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We continue on parametric curves. We have been talking about Bezier curves which are 
basically the curves which approximate the shape the user wants to design.  
 
(Refer Slide Time: 01:24) 
 

 
 
So the way these Bezier curves are defined you are given these control points b0 b1 b2 b3 
and all it takes is the blending functions in the form of Bernstein polynomials and when 
you take a combination of these control points with these blending functions it results 
into B Spline curves. So, for this input Bezier polygon you get a curve like this. So you 
can see there is a correlation between the shape of the Bezier polygon and the resulting 
curve shape. And we also notice that the degree of the resulting curve is directly related 
to the number of control points we have in the Bezier polygon. In this case it is a cubic 
Bezier curve where the total number of control points in the Bezier polygon is 4. 
Sometimes it is also referred as the order of the curve as the same as the number of 
control points. So the order of a curve is 4 and the degree of the curve is 3.  
 
 
 
 
 
 
 



(Refer Slide Time: 03:15) 
  

 
 
These Bernstein polynomials are basically defined as, these are the polynomials in ti and 
1 minus t n minus i. And we observe that the definition j 0 0 defined at t is taken as 1, 
jni(t) for the rest of the i’s belonging to other than 0 and n is 0 and it sums to 1, all these 
blending function coefficients sum to 1 between 0 and n and each of these is actually non 
negative for the t parameters spanning between 0 and 1. These in fact are the properties 
of the Bernstein polynomials in turn render lots of properties for the Bezier curve. So this 
partitioning of the unity the convexity of these coefficients etc actually be useful for the 
properties of Bezier curve. Thus, for a cubic case this is how the Bernstein polynomials 
look like.  
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And when you see the curve it is basically a combination of these coefficients with the 
respective Bezier points here, it is just the combination of that. This definition is 
somewhat similar to what we also have observed in the cubic splines where we see the 
resulting curve as a combination or blending of the geometric information given. So here 
the geometric information is basically given through the control points of the Bezier 
polygon and that is what you are trying to blend with using Bernstein polynomials. This 
was basically using the Bernstein polynomials. So these are some of the examples which 
we saw. So here it all shows that the shape of the Bezier polygon is actually directly 
influencing the resulting curve.   
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Then we actually started looking at a different way of constructing these Bezier curves. 
One was using Bernstein polynomials just as a basis or blending function and there is 
another way of constructing these Bezier polygons and that is due to this de Casteljau 
algorithm.  
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This de Casteljau algorithm basically works using linear interpolation. So the idea there is 
that if I have the parameter t is defined between 0 and 1 so for any value of t I can locate 
a point on the curve by successive application of linear interpolations. That is the 
underlying idea about this algorithm which basically means that if I apply a linear 



interpolation on to this leg or the span of the Bezier polygon, let us say for this leg I apply 
this linear interpolation to get the point b1

0 somewhere there, similarly for this span I 
apply the linear interpolation and obtain the point b1

1 and then subsequently I get a new 
span defined between b1

0 and b1
1 and I repeat the linear interpolation for the parameter 

value t along this span and get the point b2
0.   
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So this b2

0 is nothing but again a linear interpolation of b1
0 and b1

1. And if I just expand 
this because b1

0 was nothing but a consequence of linear interpolation in the Bezier 
polygon and b1

1 was also a linear interpolation so if I just expand this I obtain this. And 
these are nothing but the Bernstein polynomial coefficients of degree two. So all it does is 
with this application of linear interpolation on this span it locates a point b20 which is a 
point on the curve. So for any value of t I can locate the point on the curve by successive 
application of linear interpolation. That is what de Cateljau algorithm is.   
 
The way I can sort of extend was the kind of example given for a quadratic Bezier curve 
of degree two but this can be extended to any degree. And all it looks like is some sort of 
a recursive formulation here. Given the Bezier control points at b0 to bn I obtain at some 
level rth level the points bri which are nothing but the linear interpolation of the points 
obtained in the previous level or the previous iteration which is r minus 1 and I keep 
applying that till this r is equal to i.   
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So that is the algorithm I have for any degree of the curve. And given that the first level 
where I start these are the points of the Bezier polygon itself. Now, if you look at the way 
this computation is going on in the case of the example of a cubic curve you observe that 
you have some sort of a triangular array which is being found. So this and this gives you 
this and so on. So all you see is basically a triangular array which is being formed. 
Therefore there should be arrow from here also, there should be arrow from here also and 
so on if you want to see the computation which is going on. Here all it is being shown is 
the storage or the array which is formed at different levels. 
 
