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Today we are going to continue our discussion on hashing. In the last class we saw about 
the hash table, the concept of hashing and also saw how to resolve collision in hashing 
using linked list. That method of collision is also called chaining.  
  
Today we are going to look at 2 other methods for collision resolution, linear probing and 
double hashing. We are also going to spend some more time discussing how the good 
hash function should look like.  
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What is the good hash function? The function which can be computed quickly and as said 
in the previous class, it should distribute the keys uniformly over the hash table.   
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All the keys should not get mapped to the same location because then the performance of 
hashing would become as worse as that of a linked list. Good hash functions are very rare 
and there is a famous paradox called birthday paradox. There would be about 35 or more 
students sitting in the class. There is a very high probability and you can actually 
compute that probability in which 2 of you would have the same birthday. Although you 
would think that there are 365 days in the year and if each one of you were to have one of 
these days as a birthday then there is very small probability that 2 would have the same 
day. But that is not the case, even with just 35 people you would have fairly high 
probability that 2 people would have same birthdays.   
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The same kind of thing is happening here. Your days of the year corresponding to your 
slots in the hash table and even if I were to take a key and put it randomly in one of those 
slots there is very high probability that 2 keys would end up in the same slot that is 
birthday paradox.   
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Collisions may take place in any kind of hash function you use. Then there is also a 
problem of how to deal with non-integer keys. In fact we saw an example in the last class 
where the keys were telephone numbers and we had returned the telephone numbers with 
hyphen.  
 
How did we treat telephone number as an integer? We just dropped the hyphen in 
between and then we thought of it as an integer. You are going to see some more 
techniques of converting non-integers keys in to integer ones. The other example that I 
had taken in the last class was your entry number where again the key was a non-integer 
because it had C S Y or some other thing.  
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We have to convert in to integers and what we did in the last class was as I said, those 
keys are just going to take the last 2 digits as the hash function value. We are going to see 
some more techniques of converting non-integer keys into integer ones. Hash function 
can actually be thought of as being in 2 parts. There is a hash code map and there is a 
compression map and these 2 together make up a hash function.  
 
A hash function is basically a mapping of keys to indices of a hash table. Your hash code 
map, maps the key to an integer. If your key is already an integer then there is no need for 
this but when your keys are not integer keys then you will have to 1stconvert them in to 
integer keys. Key integer, this integer could be from an arbitrary range but we need to 
bring it to the size of our hash table.  
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If n is my hash table then I need to bring this integer to the range of 0 through n-1, so that 
it can be mapped to an index of my table. That part we will call as compression map. We 
will see what kinds of functions are used for hash code map and compression map. 
Another important requirement of hash function is that if 1 key gets mapped to a certain 
index then the next time when I want to map a key it should get mapped to the same 
indexed location. It is not like, the next time it should get mapped to some other indexed 
location.  
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In the last class we took an example of key which was 2004SA10110 and we mapped to 
location 10. I cannot have a hash function which sometimes maps to location 10 and 
sometimes maps to location 13. There could not be any kind of randomization happening 
there. Why is that because when I insert it, I may be mapped to location 10. When I try to 
retrieve or search for it then if it gets mapped to location 13, I would not know the 
location of the key. It should map equal keys to the same indices and of course and we 
should try to minimize the probability of collisions.  
 
Let us look at the popular hash-code maps. The hash-code map is the part which converts 
your key to an integer. One thing is that we could just take anything as the bit pattern and 
interpret it as an integer. If you have a numeric type of 32 bits or less, we can reinterpret 
the bits of the number as an integer. Your key which has more than 32 bits in it which is a 
long or a double real number which takes more than 4 bytes, then you can take it in 
chunks of 32 bits and add them up. 
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Take the first 4 bytes and add the next 4 bytes to it and so on to get eventually some 32 
bit and that could be an integer you are working with. Such a kind of tree could also be 
used to compute the hash code map of a string. Suppose I was using the key as your 
name. Given a particular name, let us say Ankur I want to convert it to an integer. One 
possibility would be take the ASCII code of A, N, K, U, R add them up and that I will 
interpret as an integer.  
 
