
Data Structures and Algorithms
Dr. Naveen Garg

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture – 6
 Trees

Last class we discussed about hashing. We saw few collision resolution techniques,
chaining, double hashing linear programming and you also did a little bit of analysis of
these collision resolution techniques. Today we are going to talk about trees. We are also
going to look at binary trees and some data structures for trees.

(Refer Slide Time: 1:31)

What is a tree? Many of you might have come across a tree before, except this tree is
going to be different from one that you have seen before. The root will be at the top. In
most of the trees around, you do not see the root.

(Refer Slide Time: 1:37)

The root is going to be at the top of the tree. In the tree given in the slide above A is the
root. There is a notion of parent and children, the node B is the parent of node D and E.
By the same argument A is the parent of B and C, C is parent of F, G and H. A is a parent
of B which in turn parent of D and E, so A is ancestor of D and E. A is also an ancestor
of F, G and H. A is also an ancestor of I. A is a grandparent, sometimes we use the term
grandparent. A is a grandparent of D, E, F, G and H.

Hope you understand the difference between ancestor and grandparent. D and E are
descendents of A, in fact B, C, D, E, F, G, H, I are all descendents of A. C and B are
siblings because they have the same parent. B is a sibling of C and C is a sibling of B. G
and E are not siblings but F, G and H are siblings. D and E are the children of node B. A
is a parent of B, B is a parent of D and E, D and E are children of B, B and C are children
of A and all of these are descendents of A.

I have 3three ancestors H, C and A. H is the parent, C is the grandparent and A is the
great grand parent but we do not use that term we just call it as an ancestor. The terms we
defined till now were more in the nature of a family tree and then we will come to real
trees. D, E, F, G, I are called the leaves of the tree. A is the root, if you just turn it upside
down then the extremities should be the leaves.

What is the leaf? The generic term for A, B…I are also called nodes of a tree. A leaf is a
node which has no children. If a node has no children then it is a leaf. H is not a leaf since
H has a child but I, F, G, E and D are nodes which do not have any children and so they
are called the leaves.

(Refer Slide Time: 5:08)

A, B, C and H are called internal nodes, a node which is not a leaf is called an internal
node. We associate a notion of level with each node, the root is at level 0. The children of
the root are at level 1. The children of those nodes which are at level 1 are at level 2. D,
E, F, G and H all are at level 2. It is not that H is at level 2, all of these nodes are at level
2. I is at level 3.

Sometimes we also use the term depth, in which depth and level are the same thing. The
level 0, level 1, level 2 are also called as depth 0, depth 1 and depth 2. The height of the
tree is the maximum level of any node in the tree. What is the maximum level of any
node in the tree? The height of this tree is 3.

The degree of the node is the number of children it has. B has a degree 2, C has a degree
3 and H has a degree 1. The leaves have degree 0 because they do not have any children.
Basic terminologies are quite intuitive. What are trees used for?

They can represent the hierarchy in an organization. For instance there is a company let
us call electronics R Us which has some divisions. RND is 1 division, purchasing is
another and manufacturing is 4th division. Domestic and international are the sub-
division for the sales. You could represent the organizational structure through a tree.
You could also use a tree to represent the table of contents in a book.

Let us say a book called student guide which has chapters on overview, grading,
environment, programming and support code. The chapter grading has some sections
called exams, homework and programs. They could also have some sub-sections and that
would build up the tree.

(Refer Slide Time: 6:56)

Your file system in which if you use the Unix environment or the Windows environment
is also organized as a tree. The one in the level 0 is the root directory and in the 1stlevel
are those 2 sub-directories. Then within the sub-directory I have some other sub-
directories and within that I have homework, assignment and so on. Your file system is
also organized like a tree.

(Refer Slide Time: 7:57)

Today in our class we are going to see about definitions and then we start using those
definitions in our later classes.

(Refer Slide Time: 8:33)

An ordered tree is one in which the children of the each node are ordered. That means
there is a notion in which we would like to put the left child in the 1stlevel to the right
side. Suppose if you want to draw a family tree, you may want to draw the eldest child to
the left and the younger child as you move from left to right. There is a notion of order
there and some time you want to reflect that order in your tree. But there would be no
notion of order in the following example.

The node which is in the level 0 is a directory and in the 1stlevel there are two sub-
directories. Whether I place the left node to the right or the right node to the left, it does
not really make any difference as far as the picture is concerned. Also it does not convey
any additional information but sometimes you might have the notion of order between the
children. Such a tree is called an ordered tree.