Here are some properties to look at using Bernstein polynomial constructions. Let us also 
see how these properties are revealed when we have de Cateljau algorithm construction. 
We remember that affine invariance was basically a property where it was equivalent if I 
apply an affine transformation to the curve or if I apply the affine transformation to the 
Bezier polygon or the control point.   
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Hence, if I apply affine transformation to these Bezier polygon points then the curve 
computed is the same as if I had applied that affine transformation to the curve itself. So 
these are equivalent. So how do we see that in the formulation using de Casteljau 
algorithm? It is actually from the direct consequence of the algorithm itself because de 
Cateljau algorithm is employing linear interpolations. And what are linear interpolations? 
These are just the affine maps. It is actually a sequence of linear interpolation which is 
what is being used in de Casteljau algorithm this is a direct consequence, affine 
invariance is a direct consequence. Linear interpolation uses just the ratios and that is 
what affine maps are.   
 
This property of affine invariance is inherent to the algorithm itself. Now what happens if 
I am talking about projective invariance. So our Bezier curves are invariant to projective 
transformation. Here what we have done is we have applied affine transformation and we 
observed that there is no difference if I had applied to the Bezier polygon or to the curve. 
These are the two same things.  
 
Now if I apply a projective transformation would I have got the same result? That means, 
if I apply projective transformation to the Bezier polygon and obtain the curve or I 
straightaway apply the projective transformation to the curve, then are these two the 
same? The answer is no. So we will see that some of the curves can be made projective 
transformation invariant at a later stage.  
 
The Bezier curves are not projectively invariant. Now the other property which we 
looked at was the convex hull property. So the convex hull property defines that the curve 
which gets formed resides inside the convex hull of the control polygon. This was the 
convex hull property.  And due the nature of the Bernstein coefficients they being non 
negative and summing to 1 this property was easy to observe in that formulation.  
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Now let us try to see the same thing in de Cateljau algorithm formulation. So once again 
if we just look at the construction mechanism which is to use successive application of 
linear interpolation, so what do I have is, this is the definition of the curve, this bn0t 
finally gives me the curve P(t).   
 
And if I observe that each of these intermediate points which I obtain after applying the 
linear interpolation are nothing but convex combination of the previous points of the 
level r minus 1. It is convex combination because I am just using linear interpolation 1 
minus t and t. So, again this successive application of linear interpolation would result all 
the points which are getting computed to reside in the convex hull. Again this is inherent 
to the method of using linear interpolation.   
 
The other properties like end point interpolation is also fairly easy to observe because if I 
just look at the point evaluation of bn

0 at t is equal to 0 it is nothing but b0 which is the 
first control point of the Bezier polygon and similarly the evaluation at t is equal to 1 is 
the last Bezier point which is bn. So this is also fairly easy to observe. 
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And if you look at again the parameter transformation that means instead of having the 
definition t defined in the span 0 and 1 if I have the parameter u defined in interval a and 
b it does not really change the method or the algorithm. All I need to do is make this 
affine transformation of the parameter, obtain t as nothing but the ratio of u minus a to b 
minus a. So most of the properties which we looked at in the case of Bernstein 
polynomial formulation can also be observed and asserted using de Casteljau algorithm.   
 
Here are some more properties of Bezier curve in general. Here we are considering a 
scenario where we want to have a definition of one Bezier curve defined as from b0 b1 b2 
and b3 this defines a curve P1(t) and I have another curve defined using set of control 
points as c0 c1 c2 c3 which is P2(t).   
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Now if I am talking about the continuity at the junction point of these two curves the first 
thing I can look at is the positional continuity where the first point of the second curve 
should match with the last point of the first curve because that is the minimum 
requirement of the two curves to be joined. So we are talking about positional continuity 
which we call as c0 continuity. This is the first curve.  
 