Why is this a bad strategy? Why would the number of collisions be high? Why would the 
sum of 2 different names be the same? Only if the order is different and that happens for 
many different words. It is not the case for the names, but many words in the English 
dictionary would be obtained from the same letters. 
 



If you have 2 words such that the letters was same as g o d and d o g, then when you sum 
up the ASCII values they will be going to the same location only. We have to avoid such 
a kind of things. Even if the words were not the same but A was replaced by B and N was 
replaced by M even then we will end up with the same. These are all the reasons for why 
it is not a great strategy. Especially when you are trying to convert character strings in to 
an integer.  
 
One technique used in such settings is called as polynomial accumulation. You have a 
certain string and 0a is the ASCII code for the 1st character of the string and 1a is the 

ASCII code for the 2nd character and so on. You are going to think of it as a polynomial 
whose coefficients are 0a , 1a up to 1na  .  

                   1
0 1 1... n

na a X X a
      0 1 2 2 1( ( ... ( )...))n na X a X a X a Xa      

The above given expression is your polynomial and you are going to evaluate this 
polynomial at a certain value of x. The evaluated value is going to be the integer 
corresponding to this ( 0 1 1... na a a  ) string. That integer might be from a large range then 

we will use the compression map to map it to the table. But 1stwe are looking at the hash 
code map were in we are trying to convert a string or a non-integer data in to an integer. 
We are looking at the setting where the string we have is this ( 0 1 1... na a a  ) and we are 

trying to convert it to an integer. Evaluate the below given polynomial at some integer 
value.  
            0 1 2 2 1( ( ... ( )...))n na X a X a X a Xa      
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The value of x has been the experimental stuff, people have looked at and found that if 
you work with (x = 33, 37, 39 or 41) these values and if you take an English dictionary 
with about 50, 000 words in it and use this technique to convert your words in to integer. 
Then you will not get too many collisions. At a particular time you will have at most 6 



collisions. There is no theory behind it, this has been observed experimentally. This is an 
experimental study in favour of this kind of a hash code map.   
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Let us look at some compression map. Given an integer you have to map it to the small 
range of your table. One natural thing would be that k is your integer and your table is of 
size let us say little m. Just do k mod m and k mod m will give you some integer in the 
range 0 through m-1 where k is the key and m is the size of the table.  
  
Suppose you were to choose your m and let us say your table is of size 1024, m is 
basically 102 . When I am taking some integer mod 102 then essentially that means I am 
taking the last 10 bits of that integer. Write the integer in its binary representation and 
then when I am taking mod 2 that means I am taking the last bit of the integer. If it is 0 
then I get 0 always, if it is 1 I get 1. If I am taking mod 4, I am getting the last 2 bits. So if 
I am taking mod 102 then I am getting the last 10 bits.  
 
All the integers which have the same last 10 bits would get mapped to the same location. 
This is bad because we are forgetting the other bits of the integer. We are just taking 
some small set of bits that is the last 10 bits based on the hash function. Hence one should 
not do such a thing. 
 
In this case if you are using the simple compression map then you should not pick up the 
size of your hash table to be some power of 2. In fact it helps, if you take the size of the 
hash table to be a prime number.   
 
 
 
 
 



(Refer Slide Time: 13:24) 
 

 
 
Let us look at an example. Suppose I had 2000 strings and I am trying to put it in hash 
table. I will try to pick the size of my hash table let us say at 701 which is the prime 
number. This will ensure that on an average I would see only 3 strings per location that is 
701 x 3 is roughly 2000. In my chaining, I would have 3 as the length of the linked list.  
 
One important thing is that one should not pick up the size of the hash table close to a 
power of 2, because the same kind of effect will start happening when you have the size 
of the hash table to be exactly the power of 2. If you are going to use that kind of a 
compression map which is just key mod m, then keep in mind that m should not be a 
power of 2 or even close to a power of 2 and preferably it should be a prime number.   
 
