
Data Structures and Algorithms 
Dr. Naveen Garg 

Department of Computer Science and Engineering 
Indian Institute of Technology, Delhi 

Lecture – 6 
     Trees 

 
Last class we discussed about hashing. We saw few collision resolution techniques, 
chaining, double hashing linear programming and you also did a little bit of analysis of 
these collision resolution techniques. Today we are going to talk about trees. We are also 
going to look at binary trees and some data structures for trees.  
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What is a tree? Many of you might have come across a tree before, except this tree is 
going to be different from one that you have seen before. The root will be at the top. In 
most of the trees around, you do not see the root. 
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The root is going to be at the top of the tree. In the tree given in the slide above A is the 
root. There is a notion of parent and children, the node B is the parent of node D and E. 
By the same argument A is the parent of B and C, C is parent of F, G and H. A is a parent 
of B which in turn parent of D and E, so A is ancestor of D and E. A is also an ancestor 
of F, G and H. A is also an ancestor of I. A is a grandparent, sometimes we use the term 
grandparent. A is a grandparent of D, E, F, G and H.  
 
Hope you understand the difference between ancestor and grandparent. D and E are 
descendents of A, in fact B, C, D, E, F, G, H, I are all descendents of A. C and B are 
siblings because they have the same parent. B is a sibling of C and C is a sibling of B. G 
and E are not siblings but F, G and H are siblings. D and E are the children of node B. A 
is a parent of B, B is a parent of D and E, D and E are children of B, B and C are children 
of A and all of these are descendents of A.  
 
I have 3three ancestors H, C and A. H is the parent, C is the grandparent and A is the 
great grand parent but we do not use that term we just call it as an ancestor. The terms we 
defined till now were more in the nature of a family tree and then we will come to real 
trees. D, E, F, G, I are called the leaves of the tree. A is the root, if you just turn it upside 
down then the extremities should be the leaves. 
  
What is the leaf? The generic term for A, B…I are also called nodes of a tree. A leaf is a 
node which has no children. If a node has no children then it is a leaf. H is not a leaf since 
H has a child but I, F, G, E and D are nodes which do not have any children and so they 
are called the leaves.  
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A, B, C and H are called internal nodes, a node which is not a leaf is called an internal 
node. We associate a notion of level with each node, the root is at level 0. The children of 
the root are at level 1. The children of those nodes which are at level 1 are at level 2. D, 
E, F, G and H all are at level 2. It is not that H is at level 2, all of these nodes are at level 
2. I is at level 3.  
  
Sometimes we also use the term depth, in which depth and level are the same thing. The 
level 0, level 1, level 2 are also called as depth 0, depth 1 and depth 2. The height of the 
tree is the maximum level of any node in the tree. What is the maximum level of any 
node in the tree? The height of this tree is 3.   
  
The degree of the node is the number of children it has. B has a degree 2, C has a degree 
3 and H has a degree 1. The leaves have degree 0 because they do not have any children. 
Basic terminologies are quite intuitive. What are trees used for? 
 
They can represent the hierarchy in an organization. For instance there is a company let 
us call electronics R Us which has some divisions. RND is 1 division, purchasing is 
another and manufacturing is 4th division.  Domestic and international are the sub-
division for the sales. You could represent the organizational structure through a tree. 
You could also use a tree to represent the table of contents in a book.  
 
Let us say a book called student guide which has chapters on overview, grading, 
environment, programming and support code. The chapter grading has some sections 
called exams, homework and programs. They could also have some sub-sections and that 
would build up the tree.  
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Your file system in which if you use the Unix environment or the Windows environment 
is also organized as a tree. The one in the level 0 is the root directory and in the 1stlevel 
are those 2 sub-directories. Then within the sub-directory I have some other sub-
directories and within that I have homework, assignment and so on. Your file system is 
also organized like a tree.  
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Today in our class we are going to see about definitions and then we start using those 
definitions in our later classes.  
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An ordered tree is one in which the children of the each node are ordered. That means 
there is a notion in which we would like to put the left child in the 1stlevel to the right 
side. Suppose if you want to draw a family tree, you may want to draw the eldest child to 
the left and the younger child as you move from left to right. There is a notion of order 
there and some time you want to reflect that order in your tree. But there would be no 
notion of order in the following example. 
  