We are not looking at a new construction. We are basically joining two curves. This is a 
cubic Bezier curve, this is another cubic Bezier curve and if I have to define a joining 
here how I can define various kinds of joining looking at the desirable continuity I have. 
So if I have to design the two curves which have just the positional continuity then I can 
place these four points in anyway I want. But if I have a higher order of continuity then I 
need to do something else. So this is the minimal configuration of joining at this point 
which is only the positional continuity. So clearly when I see the effect of this I have this 
curve and another curve so I see some sort of a sharp change here which does not look 
smooth. Here again I am talking about smoothness in terms of visual sense.  
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So the curve does not look smooth. So, now if I want to make this curve look smooth I 
need higher order of continuity. Here we considered only the positional continuity then 
we have to perhaps look at the derivatives, the continuity in derivatives. That is what 
gives us c1 continuity where I look at the continuity in terms of the first derivative of the 
curve.   
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Here, again if I have the first curve defined through the Bezier polygon b0 b1 b2 b3 and 
the second curve c0 c1 c2 c3 then here if you look it looks smoother. The transition from 
one curve to the other curve is smoother. And in order to establish this I would require 



the condition being satisfied that the first derivative at the last point for the curve should 
be the same as the first derivative at the first point of the curve.   

is here.  

 
And if you go back and look how we found out the derivatives of the curve and do the 
evaluation at t is equal to 1 for the first curve and at t is equal to 0 for the second curve 
would in turn give you a relationship between the control points of the two Bezier curves. 
In fact for the first derivative you remember that it was just the first and the last spans of 
the polygon, these were the derivatives and that is what is being used here. This is the last 
span of the first Bezier curve and this is the first span of the second curve.  
 
Therefore, this would give me the desirable location for the control point c1. Remember 
if I am talking about c1 continuity it already uses c0 continuity. So I have already 
established that c0 is the same as b3. Hence for the purpose of designing the c1 
continuous curve the question comes as to where do I locate c1 and that is what I obtain 
using this condition. This is how I get a curve which is c1 continuous. The continuity is 
being evaluated at the junction point. But actually if you look at the differentiability of 
this with respect to t it is continuous and so 
 
Now the only constraint which has been imposed is [orciba] which necessitates locating 
the point c1. And as long as the c2 and the c3 points are concerned you could locate 
anywhere you want depending on what kind of shape you are looking at. Now I want to 
have c2 continuous which would require continuity in second derivative. So again if I do 
the evaluation of the second derivative for the two curves and do the evaluation at the last 
point of the first curve and the first point of the second curve I would basically get a 
relationship of the relevant control points on the two sides.   
 
Now, again given the fact that c2 continuous curve is going to be c1 and c0 continuous I 
already know certain information about the point c0 and c1, they have already been 
located satisfying those conditions. Hence using that I can evaluate c2. 
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Now you see that c2 is given as b1 minus 4(b2 minus b3) because c0 is b3 and again c1 
minus c0 is the same as b3 minus b2 so that gives you c1. Hence you just use that 
information to get c2. So how does it look visually? Now I have the first curve P1(t) 
given as this through b0 b1 b2 b3 and the second curve given as P2 through c0 c1 c2 c3. 
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Now if you look at the relationship of the control points in the two curves c0 is the same 
as b3 satisfying c0 continuity and c1 minus c0 is equal to b3 minus b2. Basically all it says 
is, symmetrically if you want to see that this leg of the polygon in the first case is the 
same as this leg of the polygon and they are collinear. Whereas if you see here the 



evaluation of c2 can also be written as, c2 minus b1 as 4(b3 minus b2) just rewrite what 
you have obtained earlier for c2. Therefore if you just look at this as a vector c2 minus b1 
is parallel to b3 minus b2. Or all these five points are collinear this, this, this, this, this, 
that is also a possible scenario in order to have this curve to be c2 continuous. So what 
you observe here is that if I join this line here this is parallel to this. So this is how you 
can obtain the c2 continuous curve. Of course from the users’ perspective when you are 
designing curves is going to impose constraints where you can locate these points. That 
takes away the flexibility of positioning these Bezier points. So, for most practical 
purposes people actually just want to design c1 continuous curve.   
 