Things do not work when you see a lot of collisions happening. Lot of it depends upon 
the data and the keys you are trying to insert in to your hash table. These are generic 
principles which if you follow will improve the performance. There have been instances 
in which we did some experiment where it is better to take a number which is not 
necessarily a prime.  
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What are the other kinds of compression maps? There is other compression map you can 
use, essentially first I read out the 2nd part of the above slide. Suppose your keys are in 
the range of 0 through maxk , recall now assuming that our keys are integers because we 

first used the hash code map to convert anything that was non-integral in to an integer. 
The keys are in the range 0 through max, so first covert them from this range (0… maxk ) 

in to a range through maxk times A. 

 
Essentially we multiply each key with A where A is some number between 0 and 1. First 
we converted to this range (0… maxk A). Now we take the fractional part of the each key 

that corresponds to k A mod 1. As a consequence we get a number between 0 and 1 
because we took the fractional part. We have to map it in to the range 0 through m-1 so I 
can just multiply that number I get between 0 and 1 by m. This number (kA mod 1) was 
between 0 and 1 and when I multiply by m I get fractional number. That is why I took the 
floor function which means round down. Thus I rounded that number down to the nearest 
integer.  
 
                         ( ) ( mod1)h k m kA   
 
I will repeat it again. You first took a key and multiplied by A where A is some number 
between 0 and 1. Then from that you took the fractional part of that number which is 
again something between 0 and 1 and then you rounded it down. This is another popular 
compression map. You could have done something different, for instance I could just 
take this (0… maxk  A) and map it to (0…m-1) directly. Although it is not clear about how 

would you do it perhaps divide by m or some other thing. This is one of the popular ways 
of doing things.  
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In the following case the choice of m is not critical. Even if m was the power of 2 now, 
the same kind of thing that happened before would not happen because we have done a 
lot of jugglery. We have taken that number, first we multiplied it by A which was a small 
fraction then we took the smaller fraction part and then plotted it to the range 0 through 
m. Here it is not critical that m not be a power of 2, we could use m as 2 p . Some evidence 

if we use A as something like 
5 1

2


then it turns out to be good. If we use that value of 

A then it is called Fibonacci hashing. 
  
Most of this is experimental without significant theory behind it. So if you might want to 
read more about hash function there is a nice book by Ronald Knuth on sorting and 
searching which covers hash functions in detail.   
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There is another technique for a compression map called the Multiply, Add, and Divide 
which says the following, take your key multiply it by a and add b. Thus a and b are 2 
fixed numbers. Then compute modulo N where N is the size of your hash table, 
sometimes I use m and sometimes N. The first technique was just k mod N but now we 
are doing something different. We are multiplying by a and adding b.  
 
Here a should not be a multiple of N. If a were a multiple of N then a mod N will be 0, so 
ak mod N is also 0. For any key you will always get mapped to the same location b. In 
fact a and N should be co-prime if possible to avoid any kind of patterns happening. Such 
a technique is used in your random number generator also. You might have used the 
function random as a part of your programming. If you specify the range it gives your 
random number in that range. 
 
How does it come up with a random number? Many of the random number generators are 
based on the technique called linear congruential generators. They start with a certain 
seed.  
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Seed is a starting value which could be user defined, you could provide what the seed is 
or it could be a random number generator which could just take the system time at that 
point or some other information and use that as a seed. That seed becomes the initial k 
value and then you compute this quantity ( modak b N ) and the value you get becomes 

your random number.  
 
                 ( ) modh k ak b N   

 
The above function will give random number in the range 0 through n-1. Then for the 
next random number, you are going to use k which is the last value you return. We will 
use the last random number generated as a value of k and once again 
compute modak b N . You will use the value you get for the next time and so on. This 

is how you generate random number. Such numbers are actually called pseudo random 
number because they are not truly random. Once you know the seed you can actually 
figure out all the numbers that you get.     
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There is another technique called universal hashing which I am not going to go in much 
detail, I will just briefly tell you the idea. I pick up a hash function and tell you what the 
hash function is. You can always come up with set of keys such that all those keys using 
my hash function will get mapped to a very few locations.  
 
I think of you as an adversary who is trying to make life difficult for me let us say, by 
picking key which all get mapped to a very few locations in the hash table so that I have 
to spend a lot of time doing insertion, deletion and searching.  
 