(Refer Slide Time: 9:37)

A binary tree is an ordered tree in which there is a notion of left child and a right child.
Actually it is an ordered tree in which every node has at most 2 children. The diagram
given in the slide below is an example of a binary tree. The root node has 2 children and
the child node on the left has only 1 child and the following child on the right has only 1
child. The node which does not have child node are said to be leaves. We have 5 leaves
which have no children. These nodes in the 1stlevel are ordered and there is a notion of
left and right nodes. If I were to change the tree that is if I were to draw the left nodes on
the right and right nodes on the left then I get a different binary tree. That would still be a
binary tree but it would be different from this binary tree.

(Refer Slide Time: 11.06)

All of this is dependent upon the application you have. This is just a way of representing
information. Sometimes the order has meaning to it, sometime it has no meaning to it.
When it has some meaning to it then you would rather use an ordered binary tree and
when you change the order, then you are representing something different. We will see
more example of this and things would become clear.

I can also define a binary tree in a recursive form as follows. A binary tree is just a single
node or a leaf or it is an internal node which is the root to which I have attached 2 binary
trees. In the following slide the nodes which are marked on the left side are called left
subtree and the nodes marked on the right are called right subtree. I can construct any
binary tree in this manner.

I take a node and attach a left subtree and a right subtree. I get a left subtree and right
subtree through recursive in which it is obtained by taking a node and attaching it to the
left and right subtrees.

(Refer Slide Time: 12:12)

I have said and/or which means this left subtree might be null that is I might not attached
anything or I might not attached anything to the right or I might have attached both the
subtrees. Remember we have introduced other terms, left subtree and right subtree. The
node to the left side of the root node is called the left subtree and the node on the right
side is called right subtree. What is the left subtree of the node which is in the 1stlevel? In
the 2ndlevel, the node at the extreme left is the left subtree of the node.

(Refer Slide Time: 12:49)

One example of a binary tree is the arithmetic expressions. I have an arithmetic
expression which looks like the one given in the slide below.

(Refer Slide Time: 13:27)

I can represent this as a binary tree. Let us look at a parenthezisation of this expression.
Suppose I have parenthesized in the manner like, which is given in the last line of the
slide. We have (4+6), the numbers here will be the leaves of my binary tree and the
internal node would correspond to the operations. In fact this is also one way to evaluate
this expression. You would take 4+6 and you would sum that. You would draw a tree
which has 1 internal node and its two children are 4 and 6. The internal node would have

plus operator in it. Whatever is the resulting value we are adding that to 1. I draw a tree
whose root is a plus operator and one child is 1 and the other child is the subtree that is
obtained from this operation and I could build this tree. This is just another way of
representing arithmetic expression.

Decision tree is another example of binary tree. The example given in the slide below is
taken from the book. Star bucks, Café paragon and most of it would not make much
sense, may be we would not come across them. What is the decision tree?

Each node in the decision tree corresponds to some decision that you want to make. You
come to root node and ask whether you want a fast meal. The answer is yes then you
come to the left node and whether you want coffee or not. The answer is yes then you go
to star bucks. If the answer is no you may go to some other place and so on. Thus
decision trees are another example of binary trees. Why because typically it is yes and no.
You would follow the decision tree to get into a particular node.

(Refer Slide Time: 14:51)

This was just more of terminology and examples. Let us see more concrete stuff. Let us
define a complete binary tree. We are still at binary trees, as you can see every node in
this tree has less than or equal to 2 children or at most 2 children. But I will call such a
tree as a complete binary tree. We call a tree as a complete binary tree if at the thi level
there are 2i nodes. In some sense it is full and when every node has 2 children it does not
give you a complete binary tree.

(Refer Slide Time: 16:06)

I will show you why it cannot be a complete binary tree. Let us look at the slide below
and check whether every internal node have 2 children in this tree. Every node has a 2
children then that tree should also have leaves. It cannot be the case in which every node
has 2 children, in some case there are no children. Just with the requirement that every
node has 2 children, every node other than the leaf that means every internal node has 2
children does not implies it as a complete binary tree. This is a counter example to that in
which every internal node has 2 children. This is not a complete binary tree.

(Refer Slide Time: 17:00)

The following is an example of a complete binary tree. We want to say that at level i
there are 2i node. The root node is at level 0 that is 1 node, at level 1 there are 2 nodes, at
level 2 there are 4 and at level 3 there are 8.