There is another type of continuity which is if I go back to the c1 continuity here again 
(Refer Slide Time: 31:59) for a c1 continuous if you want to look at geometrically this leg 
is the same as this leg both in direction and size. But if I had the two legs collinear but 
not necessarily of the same magnitude that means this leg could be longer go here then 
again I would see that the curve would look smooth as far as the visual sense is 
concerned. So at times we call that as visual continuity or geometric continuity g1. 
Instead of calling that as c1 we call that as g1. Thus, all we are concerned there is of the 
direction and not necessarily of the magnitude. It is just a variation of c1 continuity. 
 
Now going to another feature of these Bezier curves is that even for the purpose of 
facilitating the design of the curves as we observe that the degree of the curve is basically 
defined by the number of control points we have. And control points are the control 
handles for designing the shape of the curve. I can displace those points wherever I want. 
And larger is the number of control points more is the control I have on to the shape of 
the curve. Therefore, at times what may be desirable is that I construct a curve of a 
certain degree  let us say cubic which has four control points and suddenly I feel that I 
should have one more control point because that will help me redesign the curve or 
change the shape of the curve. So additional control point basically implies changing the 
degree of the curve because the degree of the curve is directly related to the number of 
control points I have.   
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Hence, if I am trying to change the control points, if I want to increase the control points I 
am basically implying that there is an elevation of the degree of the curve. This could be 
useful in certain scenarios. Even in the case of joining two curves what I may do is first 
match the degree of the two curves and in order that I match the degree of the two curves 
I may have to elevate the degree of one of the curves. So there could be various scenarios 
there we may use this feature. What are we saying here is that we increase the degree of 
the curve which basically implies increasing the number of control points of the Bezier 
polygon.  
 
Hence, if I have a curve defined through the Bezier points b0 to bn now I am getting a 
different set of control points as b0 star to bn plus 1 star.  First I want to have the same 
curve defined using a different set of control points with elevated degree. I am not 
changing the definition or the shape of the curve. 
 
For the given configuration I just want to have the degree elevated which basically means 
that these two curves the curves obtained using this set of control points and the curve 
obtained using this set of control points should be the same as far as the curve is 
concerned. This basically means that I have these curves through these points, these 
curves through these points and I have these curves as the same. And what I am trying to 
do here is I already have this left hand side I am trying to locate these b stars which is the 
set of new control points with an elevated degree for the same curve. So I just basically 
establish this relation to obtain the bi stars.  
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How do we proceed? I equate these and I expand the terms for these polynomials here 
and then in order to be able to get the coefficients bi star I need to have the same degree 
here. First of all make I need to make this degree high so I have to use some trick. 
Therefore multiply by unity and that should contain t’s and whatever I need. So I use this 
identity t plus 1 minus t which is equal to 1 and multiply the left hand side with this. Now 
I can equate coefficients of the two sides of say t to the i1 minus t to the n plus 1 minus i.   
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So if I compare the coefficients on the two sides of t to the i and 1 minus t to the n plus 1 
minus i this is what I get.  
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Now further simplifying this, this actually gives me this bi stars as nothing but i by n plus 
1 times bi minus 1 1 minus i by n plus 1(bi’s) which is nothing but some sort of a linear 
combination of these Bezier points bi minus 1 and bi. So if I use the parameter like alpha 
equals to i by n plus 1 this is just a linear combination using the parameter alpha. So just 
observe an example here. Let us say I have a curve defined through these control points 
b0 b1 b2 b3.  
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Again this is a hand drawn curve so you should not see this to be an exact curve. So the 
exact computed curve may look different. Now if I want to elevate the degree of this 



curve using the same result which we had would basically give me these b stars so this 
point will be some linear interpolation by 1 by 4 using, this is by ½ and this is by 3 by 4 
or whatever i by n plus 1 is what we are saying.    
 
This basically does the localization of the b stars for the same curve and obviously the 
first and the last points have to be the same. Now tell me what happens if I do this degree 
elevation repeatedly. From here I can go further I have elevated the degree from 3 to 4 
and now I do the next elevation and next elevation and next elevation, it will converge to 
the curve. You can actually prove mathematically also.  
 