One solution I can imply is that I do not even tell you the hash function which I am going 
to use. That means I am going to have a bunch of hash function let us say 15 different 
hash functions and before the process starts I am going to randomly pick 1 hash function 
out of these. Then with the keys that are given to me, I am going to use this hash function 
to put the keys in to the table. I have to use this same hash function for inserting all my 
keys, for doing the search, deletion and so on.  
 
For one run of the hash table implementation I have to use the same hash function. I 
cannot change the hash function in the midway but the next time when I invoke this 
program, I could perhaps use a different hash function because that I have picked up 
randomly from my set of hash function.  So even if you came up with the bad set of keys 
for one of my hash function, may be that is the hash function I did not pick up at all, 
when I was doing my implementation.  
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There are some results which say that you can pick up a collection of hash function and 
such a collection of hash functions is called universal, such that for any 2 keys the 

probability that they get mapped to the same location is no more than 
1

m
.  

               
1

Pr{ ( ) ( )}f k f l
m

   

 
As I said, this is just a brief idea about the universal hashing and I am not going to see in 
detail. When you do your next course on algorithms in the 3rd year you will see more of 
universal hashing. So that is as far as the hash function is concerned. When you use 
hashing you will get collision, there is no way around it and one technique we saw in the 
last class was to resolve collisions what we call chaining.  
 
If many keys go to the same location you just chain them up and put a linked list there. 
You can still do insert, search and delete by doing that operation in the linked list. You 
are going to see 2 other techniques today which fall under the general class of open 
addressing. One of these is called linear probing and the other is double hashing.  
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Open addressing differs from chaining in the following key fact. Recall in chaining none 
of these elements were actually stored in the table.   
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They were all stored outside the table, in the table all we had was a reference to the 
starting element of the linked list. The table was only storing the pointers or the 
references to the first element of the linked list. But now we are going to put all the 
elements in to the table itself. As I said hashing could map 2 elements to the same 
location in the table, we cannot put both of the elements to the same location. Still we 
want to put all the elements in the table, we will have to find some other locations for the 



element. Clearly if all elements have to reside in that table, then the number of elements 
that we are trying to put n has to be less than the size of the table which is m.  
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I am going to work where m is the size of my table and n is the number of elements that I 
am trying to put. This was not a requirement for my chaining technique. I could have the 
number of elements as larger than the size of the table, because there the elements were 
not residing in the table. They were residing in the nodes which were a part of the linked 
list. Each entry of the table is now either going to contain an element or it is going to be 
null.   
 
It is going to be null which means that does not have any element in it. When we are 
searching or inserting or deleting, we have to probe the elements of the table in a suitable 
manner.  
 
We are going to think as if we are modifying the hash function a little bit. The U is the 
universe from which the keys are picked. Our hash function is mapping the keys, earlier 
this part {0, 1,… m-1} was not there. We were mapping the keys (U) to 0 through m-1 
and that would tell us where this key sets, for instance in the case of chaining. We are 
going to have a second parameter and when I am trying to insert the key that will be my 
first probe.   
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I will compute the value of the hash function for that key (k, 0) let us say for 0th probe 
and I obtained h (k, 0) as the value of my hash function. I look at the 0th location in the 
table, if that location is occupied then I have to look again. When I look up the next time 
I will have a value of 1 as the 2nd parameter.  
 
The 1st parameter is still the key k. I am going to compute the value of the hash function 
for (k, 1) which gives some other location in the hash table and so on. I am going to 
different location in the hash table till I find an empty location, if the operation was one 
of insertion.   
 
Depending upon the hash function we will have many different techniques. The hash 
function h is really determining sequence of slots which are examined for a certain key. 
The U was the range of the keys, U is the set which specifies the collections of keys that 
we have.  
 
The number of elements we are trying to insert in to the hash table should be less than the 
size of the hash table. If I try to insert all the 100 students of this class to a hash table that 
I create then clearly the size of the hash table has to be more than 100. Because each of 
this student has to go to 1 location of the hash table.   
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The first technique under open addressing is called linear probing. I have the key k which 
I am trying to insert. I have a hash function h, I compute h (k). This probe =h (k) is the 
first place of the hash table that I am going to look at. If table [probe] is occupied then I 
just go to the next location. So probe is incremented by one and then once again I check 
if it is occupied.  
 