The node which is in the level 0 is a directory and in the 1stlevel there are two sub-
directories. Whether I place the left node to the right or the right node to the left, it does 
not really make any difference as far as the picture is concerned. Also it does not convey 
any additional information but sometimes you might have the notion of order between the 
children. Such a tree is called an ordered tree.  
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A binary tree is an ordered tree in which there is a notion of left child and a right child. 
Actually it is an ordered tree in which every node has at most 2 children. The diagram 
given in the slide below is an example of a binary tree. The root node has 2 children and 
the child node on the left has only 1 child and the following child on the right has only 1 
child. The node which does not have child node are said to be leaves. We have 5 leaves 
which have no children. These nodes in the 1stlevel are ordered and there is a notion of 
left and right nodes. If I were to change the tree that is if I were to draw the left nodes on 
the right and right nodes on the left then I get a different binary tree. That would still be a 
binary tree but it would be different from this binary tree. 
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All of this is dependent upon the application you have. This is just a way of representing 
information. Sometimes the order has meaning to it, sometime it has no meaning to it. 
When it has some meaning to it then you would rather use an ordered binary tree and 
when you change the order, then you are representing something different. We will see 
more example of this and things would become clear.   
 
I can also define a binary tree in a recursive form as follows. A binary tree is just a single 
node or a leaf or it is an internal node which is the root to which I have attached 2 binary 
trees. In the following slide the nodes which are marked on the left side are called left 
subtree and the nodes marked on the right are called right subtree. I can construct any 
binary tree in this manner.  
 
I take a node and attach a left subtree and a right subtree. I get a left subtree and right 
subtree through recursive in which it is obtained by taking a node and attaching it to the 
left and right subtrees. 
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I have said and/or which means this left subtree might be null that is I might not attached 
anything or I might not attached anything to the right or I might have attached both the 
subtrees. Remember we have introduced other terms, left subtree and right subtree. The 
node to the left side of the root node is called the left subtree and the node on the right 
side is called right subtree.  What is the left subtree of the node which is in the 1stlevel? In 
the 2ndlevel, the node at the extreme left is the left subtree of the node.  
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One example of a binary tree is the arithmetic expressions. I have an arithmetic 
expression which looks like the one given in the slide below. 
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I can represent this as a binary tree. Let us look at a parenthezisation of this expression. 
Suppose I have parenthesized in the manner like, which is given in the last line of the 
slide.  We have (4+6), the numbers here will be the leaves of my binary tree and the 
internal node would correspond to the operations. In fact this is also one way to evaluate 
this expression. You would take 4+6 and you would sum that. You would draw a tree 
which has 1 internal node and its two children are 4 and 6. The internal node would have 



plus operator in it. Whatever is the resulting value we are adding that to 1. I draw a tree 
whose root is a plus operator and one child is 1 and the other child is the subtree that is 
obtained from this operation and I could build this tree. This is just another way of 
representing arithmetic expression.   
 
Decision tree is another example of binary tree. The example given in the slide below is 
taken from the book. Star bucks, Café paragon and most of it would not make much 
sense, may be we would not come across them. What is the decision tree? 
 
Each node in the decision tree corresponds to some decision that you want to make. You 
come to root node and ask whether you want a fast meal. The answer is yes then you 
come to the left node and whether you want coffee or not. The answer is yes then you go 
to star bucks. If the answer is no you may go to some other place and so on. Thus 
decision trees are another example of binary trees. Why because typically it is yes and no. 
You would follow the decision tree to get into a particular node.  
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This was just more of terminology and examples. Let us see more concrete stuff. Let us 
define a complete binary tree. We are still at binary trees, as you can see every node in 
this tree has less than or equal to 2 children or at most 2 children. But I will call such a 
tree as a complete binary tree. We call a tree as a complete binary tree if at the thi level 
there are 2i nodes. In some sense it is full and when every node has 2 children it does not 
give you a complete binary tree. 
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I will show you why it cannot be a complete binary tree. Let us look at the slide below 
and check whether every internal node have 2 children in this tree. Every node has a 2 
children then that tree should also have leaves. It cannot be the case in which every node 
has 2 children, in some case there are no children. Just with the requirement that every 
node has 2 children, every node other than the leaf that means every internal node has 2 
children does not implies it as a complete binary tree. This is a counter example to that in 
which every internal node has 2 children. This is not a complete binary tree.  
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The following is an example of a complete binary tree. We want to say that at level i 
there are 2i node. The root node is at level 0 that is 1 node, at level 1 there are 2 nodes, at 
level 2 there are 4 and at level 3 there are 8.  
 
