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We have been talking about generation of surfaces primarily the parametric surfaces. Last 
time we talked about the Bezier surfaces. So as an example here what you see is a bicubic 
patch. Here you have a parametric domain defined through parametric u and v in a 
rectilinear domain. These are the control points for the Bezier patch and this is the surface 
you obtain.  
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It is a bicubic patch because it is cubic in both u and v. And in fact the construction 
method we looked at there was one using de CastelJau algorithm where you could do a 
repetitive bilinear interpolation to obtain the point on the surface or you could also do a 
tensor product of the Bernstein polynomials in u and v to obtain the surface. So the 
advantage of the tensor product is that you do not have to deal special cases where the 
degree in u and degree in v are different, it is there in the formulation itself.  
 
It gives you all kinds of properties similar to curves like affine invariance, convex hull 
and the shape of the surface which you obtain is basically governed by the location or 
position of these control points. So it interpolates the corner control points, it also 
interpolates the boundary curves which means that if I have to construct a Bezier curve 
using only these four points then the curve which I get is the boundary curve for the 
surface. So for the change in the shape we have very similar situation as in the case of 
curves we move control point, we just place a control point and the surface which is 



embedded using these control points also move. And once again the Bezier surfaces do 
not give you local control so the entire surface kind of moves. There is a local control in a 
pseudo sense depending on the influence of the parameter with respect to the point which 
is moved. So, that gives you the mechanism of shape control.  
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Now we also looked at the property degree elevation. Just the way we could elevate the 
degree in curves we could also elevate the degree of the surface in any one of the 
parameters in u or in v or in both. We also looked at the derivatives. The derivatives can 
actually be computed in a similar way as we do it for curves. So in the tensor product 
formulation the advantage is that you can always decompose your problem into a 
univariate case Just the way you will handle the curves then.  
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So you can extend those ideas to the bi-variate case which is defined as a tensor product. 
Here if I am looking at the partial derivative with respect to u all I need to do is take this 
inside and now this is very similar to as if I was doing the derivative of curves using the 
parameter u. So, what it gives me is an operator which I call it as delta 1, 0. It is 1 here 
because I am basically considering the derivative with respect to the parameter u, 0 there 
is no change in v. And this operator when applied on biJ is nothing but the span of the 
polygon. This is nothing but span of the polygon bi plus 1J minus biJ. It is something 
similar to what we observed in curves.  
 
Similarly, we can talk about partial derivative with respect to v and there the operator is 
now delta 0, 1 so I will be changing the indices J so biJ plus 1 minus biJ.  
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Then I can see the cross boundary derivatives which are basically defined by the pair in 
the span of the polygon. For instance, if I am looking for the derivative here all I have to 
do is take this kind of a strip which is defined by the adjacent pair of the Bezier control 
points which would give me the derivative.  
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Just the way we had seen the derivative in the case of curves were also Bezier curves of 
the reduced degree. Similarly, we also observe that the surface derivative is also a Bezier 
surface. The relevance of derivative is when we want to construct composite patches and 
we need to worry about the match of the derivatives.  



 
An exercise given in the last class was that, given the partial derivatives at a point how 
you compute normal at the surface?  
 
The answer is that you just take a cross product because you basically have two tangents 
which would span a plane there and then you can obtain the normal vector just taking as 
the cross product of these two tangents.  
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So if I am saying that this is the partial with respect to u and this is the partial derivative 
with respect to v so I am just taking a cross product of these two vectors to give me the 
normal at this point. You can even get the normalized vector. This is important because 
eventually you need to render these surfaces. So, while we are talking about rendering 
how do you propose rendering of a Bezier surface, how would you render a Bezier curve?  
 
One possibility is that you change the parameter t compute the point on the curve and 
Join it with the previously computed point with a small line. Eventually it has to be some 
sort of a continuous curve and that is one way to do it. Therefore it is the computation of 
the point on the curve by varying the parameter t and Just Join it by some line segment. 
You are in some sense approximating certain points in between through the line.  
 
We have also talked about subdivision of curve. I can start with the control points or the 
control polygon of the curve and keep sub dividing. In the limiting case I approach the 
curve. Therefore I can use that as a mechanism to even block the curve. Starting from the 
Bezier polygon I can keep sub dividing the polygon under a certain threshold I stop the 
sub division and that becomes the display of the curve.  
 
Similarly, I can also do for surfaces so both ways. I could either change the parameter u 
and v then obtain small quads considering those to be polygonal or I could start from the 



control net of the Bezier surface and keep doing the sub division. That is a method by 
which I can display the surface. Again looking at these derivative terms there is an 
additional derivative which could be also of interest in certain situations. So far we 
basically took the partial derivative in u or partial derivative in v and there was a physical 
interpretation of those partials in terms of the tangent vectors of the point.  
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We could also get mixed partials partial in u and then partial in v and just by the way we 
had done earlier there will be an operator delta 11 which would say that there is a 
difference in u and then there is also difference in v. So, what this mixed partial is doing 
is, the geometric interpretation of that is, let us say I am talking about these four control 
points of the Bezier polygon biJ bi plus 1J biJ plus 1 and bi plus 1 and J plus 1.  
 