If it is occupied then I increment again till I find an empty location and at that point I will 
put the element k. This is the guiding principles that if the current location is used, just go 
to the next location. The mod m is used to do rap around, if you reach the end of the table 
then you start at the beginning.  
 
Your question is what happens when we retrieve the keys. We will come to that in a short 
while. When you are trying to insert, you compute the value of hash function and you go 
to a specific location as specified by the hash function for that key. If that location is 
occupied that is there is an element already sitting there, you go to the next location and if 
that is also occupied go to next location till you find the empty location.  
 
One advantage it has over chaining is that it uses less memory. In chaining you have to 
keep track of references. Each of your nodes should have place for the element that it is 
storing. But it should also have the reference to the next node so that space is wasted. But 
this technique might end up slightly slower than chaining.   
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Let me show you an example. My hash function is k mod 13, a very simple hash 
function. My keys k are integers and I am trying to insert these keys in to the table. 13 is 
the size of my table and the location is from 0 to 12. The 18 mod 13 is 5, so 18 goes to 
location 5 because at that point the table was empty, so it can come there. 41 mod 13 is 2 
so 41 goes to location 2, 22 mod 13 is 9 so 22 goes to location 9. 
 
Till this there is no problem in inserting, as the table is empty. 44 mod 13 is 5, we want to 
put 44 in the 5th location. But this location is already occupied by 18, so 44 will have to 
search for the next location. As the 6th location is empty we put 44 there. 59 mod 13 is 7, 
we place 7 there as that location is empty. 32 mod 13 is 6, as 44 is sitting in 6 we go to 
the next location then 59 is sitting at that location, again we go to the next location and as 
that location is empty we put 32 there. 31 mod 13 is 5, so we should put it in 5th location 
but this location is occupied with 18 and the continuous locations are occupied by 44, 59, 
32, and 22.  
 
So we go to the next location which is empty and we put 31 in that location. 73 mod 13 is 
8, as 8th location is already occupied we check for the next locations and we put 73 in the 
11th location. All the elements are sitting in their respective position that is 41 at location 
2, 18 at location 5, 44 at location 6 and so on. This also shows you one problem with this 
technique. The elements tend to aggregate, form clusters so you might have to go through 
many locations while searching for an element.  
 
How would one search? The hash table is given in the slide below which is after inserting 
those elements. Suppose we are searching for key k, we are going to compute k mod 13 
because that was our hash function. Then this (k mod 13) is the first location we go to 
and after that if we do not find the element we do not say that the element was not in the 
table, rather we go to the next location.  
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If at the next location there is some element present then we go to the location following 
it and so on till we either find the element or we reach a an empty location. If we reach an 
empty location that means the element is not their in the table because if the element had 
been their in the table it would have been inserted at one of the locations that I have 
checked.   
 
Let us see. Suppose I am searching for 31 so we go to 31 mod 13 which is 5. I come to 
the 5th location in which 31 is not there, so I go to the next location and search the 
element till I find it. I found the element in the 10th location. When I did not find it, I can 
not say that the element is not their in the table. It could be their, infact it is their. 
 
Suppose I am searching for 33 mod 13 which is 7, I would start searching it from the 7th 
location. Till 11th location the element is not present and the 12th location is empty. This 
means 33 could not be their at all in this table. Because if 33 had been there in the table, 
then by this time it would have been definitely inserted in to the table till the 12th position 
because this is an empty location.    
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That is an unsuccessful search, in an unsuccessful search the search terminates when you 
reach an empty location but a successful search will terminate when it finds the element.  
How do you delete? The following slide is my picture which is from the previous slide 
and I want to delete 32.   
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First I have to search for 32, 32 mod 26 is 6. I come to the 6th location, it is not there. 
Then I go to the next location, also it is not there. Then I find the element 32 in the 8th 
location. Suppose I removed it by setting this location to null. I removed 32 from that 
location.  



Is this a good idea? No. Why this is not a good idea? Suppose now you search for 31. The 
31 mod 13 is 5, so we come to the 5th location. But we did not find it there. Then we go to 
the next location for that element and we did not find it and at last we reached the empty 
location. Hence we will say that 31 is not their but still 31 is their. Why is a problem 
coming in?  
 