If h is the height of the tree, in the following example what is the height of the tree? We 
call height as the maximum level number so we should not count this as 4. Thus the 
height of the tree is 3. If h is the height of the tree that means all the leaves are at level h 
then by the definition of the binary tree we have said that the level i has 2i nodes that 
means there are 2h leaves. The number of leaves in a complete binary tree of height h is 
just 2h .  
  
What is the number of internal nodes?  At level 0 we have 1 node, at level 1 we have 2 
nodes and so on. Thus the sum is given as 1+2+ 2 12 ... 2 2 1h h    , because at level h 
all the nodes are leaf nodes. Thus the sum is 2 1h  , this is the number of internal nodes 
and the number of leaves is 2h . The number of internal nodes is the number of leaves-1. 
This is for a complete binary tree.  
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What is the total number of nodes in this tree? It is 2h which is the number of leaves + 
2 1h   which is the number of internal nodes, hence it becomes 12 1h  . Let us call this 
number as n. If I have a complete binary tree of n nodes, what is the height of this tree?  
Let us go one step at a time.  What is the number of leaves in this tree? If the number of 

nodes is n and the number of leaves was 2h which equals
1

2

n 
, just from this ( 12 1h  =n) 

expression. The number of leaves in a complete binary tree on n nodes is
1

2

n 
. If I have a 

complete binary tree on n nodes, half of the nodes are leaves and the remaining half are 



of internal nodes. Similarly I can say that if I have a tree on n nodes, then the height of 

the tree is 2log (no of leaves). I can evaluate h from ( 12 1h  =n), h will be log (
1

2

n 
) and 

so it is the log (no of leaves). Else we can go directly from 2h , where the number of 
leaves is 2h and so h is log (no of leaves).   
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You are just doing some simple counting here. If I give you a complete binary tree of 
height h then you should be able to say about the number of leaves and the number of 
internal nodes it has. When I give you a complete binary tree on n nodes, you should be 
able to say the height and so on. If you have a tree on n nodes then the height of the tree 

is log (
1

2

n 
).  

 
The other thing your have to keep in mind is that in such a tree the number of leaves is 
very large. It is roughly half the total number of nodes. It is very leafy kind of a tree. So 
far we have seen a complete binary tree but a binary tree is any tree in which every node 
has atmost 2 children. To get any binary tree, you can start with a suitably large complete 
binary tree and just cut it off.  
 
 
 
 
 
 
 
 



For instance if I were to cut off some pieces then I would get a binary tree as shown in 
the slide below. I can always do it, no matter about the tree I need. Take the binary tree 
on the right side as height 3 then I would start with the complete binary tree of height 3 
which is on the left. Just cut off some pieces on the left side of the tree to get the tree 
which is on the right side. The picture given in the slide below is the proof.   
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Let us use this fact that you can obtain any binary tree by just pruning of a complete 
binary tree. Take a complete binary tree, cut off some branches then you will get a binary 
tree. If I have a binary tree of height h then in a complete binary tree at level i there were 
atmost 2i nodes. In a binary tree at level i there will be atmost 2i nodes, there cannot be 
more than 2i nodes because the binary tree is obtained from a complete binary tree by 
pruning.  
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This is an important fact, atmost 2i nodes at level i implies that the total number of nodes 
in your binary tree of height h is atmost 1+2+ 2 12 ... 2 2 1h h    nodes. The last level is 
h, at level 0 there will be 1 node, at level 1 there is atmost 2 nodes, at level 2 there are 
atmost 4 nodes and so on. This is the maximum number of nodes that binary tree can 
have.  
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Let us rewrite this. Suppose I told you that a tree has n nodes. Then n is less than or equal 
to this ( 12 1h  ) quantity, n <= 12 1h   which means that the height of the tree is just 



rearranged and it is h >= 2

( 1)
log

2

n 
. If I give you a binary tree with n nodes in it, its 

height is atleast 2

( 1)
log

2

n 
and there is a particular binary tree which achieves this 

equality and that is a complete binary tree.  
 
Think of a complete binary tree as a tree which acquires the smallest height. If I create a 
binary tree with the certain number of nodes, the one which has the shortest height will 
be a complete binary tree. Because there we are packing all the nodes as close to the root 
as possible by filling up all the levels to the maximum. That is the minimum height of the 
binary tree. I give you a binary tree on n nodes, its minimum possible height 

is 2

( 1)
log

2

n 
.   