Now if I look at this operator delta 11 what is it doing? It is basically performing the 
differences in u and v. So this delta 11 is nothing but taking a difference of bi plus 1J plus 
1 minus bi plus 1J and a difference for I; now biJ plus 1 minus biJ and then the difference 
of these two. That is what the delta 11 would do, it is just an expansion of the differences.  
 
Now I construct a point PiJ in the manner that PiJ minus bi plus 1J which is this is the 
same as biJ plus 1 minus biJ which is this. So I basically construct PiJ as the point which 
would construct a parallelogram using these three points. Then I can basically show that 
this delta 11 operator is nothing but this offset. Once I have seen the operator delta 11 
then this is nothing but bi plus 1 J plus 1 minus PiJ.  
 
You make a substitution from here to this expression and that is what you will get. So 
what is being interpreted here is that this is sort of a deviation from the plane which is 
spanned between these three points. So had these been 0 this we this would have been a 
planner. All these four points would have actually given you a planner. So it is a 
deviation from that plane so sometimes it is called as a twist vector.  



If you recall the interpolating cubic splines we had a point P1 its tangent vector at P1 
point P2 and a tangent vector at P2 P2 prime. So, given this using cubic splines you obtain 
a curve like this and the curve which I get is P(t) which is basically expressed in this 
manner where F is some sort of a blending function which may look like F1(u) F2(u) 
F3(u) F4(u) and this G was the geometric information in terms of the position of the point 
P1 position of the point P2 and the tangent vectors P1 prime and P2 prime so that is what 
you had here. This was your cubic interpolating spline and this is also called as Hermite 
spline. 
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So the idea is that you have a matrix formulation where you are basically blending 
geometric information. Now I try to extend similar idea to construct a surface where I 
would be given some boundary conditions. That is, I am saying that I have information 
about the position, the interpolating spline was a cubic spline so what I am trying to do is 
I am basically trying to look at a bicubic surface which would satisfy certain boundary 
condition. And just by extending the matrix formulation of cubic spline I can see a 
surface X(u, v) which could be written in some sense these Fs and some G and then again 
FT. So this could be for u and this could be for v and that would match with my matrix 
formulation or something also like a tensor product. In a Bezier formulation I have the F 
given as the Bernstein polynomials, Bernstein polynomial in u and Bernstein polynomial 
in v and the geometric information is the control points so that is how it looks.  
 
Now in this case I have something like this so here I can have some sixteen things in 
order to satisfy this matrix multiplication formulation so there are some sixteen things. So 
let us try to see if we can extend the idea of cubic splines the information which could 
determine these sixteen things so four of which are the positions the four corner points. I 
can also have the tangent vectors or the derivatives just the way I had in cubic splines so 
that makes twelve. 
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If I have these mixed partials which are the twist vectors when I have sixteen things then 
I can construct a hermite bicubic surface where these F primes are very similar to the case 
in the curves and I may have the information of the position here. Therefore here I could 
have some matrix of position, here I could have some matrix of tangent vectors in u, here 
I could have some matrix of tangent vectors in v and here I could have some matrix of 
partial u and v of the twist vectors.  
 
So, given this geometric information I can then construct the bicubic hermite surface. 
Therefore this is some relevance or application of twist vector. There are other 
applications also but this is one which you can extend from the curves. One of the 
motivations of getting these derivatives is to be able to construct composite surfaces just 
as the way we did composite curves. Here is the situation where I have a patch O and 
then another patch R all I want is to have a composite patch which joins these two. So 
once again there could be various ways in which we can look at the joining of the two 
patches.  
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For instance, we can have a composite patch where all we are concerned is that the end 
points should match. That is, we have a C0 continuous surface which is given through, if 
I have these control points for the first patch is same as the first control points for the 
second patch. As long as they are at the same position I will have the two patches 
meeting at this curve which is the boundary curve for the two patches just because the 
boundary control points are the same. That is a C0 continuous patch. What happens if I 
am interested in C1? Then the role of derivatives comes into place. The derivatives 
should be the same.  
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If I had taken the case of a curve and another curve and I want them to be C1 continuous 
then what is the constraint I need in terms of the position of the control points for the two 
curves? They should lie in the same line so it is the co linearity. They should be collinear 
because we are talking about these curves and these spans should also be the same. If I 
am talking about cubic then b3 minus b2 in the first curve it is three times so the other 
side will also be three times b1 minus b0 for the second curve.  
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These spans should be the same as long as I am having the parametric domain definitions 
between 0 and 1. If I change them then I have to take the ratios. That is what will happen 
even in the case of surfaces. In order to have a C1 continuous surface for the two patches 
here I want this and this to form a line so these are collinear, these are also collinear and 
so on. Therefore that is the configuration of control points to give me C1 continuous 
surface at the boundary.  
 