Because when 31 was inserted that was the full location. That is why 31 was inserted 
later, but if you delete the element in the 8th location then you have a problem. Some how 
we have to do something different because we cannot just set this location to null or we 
cannot mark this location empty also. Look up will declare that 31 is not present, which is 
wrong. How do we delete? Instead of setting this 8th location to null we will place a 
tombstone, actually an x.  
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Tombstone is just a marker so you could set up a bit at that location which specifies that 
this location was occupied by some one. It is not always the case that this will be an 
empty location, at some point this was occupied by some one. How it will help us? When 
we are doing a look up and we encounter a tombstone, we do not declare that the search 
is ended and the element is not present but we continue. As before if I was searching for 
31, 31 mod 13 is 5 so I would come to location 5 and go to the next location and at the 8th 
location I would see an x and not null which is a tombstone.  
 
So I continue till I find either a null location or 31. I found 31 and declare 31 is their. 
When a look up encounters a tombstone it ignores and continues. When an insert 
encounters a tombstone what does it do? It will put the element at that position. We have 
to reclaim this space. What happens if there are too many tombstones? You do not have 
elements in the table, those are actually empty locations but in your search you still have 
to go beyond them. The performance of your search degrades.   



If you have a lot of tombstones you should just rehash. Just remove all the elements and 
put them back again. The same kind of a technique you have to do when you grow the 
table. Now you are not growing the table, you have too many markers in the table so just 
do a rehash and that will create empty slots without the tombstones and your performance 
will increase again.  
 
I will come to the other open addressing techniques. We looked at linear probing, we 
compute the hash function we look at that location and next location and so on. In double 
hashing we have 2 hash functions h1 and h2.  
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The value of h1 gives me the first position were I am going to look for the key k. Then h2 
(k) will tell me the offset from the first position were I am going to look again for the key 
k.   
 
Let us look at the piece of code given in the above slide. Probe is set to h1 (k), so that is 
the first position I look at and offset is set to h2 (k). First I will look at the locations 
specified by probe and the table, if it is occupied then the next location I will look at is 
probe+ offset. Probe is set to probe + offset which means this is a next location I look at. 
If this is also occupied then the next location I will look is probe + offset + offset which 
mean offset is determining key with how much distance I am going to advance.  
 
Every time I do not see the element that I am searching for. For linear probing your offset 
is always 1. You were always going to the next location so that corresponds to an offset 
of 1. Instead of going to next location I jumped one location ahead that is I jumped 2 
locations, then offset would have been 2 and so on. Offset in this case which is in the 
orange color in the slide below is determined by the hash function h2 (k). This offset 
could be different for different keys.  
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We will look at an example of how double hashing works. If m is the prime then this 
technique will ensure that we look at all the locations of the table. In linear probing 
because the offset was one we would look at all the locations in the table. If there was an 
empty location you would always be able to insert the element.  
 
We would not like the following to happen. There are empty locations in the table but 
you start from a certain location, since the offset is 3 you go 3 units ahead and you keep 
finding everything is full and then you come back to the starting location. Because you 
will not be able to insert the element at all. May be all of these elements that you looked 
at were full but the other locations in the table where empty.  
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Some how you do not cycle back. When you will cycle back? When your offset divides 
the size of the table. If the size of your table was a prime number then your offset would 
never divide it and this kind of a thing would never happen. In fact you would look at all 
the elements of the table. This is the small fact you can go back and prove that if m is 
prime then I have given you the rough arguments for this case, but you can also prove it 
more formally.  
 
This has some of the same advantages and disadvantages as linear probing. One of it is it 
distributes keys more uniformly because you do not form clusters any more. These 
clusters were getting formed because you were just going one step at a time. If for some 
key you are going 7 steps ahead and for some other key you are going 13 steps ahead and 
for some other key you are going 2 steps ahead, then these clusters are not getting formed 
any more. That makes the performance better. 
 