If h is the height of the tree, in the following example what is the height of the tree? We
call height as the maximum level number so we should not count this as 4. Thus the
height of the tree is 3. If h is the height of the tree that means all the leaves are at level h
then by the definition of the binary tree we have said that the level i has 2i nodes that
means there are 2h leaves. The number of leaves in a complete binary tree of height h is
just 2h .

What is the number of internal nodes? At level 0 we have 1 node, at level 1 we have 2
nodes and so on. Thus the sum is given as 1+2+ 2 12 ... 2 2 1h h    , because at level h
all the nodes are leaf nodes. Thus the sum is 2 1h  , this is the number of internal nodes
and the number of leaves is 2h . The number of internal nodes is the number of leaves-1.
This is for a complete binary tree.

(Refer Slide Time: 17:34)

What is the total number of nodes in this tree? It is 2h which is the number of leaves +
2 1h  which is the number of internal nodes, hence it becomes 12 1h  . Let us call this
number as n. If I have a complete binary tree of n nodes, what is the height of this tree?
Let us go one step at a time. What is the number of leaves in this tree? If the number of

nodes is n and the number of leaves was 2h which equals
1

2

n 
, just from this (12 1h  =n)

expression. The number of leaves in a complete binary tree on n nodes is
1

2

n 
. If I have a

complete binary tree on n nodes, half of the nodes are leaves and the remaining half are

of internal nodes. Similarly I can say that if I have a tree on n nodes, then the height of

the tree is 2log (no of leaves). I can evaluate h from (12 1h  =n), h will be log (
1

2

n 
) and

so it is the log (no of leaves). Else we can go directly from 2h , where the number of
leaves is 2h and so h is log (no of leaves).

(Refer Slide Time: 20:37)

You are just doing some simple counting here. If I give you a complete binary tree of
height h then you should be able to say about the number of leaves and the number of
internal nodes it has. When I give you a complete binary tree on n nodes, you should be
able to say the height and so on. If you have a tree on n nodes then the height of the tree

is log (
1

2

n 
).

The other thing your have to keep in mind is that in such a tree the number of leaves is
very large. It is roughly half the total number of nodes. It is very leafy kind of a tree. So
far we have seen a complete binary tree but a binary tree is any tree in which every node
has atmost 2 children. To get any binary tree, you can start with a suitably large complete
binary tree and just cut it off.

For instance if I were to cut off some pieces then I would get a binary tree as shown in
the slide below. I can always do it, no matter about the tree I need. Take the binary tree
on the right side as height 3 then I would start with the complete binary tree of height 3
which is on the left. Just cut off some pieces on the left side of the tree to get the tree
which is on the right side. The picture given in the slide below is the proof.

(Refer Slide Time: 22:07)

Let us use this fact that you can obtain any binary tree by just pruning of a complete
binary tree. Take a complete binary tree, cut off some branches then you will get a binary
tree. If I have a binary tree of height h then in a complete binary tree at level i there were
atmost 2i nodes. In a binary tree at level i there will be atmost 2i nodes, there cannot be
more than 2i nodes because the binary tree is obtained from a complete binary tree by
pruning.

(Refer Slide Time: 23:14)

This is an important fact, atmost 2i nodes at level i implies that the total number of nodes
in your binary tree of height h is atmost 1+2+ 2 12 ... 2 2 1h h    nodes. The last level is
h, at level 0 there will be 1 node, at level 1 there is atmost 2 nodes, at level 2 there are
atmost 4 nodes and so on. This is the maximum number of nodes that binary tree can
have.

(Refer Slide Time: 24:23)

Let us rewrite this. Suppose I told you that a tree has n nodes. Then n is less than or equal
to this (12 1h ) quantity, n <= 12 1h  which means that the height of the tree is just

rearranged and it is h >= 2

(1)
log

2

n 
. If I give you a binary tree with n nodes in it, its

height is atleast 2

(1)
log

2

n 
and there is a particular binary tree which achieves this

equality and that is a complete binary tree.

Think of a complete binary tree as a tree which acquires the smallest height. If I create a
binary tree with the certain number of nodes, the one which has the shortest height will
be a complete binary tree. Because there we are packing all the nodes as close to the root
as possible by filling up all the levels to the maximum. That is the minimum height of the
binary tree. I give you a binary tree on n nodes, its minimum possible height

is 2

(1)
log

2

n 
.