Here is an illustration of the application of these Bezier patches. This is actually a very 
famous object in the computer graphics community. This is like the image of Lena in 
image processing. Everybody wants to work with image of Lena and for whatever 
operations you want to perform in image processing. So this is such an analogy. 
Whatever you do in rendering, in modeling you try to use this tea pot. This is a very old 
historical object and model of tea pot which had 32 bicubic Bezier patches.  
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Here these are the various patches and the shaded one is one single bicubic patch here 
corresponding to that you have this surface.  
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So you have patches for the handle, patches for the top, patches for this and also there are 
patches for the base. The nice thing about this model is that you obtain a fairly smooth 
kind of a surface which you see in reality. The inspiration is coming from a real tea pot. 
This is sort of an example of the Bezier surfaces and the patches.  
 



Now that we have seen the construction of Bezier surfaces using control points and some 
sort of a blending of these using appropriate Bernstein polynomials we can actually do 
construction of other surfaces where the basis could be different than Bernstein 
polynomials. For instance, I can also construct B-Spline surfaces. That is also the 
advantage of the tensor product formulation. All I need to do is use the appropriate basis 
functions in the parameters defined through the parameter domain u and v and just take 
the tensor product.  
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So if we go back and see how the B-Spline was defined B-Spline was defined basically 
through these control points and these basis functions. Now I will have these control 
points in the similar manner as the Bezier surface and use these basis functions and take a 
tensor product. So you have a basis function Nip u and NJq and v. Here this p and q 
would actually determine the degree of the surface in u and v. Just the way k was 
determining the degree of the curve which you were trying to construct in B-Spline here 
p and q would determine the degree of the surface you want to construct.  
 
Once again a surface could be possibly generated using these control points and the basis 
functions. And again you have the role of knot vectors in terms of defining these basis 
functions so you could possibly have open knot vectors, uniform knot vectors, non 
uniform knot vectors and so on.  
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It is just the way you were constructing the B-Spline curves where you had various 
control handles for the shape of the curve which would be carried forward for the surface 
construction. We also have the properties extended in a similar way.  
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You have the property of affine invariance, you also have the property of convex hull 
which is stronger as in the case of curves and there is also a local control just the way we 
had local control in the case of B-Spline curves so that again gets extended to the 
surfaces.  
  



Here is an example; this B-Spline surface and a point here is moved to this location so 
this is how the surface changes. You can see that only a small neighborhood with respect 
to the point which is moved the surface has changed. Therefore this local control is there.  
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And as I said you have various ways of knot vectors, you may have open uniform knot 
vector which gives you the property of clamping to the end control points.  
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Just the way the B-Spline curve would pass from the end control points if you are using 
the open uniform knot vector that is the repetition k times of the two ends. Or you could 



also have a closed surface just by taking the control points in a circular way so that they 
form a close B-Spline polygon. Or you could also have the knot vectors which are 
periodic which would not guarantee that the surface passes through the end control 
points. Hence, similar properties and ideas which are used in the case of curves can be 
seen in surfaces.  
 
Now as we were discussing about the rendering or the display of surfaces one of the ways 
we said that we compute the point on the surface of the curve and approximate by joining 
a line from the previous point computed. And in the case of surface we could possibly 
compute quads, quads means four points which could lie in a plane so I Just have to 
display that quad which is a planner primitive.  
 
Therefore, in some sense what I am trying to do is I am trying to approximate the surface 
which is computed into some discrete elements which are piecewise linear, piecewise 
linear in the case of curves or in the case of surfaces they are piecewise planner patches. 
Often it is the situation that we have the representation of surfaces as these parametric 
surfaces but for the purpose of displaying we come down to these planner patches, reduce 
the surfaces to collection of piecewise planner patches for various reasons. One of the 
reasons is that the rendering which is supported in most of the graphics library and the 
hardware we have supports polygonal shading and polygonal rendering.  
 