We will look at an example. I have 2 hash functions h1 and h2. The h1 is the same as 
before, k mod 13. The element is also as same as before, we have a table of size 13. The 
h2 (k) is my 2nd hash function and is 8- (k mod 8). It will always be a number between 1 
and 8. It cannot be zero, because k mod 8 lies between 0 and 7, so it is between 1 and 8.  
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The zero does not make any sense, if it is zero then we are in trouble. If h2 (k) is zero for 
some k then that means you are continuously looking at the same place and if that place 
were occupied then you cannot insert the element at all. Let us insert the first element 18, 
18 mod 13 is 5 so it will go to location 5. The 41 mod 13 is 2 so it goes to location 2. The 
22 mod 13 is 9 so it goes to location 9. The 44 mod 13 is 5 so it tries to go to location 5 
but the location 5 is already occupied. We have to compute h2 (44). 
 
What is h2 (44)? 8 – (44 mod 8), 44 mod 8 is 4. So 8-4 is 4, I have to go 4 steps ahead. I 
will go to location 9 but that is also occupied, so I will go to location 0. That is empty so 
44 will go to location 0. The 59 mod 13 is 7 so 59 will go to location 7. The 32 mod 13 is 
6 so 32 will go to location 6. The 31 mod 13 is 5 so we go to location 5 but that is 
occupied. I compute h2 (31), 31 mod 8 is 7 and 8-7 is 1. So 31 will check for the location 
6 but 6 is also occupied. We have to go to 7, it is also occupied so go to 8 and this is not 
occupied, thus 31 go to location 8. 
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The 73 mod 13 is 8, so it will try to go to 8 that is occupied. We compute h2 (73), 73 mod 
8 is 1, h2 (73) is 7 so we will go to 8+7 =15. The 15 is 2 mod 13, we go to location 2 that 
is occupied so 2+7 is 9 where that is also occupied. The 9+7 is 16, 16 mod 13 is 3 so it 
goes to this location which is unoccupied. This is how the elements would be distributed 
in the table.   
  
We will do some analysis of double hashing. Recall that I am going to assume that the 
load factor is less than one. What is the load factor? The number of elements divided by 

the size of the hash table 
n

m
that is less than one. I need it to be less than one otherwise 

more than 1 does not make any sense. We are talking of a scheme where all the elements 
have to sit inside the hash table. We are also going to assume, this is similar to the 
assumptions that we made in the last class that every time I probe, I actually look at a 
random element in the hash table which is uniformly random. 
 
The first time I probe I will take a random location in the hash table and try to put the 
element their. If it is occupied then once again I will pick a random location in the hash 
table and try to put it their. If that is also occupied once again I pick a random location in 
the hash table and try to put the element their.   
 
Let us see how this performs, because we will only be able to analyze such a scheme. 
Because the other schemes are too dependent upon the hash function that we are using 
and we might not be able to analyze them. If   is the load factor then that means 1-  
fraction of the table is empty. If  is half that means the number of elements divided by 
the size of the table is half. Which means only half the table is occupied and half the table 
is empty, 1- fraction of the table is empty.  
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Suppose my search was an unsuccessful search.What does an unsuccessful search mean? 
That means the element is not in the table. When does an unsuccessful search stop? When 
I get an empty location. How many probes will be required before I get to an empty 
location? 
 

The 1-  fraction of the table is empty let say 
1

10th
of table is empty and 90% of the table 

is full. That is 10% is empty. The expected number of probes required before I hit 
1

10th
fraction of the table which is empty would be roughly 10. Because the first time with 

9

10th
probability, I will get to an occupied location and so on. So roughly after 10 trails I 

will hit an empty location because only 
1

10th
of the table is empty.   
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If 1-   fraction of table is empty then roughly in an excepted sense 
1

1 
probes are 

required before I hit an empty location and declare it to be an unsuccessful search. This is 
the excepted numbers of probes required for an unsuccessful search.  
  
Let us look at a successful search. I am going to talk about the average number of probes 
required for a successful search, not for one particular search but if I were to look at all 
the successful searches.   
 
What are successful searches? Successful search are searches corresponding to the 
elements in the table. I have some number of elements in the table, let us say I search for 
the first element. Then how many probes are required? Suppose I search for the second 
element. How many probes are required and so on. Then I will take their average.  
 