What is the maximum height that a binary tree on n nodes can have? A binary tree on n
nodes has height atmost n-1. This is obtained when every node has exactly 1 child and
the picture is given in the slide below. This would be a zigzag in any manner and the
height is 8 since there are 9 nodes in it.

(Refer Slide Time: 25:35)

In a binary tree on n nodes the minimum height is log (n) that is log (
1

2

n 
), but we say it

as log (n) and the maximum height is n-1. That is the mistake many people make. They
always assume that binary tree means height is log (n). But it is not the case, it could be
anywhere between log n and n. How many leaves does the binary tree have?

(Refer Slide Time: 26:44)

What is the minimum and the maximum number of leaves it can have? Let us figure it
out. We will prove that the number of leaves in a tree is <=+ no of internal nodes. This is
the useful inequality, in any binary tree the number of leaves is <+ the number of internal
nodes or atmost the number of leaves in a tree can be 1 more than the number of internal
nodes. How will you prove this? We will prove it by induction on the number of internal
nodes.

(Refer Slide Time: 27:19)

In a base case consider a tree with 1 node. If a tree has only 1 node how many internal
nodes does it have?

It is 0, because that 1 node does not have any child so that is the leaf. Base case is when
the number of internal nodes is 0, in which case the right hand side is 1 that is the number
of leaves is 1 so the inequality is satisfied.

We will assume that the statement is true for all trees with less than or equal to k-1
internal nodes. This should be read as, the statement is true for trees with atmost k-1
internal nodes not just k-1 but anything even for less this statement is true.

We will prove it for a tree with k internal nodes. Suppose I have a tree with k internal
nodes, let us say on the left subtree I have 1k internal node. Then how many internal

nodes do I have on the right subtree? It is exactly k- 1k -1 and not atmost because all the

internal nodes are either in the left subtree or in the right subtree or it is the root node.
The minus one is because of the root node. This is the number of internal nodes in the
right subtree.

Let us apply the induction hypothesis. 1k is less than or equal to k-1 and the quantity (k-

1k -1) is also less than or equal to k-1. We can use the induction hypothesis. In the left

subtree which has 1k internal nodes, the number of leaves is less than or equal to 1k +1. In

the right subtree the number of leaves is less than or equal to k- 1k -1+1 which is k- 1k .

The total number of leaves is just the sum of these two ((1k +1) + (k- 1k)), all the leaves

are either in the left subtree or in the right subtree. The total number of leaves is just the
sum which is k+1 that is we wanted to prove.

Since we started a tree with a k internal node, you have to show that the number of leaves
is less than 1+k. This is a simple proof which shows the number of leaves is atmost 1+
the number of internal nodes.

(Refer Slide Time: 27:44)

There was a tree in which we saw the number of leaves is equal to the number of internal
nodes +1. It was in a complete binary tree. What was the number of leaves in a complete
binary tree? The number of leaves was 2h , if h was the height of the tree and the number
of internal nodes was 1+2+ 2 12 ... 2 2 1h h    nodes. There was exactly a difference of
1 between the number of leaves and the number of internal nodes. The complete binary
tree once again achieves the equality. For any other tree the number of leaves will only be
less than or equal to this sum. How small it can be?

(Refer Slide Time: 30:53)

Let us look at that. For a binary tree on n nodes, the number of leaves + the number of
internal nodes is n. Because every node is either a leaf or an internal node. Also we just
saw that the number of leaves is less than or equal to the number of internal nodes +1. I

will just rearrange, this implies that the number of leaves is
(1)

2

n 
 . I have just

rearranged, as the number of internal nodes is greater than or equal to the number of

leaves -1. I replace that and get the number of leaves as
(1)

2

n 
 for any binary tree.

The another thing to keep in mind is for any binary tree the number of leaves will never

be more than half the number of nodes in the tree. Again this equality (
(1)

2

n 
) was

achieved for our complete binary tree, which is the most leafy tree. All others trees are
dry and the minimum number of leaves that tree might have is just 1. The example for
that is the same example that I have showed you before. The tree on 9 nodes has only
1leaf in it.

Let us look at an abstract data type for trees. You would have the generic methods which
you seen for all the abstract data types till now. The following are the generic container
methods, size () which tell us about how many nodes are there in the tree, isEmpty () tells
whether the tree is empty or not and the method elements () which list out all the
elements of the tree.

(Refer Slide Time: 32:22)

You can have position based container methods, it is as the kind we saw for the list or
sequence data types. The swapElements (p, q) in which I have specified 2 positions p and
q. Think of the positions as references in to the tree except that using the position data
type I am not able to access anything else but the elements sitting at that position.

