are manifolds.  
 
What do I mean by manifolds? It is basically some sort of a well behaved solid. It is just a 
qualitative notion. Mathematically what we trying to say there is that it should satisfy 
some condition so that I have the surface which is a manifold. That condition is basically 
that for each point if I consider on the surface say point x there exist an open ball open 
ball means some sort of a sphere with a centre x which is defined using a very small 
radius some r so that the intersection of this ball and the surface can be continuously 
deformed to form an open disk.  
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Then I have the boundary of the surface which is manifold or sometimes also called as 
two manifold. Here is an example of a cuboid which is two manifold. At location two I 
define a an open ball a spherical ball the center of which is some point x which is on the 
surface, now what do I see is what I get as an intersection of this to the surface of this 
boundary which is a disk as given here with the red, and that is what I mean by open disk. 
This should happen everywhere. Open disk is something you get after some deformation 
also. It should be possible to get an open disk even using some deformation.  
 
Now, if I consider here at the edge, I embed this open ball. Now if I look at this location 
this is what you will see. This is nothing but some sort of a bent disk which I can again 
twist it right to get the open disk. if we go to this corner again when you see the 
intersection of this open ball with the surface here at this point you get a three fold kind 
of a disk and again you can turn it or twist it right to get the open disk.  
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So all we are saying is that we should be able to get an open disk after some deformation 
when I embed an open ball. That is what the condition is for two-manifold. When you do 
not have such a condition we do not call it as two-manifold. Here when we look this is 
what you find. What you get here is in fact two disks and you can get an open disk only 
by gluing them together and not by deforming the same disk. Therefore we consider that 
as a violation of that condition and hence this is not a two-manifold. Many of the models 
which are generally considered for modeling are manifolds.  
 
Examples of polyhedra or polyhedral objects: this is where we will be able to have these 
boundary representations for the solid models. Polyhedra are multifaceted 3D solid 
bounded by a finite connected set of plane polygons such that every edge of each polygon 
belongs to just one other polygon. So you have the edge which is sheared and this is 
actually two polygons. Some of the examples are this, we have this. So again you can 
have both convex and non convex polyhedra. These are the examples of convex 
polyhedra and this is the example of non convex or concave polyhedra.  
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But if you look at each of these edges these are exactly sheared by the polygons. What 
are the elements which we use for defining polyhedra? We have a vertex, we have the 
edge and we have the face. This is what we need for boundary representation of a solid. 
And we also have the angle which is formed at the edge between the two faces of the 
polygons which we call it as Dihedral angle.  
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These are the elements for defining a polyhedra. So you have some special kind of 
polyhedra which you might be also familiar with. There are regular polyhedra which 



require certain conditions to be imposed that all faces are regular and congruent and the 
dihedral angles are equal.  
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So the examples of these regular polyhedra are tetrahedron, cube, octahedron, 
dodecahedron, icosahedron so these are also called as the five platonic solids. You have 
this tetrahedron, the face of a tetrahedron is actually a triangle and there are four faces 
tetra, total number of faces, this is cube, this is octahedron.  
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So here we have the type of the face polygon as a triangle and we have eight faces. So, 
when you see each of the polygons they are regular and congruent and the dihedral angles 
are same. Similarly, you have dodecahedron for which you have the total number of faces 
as twelve and this is icosahedron and the total number of faces is twenty. These are also 
called as platonic solids. These are some special polyhedra. There are also some 
polyhedrons as simple polyhedrons that we have. A simple polyhedron can be actually 
deformed into a sphere or we also call it as homomorphic sphere. That means I can 
stretch and just consider that solid or polyhedra like a deformable elastic type of a 
material which you can deform to form a sphere.  
 
(Refer Slide Time: 29:22) 
 

 
 
Now there is a certain property which is maintained if you have a simple polyhedra and 
that is given through what is called as Euler formula. So there is a relationship between 
the number of vertices, the number of edges and the number of faces which define a 
simple polyhedra and this relationship is given here. V is the number of vertices, E is the 
number of edges and F is the number of faces.  
 
So if I take V minus E plus F it turns out to be two for simple polyhedra. So this is 
actually a necessary condition to have a simple polyhedron defined but there are other 
conditions which need to be satisfied so that you have the solid defined. For instance, you 
need to have additional conditions such as each edge must connect two vertices and can 
be sheared by two faces and at least three edges must meet at each vertex and faces must 
not interpenetrate. These are additional conditions for you to have the definition of a 
solid. 
 
Now let us see an example where this Euler number the relationship of V, E and F we 
observe as satisfying. Here is an example so you have a cube again where we have the 
number of vertices as 8, the number of edges 12 and number of faces as 6. So if you just 
consider this V minus E plus F you get 2. And we basically can see this as getting 



deformed into a sphere. Consider the sphere in a very coarse resolution, it could possibly 
look like a cuboid.  
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Similarly, you have for tetrahedron which is also simple polyhedra where the condition of 
Euler number getting satisfied. The polyhedra which we are considering do not have 
holes on its faces and there is not a hole through and through in the object, it is a closed 
surface solid.  
 