Let us try and compute this quantity. If you recall from the last class the average number 
of probes required for a successful search is the average number of probes required to 
insert those elements. Because when we are inserting those elements we are essentially 
doing the same thing. It is the same as the average number of probes required to insert all 
these elements and this is the quantity I am going to compute.  
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What is the average number of probes required to insert all the elements that I have in the 
table? When I am inserting an element I need to find an empty location again. Suppose I 
begin with an empty table and I am looking at the number of probes required to insert the 

first 
2

m
elements. Size of the table is m, let us assume m is 100. I am talking of inserting 

the first 50 elements. Suppose I have already inserted 48, 49 elements and when I am 
trying to insert 50th element.   
 
What is the excepted number of probes that are required? The half of the table is empty, 
when I try once I may hit a full location. May be when I try again, in expectation I just 
need 2 probes to be able to insert this 50th element. For the other first 49 elements I 
might on an average even required less, but all I can say for sure that the average number 
of probes required for inserting these elements is  2.  
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How many elements am I inserting? The 
2

m
 elements, on an average the total number of 

probes required is   m for these 
2

m
elements. When I show you the rest, you will 

understand why I am doing this way. Suppose I have already inserted 
2

m
elements in to 

my table and I am trying to insert the next 
4

m
elements in to my table. When I am trying 

to insert the next 
4

m
elements, just assume that I have already inserted 

4

m
 -1 and I am 

trying to insert this last element.   
 

How much of the table is already full when I try to insert this last element? The
3

4th
of 

table is already full. Only a 
1

4th
of the table is empty. So on an average I am going to 

require about 4 probes before I get to one of the empty location. I am searching for an 
empty location to put this element in. I need roughly 4 probes, infact I am just praising 

this as an upper bound and I need at most 4 probes to insert all of these 
4

m
elements. The 

total number of probes required to insert these 
4

m
elements is 

4

m
times 4 which is no more 

than m.  
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Similarly for these next 
8

n
elements, when I am trying to insert the last of these 

8

n
elements only 

1

8th
 of the table is empty. On an average I require about 8 probes before 

I can get to one of those empty locations.  For these 
8

n
elements or for any one of them I 

would not have required more than 8 probes. I would have required between 4 and 8 

probes for these 
8

n
elements.   

 

Because when I was inserting the first of these 
8

n
elements only 3 quarters of the table 

was full. One quarter of it was empty, but I am just upper bounding it. I am just saying 
that no more than 8.   
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What is the total number of probes required?  For 
2

m
recall from previous slide I said m, 

for 
4

m
 this also I said m. What is the total required for these ...

2 4 8 2i

m m m m
     

elements? It is m times i (m x i). How many locations are empty in the table? What is the 
total number of elements in the table now?  
 

After I inserted 
2

m
 elements what fraction of the table was empty? It is half. After I 

inserted 
2

m
+ 

4

m
how much of the table was empty? It is

1

4
, so it is really this last number. 

After I inserted 
8

m
how much was empty? It is

1

8
. So after I inserted all of this that is 

2i

m
how much is empty? 

 

It is
1

2i
which is 2 i fraction that was empty. After I have inserted all of these fractions I 

have only 
1

2i
fraction of the table empty and the total number of probes required to insert 

these elements is m times I. We have a load factor of , we already inserted enough 
elements so that the load factor is . When the load factor is , 1- fraction of the table 
is empty. If I have 1-  fraction of table empty, then how many probes are required? If I 
have 2 i fraction of the table empty then I require m x i probe. What is i?  



The i is basically minus log of this ( 2 i ) quantity. If I need to have 1-    fraction empty, 
so I just need – m log (1-  ). These are the numbers of probes required. 
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If I have 2 i fraction empty, 2 i is the number smaller than one. So to get to this point I 
require m x i probes. So to get to a point where 1- fraction was empty, I need – m log 
(1-  ) this many probes. The above what we saw was the total number of probes 

required and the average was just divided by n that is -
1

( ) log(1 )


 . 

 
 
We will be able to capture it to a table. For an unsuccessful and successful probes, when 

we had chaining it was 1+ . For probing, for an unsuccessful search it was (
1

1 
) and 

for a successful search what I just showed you is (
1 1

ln
1 

).  
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The last slide which shows how this performances of  changes.   
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