The method positions () will specify all the positions in the tree. It will give you all the
positions in the tree as a sequence. The positions method has no parameters, when you
invoke it on a certain tree it will just give you a sequence of all the positions in the tree,
references to all the nodes in the tree. Once you access a particular position then using the
element method on that positions you can access the element in that node.

The swapElements (p, q) given 2 positions p and q, you are swapping the elements at
these 2 positions. replaceElement (p, e) which means that given a position p you are
replacing the element at that position with e. In query methods given a particular position
isRoot (P) is this the root of the tree. Given a particular position isInternal (p) is this is an
internal node, given a particular position isExternal (p) is this external or leaf. Sometimes
we use external or sometimes we use leaf, does this position correspond to leaf.

In accessor method when I call root it will return a position of the root, an object of type
position. isRoot (p) is determined as given a position is it a root and root () returns the
position of the root. Hope you understand the difference between the both. The position
of the root means it is not a reference to that particular node but it is a reference of type

position so that you cannot access anything except the element. This was the same as the
type casting which we did earlier. The method parent (p), given a particular position
returns the parent node. The children (p), given a particular position returns the children
of this node. If it were children, there could be of many children for a certain node.

How it will return the various children? It will return as a sequence, it will return a
sequence of object type sequence which will contain the position of all the children.
Position has an element method which will let you to access the data. The update
methods are typically application specific and this would be the generic method for a
tree.

Binary tree should really be treated as a sub-class, as a derived class from a tree. All we
need to do is to continue to have the same method as we described for the tree but we will
have some additional methods. There would be a notion of a left child given a position
give me the left child, give me the right child or give me a sibling.

(Refer Slide Time: 36:37)

We will come to the update methods when we see the example of it. What is the node
structure in a binary tree? What are the kinds of data that you would be keeping in an
object corresponding to a node of the binary tree?

(Refer Slide Time: 37:14)

You would have the data, you would have a reference to the left child and a reference to
the right child and you would have reference to the parent typically. You would also have
a reference to key or data associated with this node, any element that is sitting in this
node you would have reference to it and these were all sitting together. The reference to
the node which is at the center will not be stored in the node and that does not make any
sense.

For instance if I access to this node, suppose this was the root node and I use the root
method to get a position to this node then using that position I can now access the left
child by invoking the left child method and in this manner I can get the position of any
node. Once I have the position of a node I can then invoke element method and any
method to get the data associated with that. A node in this case would definitely
implement the position interface. In the slide given below, this is what the binary tree
would look like if you look at the links and so on.

(Refer Slide Time: 39:12)

The parent link would be null for a root node because it has no parent. Then it would
have left child in which the left child would be referring to the node on the left and the
right child would be referring to the node which is on the right and so on. In the above
diagram the extreme right node does not have any right child, its right child member
would be referring to null. That was for a binary tree. How do we take care of arbitrary
trees? Let us say unbounded trees. The root node has 3 children and its child which is on
the left also has 3 children.

(Refer Slide Time: 38:39)

Are we going to have 3 different data members to refer to 3 children? That is not clear
about how to do it, because then if it has 4 children then how you would create space for
another member. The way to do it is that you have a reference to 1of the child only and
then all the children are in a linked list. Each child will have a reference to the parent, so
all of these children would be pointing to the parent node. But the parent node would be
pointing to only 1of them.

Which would be the head of the linked list in the 2nd level? From the node which is at the
1st level, if I want to refer to the children, I can just come here essentially return all the
elements of this linked list. How do I know that I have reached the last element of the
linked list when the next is empty?

The 1stfield of the node is empty because it does not have children. Every node still has
only 3 data members, parent or 3 references 1 for the parent, 1 for left most child and 1
for the right sibling. The left node on the level 1 would refer to left most child and not to
all the children because that we do not know how many are there. It will have 1 more to
refer to the right sibling because for the left node at the level 2 should refer to the right
sibling.

You can do with only 3 references. The node in the level 2 has only 1 child and it is just
pointing to that 1 child, there is no sense of left and right here. This is not a binary tree,
left and right makes sense only in a binary tree.

Actually I should not have written left child, I should have written 1st child. That is any 1
child then it just point to that 1 child and that let you to access its siblings through a
linked list. From the 1st child you will go to the next child and to the next child and so on.
You can step through all the various children throughout linked list. With that we will
end our discussion on binary trees today. In the next class we are going to look at
reversals of trees.