What would happen if we consider them? There is a generalization of the Euler’s number 
where you can also incorporate the holes which are there on the faces. The number of 
holes that pass through the object often refer to as the genus of the object.  
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For instance, sphere has a genus 0, torus has a genus 1 and that is what we mean here and 
C is the number of connected components. So, if you want to incorporate this information 
then the Euler number is modified like this. Here is another example, I have a solid like 
this so this is a through and through hole and this is just a hole at the top and it is not a 
through and through hole.  
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Now if I count the total number of vertices it comes out as 24 and number of edges as 36 
and number of faces as 15. Now the number of holes on the faces is 1 2 3. The connected 
component is 1 where the whole thing is connected and genus is 1. There is one hole 



which is through the object. So if I substitute this information there I should get that the 
left hand side is equal to the right hand side. Therefore, in this case both the sides turn out 
to be 0. These are some examples of polyhedral objects with their elements and the 
property captured using Euler number. Now there is something else which can also be 
used for representing solids or designing solids or constructing solids. There is something 
called as constructive solid geometry which is in short called as CSG.  
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A CSG solid is basically constructed using a few primitives and some Boolean operators 
which are performed on those primitives. For instance, you can consider primitives like 
cube, prism, sphere, cylinder, cone etc. the Boolean operators are nothing but the simple 
set operations. For example; difference, union, intersection etc. The idea here is that you 
can construct a fairly complicated solid model using collection of these primitives and 
some Boolean operations on those primitives. Again it has lots of application in CAD 
CAM. If I have two primitive of cylinder so A is this and B is this.  
 
There is one horizontal cylinder and there is one vertical cylinder. These are the two 
primitives I consider. So a simple set theoretic operations for instance union would give 
me something like this and it is a useful solid. We see such a component in many 
mechanical parts which is built only by a simple Boolean operation of two primitives. 
Similarly I can construct A intersection B it could be like this, this is A minus B and this 
is B minus A. Therefore this is another way of constructing complex solids just by 
applying Boolean operations to simple primitives.  
 
 
 
 
 
 



(Refer Slide Time: 38:40) 
 

 
 
In fact when we do ray tracing we will deal with rendering these CSG models because 
here what you need to also consider is the interior of the solid, what is the closure of the 
solid, what is the exterior of the solid to be able to decide that this is the part you are 
going to render. And ray tracing does that by the process of getting the visible points. So 
ray tracing does this operation inherently. If you are interested in getting this as the N 
model of the solid there is this block here, there is another block and there is a hole in this 
block. So we can start with these primitives where you consider this block 1 block 2 and 
then there is a cylinder here. All it requires is to have a certain transformation of these 
primitives and perform the Boolean operations.  
 
Therefore what you do is you translate these blocks to be able to get in to this 
configuration, this is block 1, this is block 2 and all it requires is a translation. And then 
you may also do a translation of this cylinder such that it goes at this location then all you 
need to do is here you need to perform the difference whereas here you need to perform 
the union. So the total transformation which you need to be able to get this particular 
solid is a union of translated block 1 block 2 with the translated cylinder which gives you 
this and then you take the difference for these two.  
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Now, is it unique? This CSG representation is not unique. You can construct this in 
different ways. Now looking at this as a chain of transformation accompanied with the 
Boolean operations I can actually represent this as some sort of a tree.  
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So I can actually write this operation where the leaf here is the primitive, the intermediate 
nodes are some transformation or Boolean operation. Here you have some transformation 
like a translation and here you have a Boolean operation. And the root of this whole thing 
is your solid, the object of interest. So I can actually look at this as a tree structure to 
construct the solid. So this is basically what we wanted to look at as solid models.  



 
Now there are other representations also. For instance, we can also consider solids to be 
collection of volumetric elements. In fact there what we are saying is that just like an 
image is a collection of several dots of pixels similarly a solid is a collection of some 
volumetric elements or voxels. It is a complete discrete representation of collection of 
those voxels. So those are useful when we want to do volumetric manipulation, volume 
rendering and so on. This tree structure which is basically a collection of transformations 
and Boolean operations also inspires what you have as the assignment. The tree structure 
is also giving you a notion of hierarchical modeling where certain primitives are coupled 
with the transformations to define your final model.  
 
In the rendering pipeline the interest is just only to form a scene or form your world 
before you perform the viewing transformations and so on. So here the idea is that if you 
are trying to build a scene which is nothing but collection of houses then you can look at 
the primitives which would build parts of the model or the model. So here you have some 
sort of a prism, here you have some sort of a cuboid which will get some modeling 
transformation to be applied to form this. So an individual house could basically be 
constructed using a primitive, a simplified model and a transformation. So, once you have 
got the model of a house then again you can get various instances of this house using the 
set of transformations again. You can have a bigger house, smaller house, wider house, 
thinner house and so on and build a whole colony of houses.  
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This shows some sort of a hierarchy in the modeling process. So what we are looking at 
is some sort of a graph a directed acyclic graph bag which will have the leaves as simple 
primitive objects for the model, these edges are the transformations, again we get some 
aggregated model and again using some transformations we build our world or scene.  
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So a scene can basically be defined in terms of a graph or a tree where the nodes could 
have a simpler model and that simpler model can again be decomposed into its primitive 
elements and then you build a whole hierarchy of a model. For instance, when we are 
dealing with the design of a car there will be several primitives for your model which 
could be built as a hierarchy. So you can construct one wheel and then build the rest of 
the wheels and similarly if you want to have symmetric sides then you build one side and 
take the reflection of that. So eventually what you are doing is you are using combination 
of model primitives and the transformations to build the entire scene.  
 
 
  
 
 
 
 
 
 
 
 