Let us try to see how these polygonal representations could be done for the purpose of 
converting these surfaces or even acquiring the models in terms of polygons. For 
example, if you have an object which is a cylindrical object so one could conceive this to 
be made of several surfaces so they could be this surface which is the side surface of the 
cylinder and there are caps of the cylinder that could be another surface. Now, in order 
that I display them as polygonal patches or polygonal discrete elements I would convert 
them into some collection of polygons so this could be one possible decomposition into 
polygons. Collection of these polygons basically is some sort of a mesh which is 
generated using these polygons.  
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The idea here is that you have representation which could be mathematically continuous 
but at the end you have this representation which may be desired for several reasons and 
one of the reasons could be just the rendering. Now let us try to see the data structure 
which could be possibly be used for representing these polygonal meshes.  
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Therefore this polygonal mesh if you want to look at is nothing but a collection of edges 
vertices and faces or the polygons. These are the three entities which are involved in the 
representation of polygonal mesh. We are considering these meshes of the kind where we 
see that the edge is shared by at most two polygons. So, if we look at the edge it connects 



to two vertices and a polygon is nothing but a closed sequence of edges. Therefore as a 
representation there could possibly be several ways in which we can represent this 
polygonal mesh.  
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One way is that I consider each polygon represented in explicit fashion giving all the 
points which are defining that polygon. I have these vertices defined through its 
coordinates x1, y1, z1, x2, y2, z2, xn, yn, zn and so on and also the last one which would 
connect xn, yn, zn, to x1, y1, z1 just to complete the loop.   
 
Now if you look at this representation, we are saying that each polygon is defined in this 
fashion. Clearly there is lots of duplication. Many of the vertices are repetitively used. So 
this may not be a very good way of representing the polygonal mesh plus it is very 
restrictive in terms of manipulation of the information in the polygonal mesh because it 
does not capture information about adjacency, it does not capture information about the 
incidents vertices to an edge and so on and so forth so the manipulation is difficult. 
Therefore we go one step more and try to see a data structure which reduces this 
replication and add some features of manipulation.  
 
So what you could have possibly is a pointer to a vertex list. So, instead of defining this 
polygonal in an explicit manner where you consider each of the vertex coordinates what 
you can think of is that there is a vertex list or a table of vertices which consist of the 
coordinates of the points and the polygons are nothing but the index or the entry pointers 
to this table or vertices. That is a typical representation you might have seen.  
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In this example, for instance if I have P1 defined using V1 V2 V4 these are nothing but 
the indices 1 to 4 in the vertex list. This reduces the redundancy which we had in the 
earlier representation to a certain extent. Now again from the manipulation point of view 
if I am interested in finding out polygons that share an edge, so with respect to this edge I 
want to find out the polygon shared by this edge it is not easy. This data structure does 
not really facilitate that so easily.  
 
May be we have to do something else, may be we have to bring in information about 
edges which is sort of missing here. So what we do is we have a pointer to edge list so we 
build an edge list. So here an edge is nothing but a tuple using the vertices it joins Vi Vj 

and the polygons which are sheared by this edge. And we also have the information of 
the polygon defined in terms of the edges.  
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Here again we are considering triangular polygonal mesh and that is why there are only 
three edges. So in this example for instance I have the vertex list given as V1 V2 V3 V4, 
these are the points I have then E1 could be defined in terms of the vertices V1 and V2 
which is this and the polygons which are sheared for this edge. So you have P1 and there 
is no other polygon here so I Just put null here.  
 
Similarly, I can have E2 E3 and so on. So E4 you observe that there is a polygon P2 so 
you have both these polygons P1 and P2 for this edge. So a query for getting the polygon 
sheared by an edge is straightforward. Now the question is that if I am interested in 
finding out the edges which are incident on a vertex I may have to actually go through the 
entire list of edges and that may not be straightforward. Clearly as we demand for both 
manipulations the data structure would become heavier so you need to store more 
information.  
 
One of the data structures which is quite popular is the winged edge data structure. In this 
winged edge data structure what we have is basically the co data structure is considered 
as edge. There is this information about an edge a, and it gives you the vertices which are 
there for the edge a, the constitute vertices X Y, the faces are sheared by this edge 1 and 2 
and there is also this notion that how you are going to traverse the mesh.  
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If you look from the left side with respect to the polygon 1 you have this clockwise 
navigation. And if you look at from the right again you have clockwise navigation. If I 
am doing the left traversal on this side then what is the predecessor to this edge and what 
is the successor to this edge? It is b and d. Also in the same way when I am doing a right 
traversal what is the predecessor and what is the successor? So I have this information in 
the data structure. 
 
Now if am interested in finding out the incident edges for a point X then I can do that 
with a limited navigation about a certain number of polygons. This would tell me what 
are the possible edges I need to look for and what are the polygons shared by those edges 
so I do not have to traverse the entire edge list. 
 
Therefore if you look at the way it is sort of drawn pictorially you see this edge here 
which is the principal entity for the data structure a the edge a and there is this face one 
and on the left side there is the face two and then you have these edges b c d e so they 
sort of form a wing above this edge. So this is the central part of a bird and these are just 
the wings. That is why it is called winged edge data structure. This is alright as long as 
we do not consider holes. The moment we consider holes then we may have to do 
something else.  
 
 
 
  
 
 
 