43:15……….There we are trying to do an interpolation of set of points and if I try to 
have the degree as the number of points then I will have [vigliness] control points that is 
the number of points which I am trying to interpolate. Often that is what the case you will 
have in Lagrange interpolation. So you have a very high degree of the curve which you 
obtain. So this is not the same type, this is not an interpolation here. But of course there 
are other issues related to elevating a degree.  
 
First of all the moment you increase the degree of the curve computation is an issue so 
the simplicity is going away. But from the purpose of the design of the shape of the curve 
you have better control because you just have more number of points to move. And 
remember that we have the property of something like pseudo control. So the pseudo 
control gets more influenced by adding more number of points because you are sort of 
distributing that influence. If I just had a cubic curve if I displace one point it will affect a 
larger range of the parameter. If I have additional points for the same effect the range is 
going to be smaller. 
 
Another question I have is we have talked about degree elevation where we were trying 
to increase the degree of the curve. So can we also think of reducing the degree of the 
curve? The problem is that, reducing the degree means you are reducing the number of 
control points and of course retaining the necessary properties of the curve. So it actually 
turns out that it is not always possible. You might be able to do it only for certain 
situation. For instance here I can do the reverse construction. From here I go and obtain 
this, from here I go obtain this but not always.  
 
Subdivision of the curve: This is another feature or property of the Bezier curve. So what 
do I mean by the subdivision of the curve is let us say I want to divide in two parts.  
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And when I say two parts I am basically referring to the range of the parameter. This 
curve P(t) defined between 0 and 1 and I define another set of two curves Qu and Rv 
which are individually defined in the unit interval for the parameter whereas this actually 
is referring to a curve up to t is equal to 1 by 2 and this Rv is referring to the other half. 
So basically here if you look at this curve I am trying to divide this curve into this Qu and 
Rv. If you recall de Casteljau algorithm here is this point. This was the point where the 
subdivision was to take place.   
 
So, on the left side I needed set of control points which could define this curve and I 
needed another set of control points which could define this curve. That is what it implied 
the subdivision of the curve. Now if I consider the evaluation of the curve at t is equal to 
1 by 2 and if I see the construction from de Casteljau algorithm this is the point which 
gets located on the curve for the evaluation t is equal to 1 by 2. And the other points 
which I obtain from the previous iterations of de Casteljau algorithm can actually act as 
the control points. If I do de Casteljau algorithm t is equal to 1 by 2 this will get located 
here, this point gets located there and this point gets located there.   
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And further application gives me the point here the point here. One more application 
gives me the point on the curve. And this is the point where this subdivision is taking 
place and that is where I am subdividing the curve. 
 
Now if I see this point and this point they define a set of control points for this curve. 
And similarly these two end points define the control points for this part of the curve. So 
the proof of this is a little involving but you can try. 
 
Now, again if I have to do a repeated subdivision I will converge to the curve. This is like 
some sort of a corner cutting when you look at the way de Casteljau algorithm is working 
this corner is cut, this corner is cut. In the subsequent subdivision there will be another 
corner cut of these and eventually I will get the curve. So it says that if I have a polygon 
and I just keep chopping these corners whenever they get built ultimately I will get a 
smooth curve. It sort of intuitively matches with what we see as the corner cutting. This is 
the sort of result we have for the sub division.  
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If you look at Bezier curves what we figure out is that, as far as the local control is 
concerned is limited. There is this pseudo local control we have but a change in the 
position of a point in the Bezier polygon results change in the entire curve which is sort 
of a global effect. It may not be a very convenient way of designing larger free form 
curves.  
 
Exact local control is a curve defined in this fashion and if I move this point I observe 
that the entire curve changes.   
 



What I may just want is only a part of this curve changes rather than the entire curve.  So 
there is a sort of a range of influence with respect to this point. It is there in some form. 
Actually every point on the curve changes so I cannot do away by not computing those 
points. As far as the curve is concern I have to do a re-computation of the entire curve.   
Therefore one thing is that we have no local control or limited local control. And the 
other thing is that the degree of the curve is fixed by the number of points I have in the 
control polygon and that may again be an issue for various applications. So it may be 
nicer to have a de coupling of the control points I used for the gross shape of the curve 
and the degree of the curve which I designed. These limitations are overcome in B 
Splines.  
 
 
 
 
 
 
 
 
 
 
  