 
What is the maximum height that a binary tree on n nodes can have? A binary tree on n 
nodes has height atmost n-1. This is obtained when every node has exactly 1 child and 
the picture is given in the slide below. This would be a zigzag in any manner and the 
height is 8 since there are 9 nodes in it.  
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In a binary tree on n nodes the minimum height is log (n) that is log (
1

2

n 
), but we say it 

as log (n) and the maximum height is n-1. That is the mistake many people make. They 
always assume that binary tree means height is log (n). But it is not the case, it could be 
anywhere between log n and n. How many leaves does the binary tree have?   
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What is the minimum and the maximum number of leaves it can have? Let us figure it 
out. We will prove that the number of leaves in a tree is <=+ no of internal nodes. This is 
the useful inequality, in any binary tree the number of leaves is <+ the number of internal 
nodes or atmost the number of leaves in a tree can be 1 more than the number of internal 
nodes. How will you prove this? We will prove it by induction on the number of internal 
nodes.  
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In a base case consider a tree with 1 node. If a tree has only 1 node how many internal 
nodes does it have? 



It is 0, because that 1 node does not have any child so that is the leaf. Base case is when 
the number of internal nodes is 0, in which case the right hand side is 1 that is the number 
of leaves is 1 so the inequality is satisfied.  
 
We will assume that the statement is true for all trees with less than or equal to k-1 
internal nodes.  This should be read as, the statement is true for trees with atmost k-1 
internal nodes not just k-1 but anything even for less this statement is true.  
  
We will prove it for a tree with k internal nodes. Suppose I have a tree with k internal 
nodes, let us say on the left subtree I have 1k internal node. Then how many internal 

nodes do I have on the right subtree? It is exactly k- 1k -1 and not atmost because all the 

internal nodes are either in the left subtree or in the right subtree or it is the root node. 
The minus one is because of the root node. This is the number of internal nodes in the 
right subtree.  
  
Let us apply the induction hypothesis. 1k is less than or equal to k-1 and the quantity (k-

1k -1) is also less than or equal to k-1. We can use the induction hypothesis. In the left 

subtree which has 1k  internal nodes, the number of leaves is less than or equal to 1k +1. In 

the right subtree the number of leaves is less than or equal to k- 1k -1+1 which is k- 1k . 

The total number of leaves is just the sum of these two (( 1k +1) + (k- 1k )), all the leaves 

are either in the left subtree or in the right subtree. The total number of leaves is just the 
sum which is k+1 that is we wanted to prove.  
  
Since we started a tree with a k internal node, you have to show that the number of leaves 
is less than 1+k. This is a simple proof which shows the number of leaves is atmost 1+ 
the number of internal nodes.  
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There was a tree in which we saw the number of leaves is equal to the number of internal 
nodes +1. It was in a complete binary tree.  What was the number of leaves in a complete 
binary tree? The number of leaves was 2h , if h was the height of the tree and the number 
of internal nodes was 1+2+ 2 12 ... 2 2 1h h    nodes. There was exactly a difference of 
1 between the number of leaves and the number of internal nodes. The complete binary 
tree once again achieves the equality. For any other tree the number of leaves will only be 
less than or equal to this sum. How small it can be?  
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Let us look at that. For a binary tree on n nodes, the number of leaves + the number of 
internal nodes is n. Because every node is either a leaf or an internal node. Also we just 
saw that the number of leaves is less than or equal to the number of internal nodes +1. I 

will just rearrange, this implies that the number of leaves is
( 1)

2

n 
 . I have just 

rearranged, as the number of internal nodes is greater than or equal to the number of 

leaves -1. I replace that and get the number of leaves as 
( 1)

2

n 
  for any binary tree. 

  
The another thing to keep in mind is for any binary tree the number of leaves will never 

be more than half the number of nodes in the tree. Again this equality (
( 1)

2

n 
 ) was 

achieved for our complete binary tree, which is the most leafy tree. All others trees are 
dry and the minimum number of leaves that tree might have is just 1. The example for 
that is the same example that I have showed you before. The tree on 9 nodes has only 
1leaf in it.  
 
 
 



Let us look at an abstract data type for trees. You would have the generic methods which 
you seen for all the abstract data types till now. The following are the generic container 
methods, size () which tell us about how many nodes are there in the tree, isEmpty () tells 
whether the tree is empty or not and the method elements () which list out all the 
elements of the tree.  
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You can have position based container methods, it is as the kind we saw for the list or 
sequence data types. The swapElements (p, q) in which I have specified 2 positions p and 
q. Think of the positions as references in to the tree except that using the position data 
type I am not able to access anything else but the elements sitting at that position.  
  
The method positions () will specify all the positions in the tree. It will give you all the 
positions in the tree as a sequence. The positions method has no parameters, when you 
invoke it on a certain tree it will just give you a sequence of all the positions in the tree, 
references to all the nodes in the tree. Once you access a particular position then using the 
element method on that positions you can access the element in that node. 
 
The swapElements (p, q) given 2 positions p and q, you are swapping the elements at 
these 2 positions. replaceElement (p, e) which means that given a position p you are 
replacing the element at that position with e. In query methods given a particular position 
isRoot (P) is this the root of the tree. Given a particular position isInternal (p) is this is an 
internal node, given a particular position isExternal (p) is this external or leaf. Sometimes 
we use external or sometimes we use leaf, does this position correspond to leaf.  
 
In accessor method when I call root it will return a position of the root, an object of type 
position. isRoot (p) is determined as given a position is it a root and root () returns the 
position of the root. Hope you understand the difference between the both. The position 
of the root means it is not a reference to that particular node but it is a reference of type 



position so that you cannot access anything except the element. This was the same as the 
type casting which we did earlier. The method parent (p), given a particular position 
returns the parent node. The children (p), given a particular position returns the children 
of this node. If it were children, there could be of many children for a certain node.  
 
How it will return the various children? It will return as a sequence, it will return a 
sequence of object type sequence which will contain the position of all the children. 
Position has an element method which will let you to access the data. The update 
methods are typically application specific and this would be the generic method for a 
tree.   
 
Binary tree should really be treated as a sub-class, as a derived class from a tree. All we 
need to do is to continue to have the same method as we described for the tree but we will 
have some additional methods. There would be a notion of a left child given a position 
give me the left child, give me the right child or give me a sibling.  
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We will come to the update methods when we see the example of it. What is the node 
structure in a binary tree?  What are the kinds of data that you would be keeping in an 
object corresponding to a node of the binary tree?  
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You would have the data, you would have a reference to the left child and a reference to 
the right child and you would have reference to the parent typically. You would also have 
a reference to key or data associated with this node, any element that is sitting in this 
node you would have reference to it and these were all sitting together. The reference to 
the node which is at the center will not be stored in the node and that does not make any 
sense.  
 
For instance if I access to this node, suppose this was the root node and I use the root 
method to get a position to this node then using that position I can now access the left 
child by invoking the left child method and in this manner I can get the position of any 
node. Once I have the position of a node I can then invoke element method and any 
method to get the data associated with that. A node in this case would definitely 
implement the position interface. In the slide given below, this is what the binary tree 
would look like if you look at the links and so on.  
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The parent link would be null for a root node because it has no parent. Then it would 
have left child in which the left child would be referring to the node on the left and the 
right child would be referring to the node which is on the right and so on. In the above 
diagram the extreme right node does not have any right child, its right child member 
would be referring to null. That was for a binary tree. How do we take care of arbitrary 
trees?  Let us say unbounded trees. The root node has 3 children and its child which is on 
the left also has 3 children.  
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Are we going to have 3 different data members to refer to 3 children? That is not clear 
about how to do it, because then if it has 4 children then how you would create space for 
another member. The way to do it is that you have a reference to 1of the child only and 
then all the children are in a linked list. Each child will have a reference to the parent, so 
all of these children would be pointing to the parent node. But the parent node would be 
pointing to only 1of them.   
 
Which would be the head of the linked list in the 2nd level? From the node which is at the 
1st level, if I want to refer to the children, I can just come here essentially return all the 
elements of this linked list. How do I know that I have reached the last element of the 
linked list when the next is empty?  
 
The 1stfield of the node is empty because it does not have children. Every node still has 
only 3 data members, parent or 3 references 1 for the parent, 1 for left most child and 1 
for the right sibling. The left node on the level 1 would refer to left most child and not to 
all the children because that we do not know how many are there. It will have 1 more to 
refer to the right sibling because for the left node at the level 2 should refer to the right 
sibling.  
 
You can do with only 3 references. The node in the level 2 has only 1 child and it is just 
pointing to that 1 child, there is no sense of left and right here. This is not a binary tree, 
left and right makes sense only in a binary tree.  
 
Actually I should not have written left child, I should have written 1st child. That is any 1 
child then it just point to that 1 child and that let you to access its siblings through a 
linked list. From the 1st child you will go to the next child and to the next child and so on. 
You can step through all the various children throughout linked list. With that we will 
end our discussion on binary trees today. In the next class we are going to look at 
reversals of trees.  
 


