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Today we are going to be talking about applications of depth first search. In the last class 
we looked at the depth first search procedure. We will also be discussing the running time 
of depth first search today and then looking at an application of depth first search to 
check if a given graph is two edge connected. Recall what we did in the last class. We 
wrote a small piece of code depth first search v. Can someone tell me what this was? The 
first thing we do is we said visited v equals one lets say and then I will not worry about 
the counters for now because that1’s for all w adjacent to v. He was saying children of v, 
there is no notion of children of a node in a graph. For all w adjacent to v, if not of visited 
w then DFS w, that’s it. That’s what we said our DFS procedure is. It first marks the node 
as visited then it will start the DFS on each of the adjacent nodes provided they have not 
already been visited. That’s what DFS v corresponds to. How much time does this 
procedure take? It is a recursive procedure, so you have to do something careful. Some 
careful analysis of the running time. How much time does it take? Why? Pardon [student: 
every] compared, what do you mean by compare? [Student: like we have to check the end 
is visited or not].  
 
For every edge we will have to look at the edge twice. The answer is right, you are 
basically doing a total time of order m. Actually I can just say order m because I am 
assuming that the graph is connected. In a connected graph m is at least as large as n 
minus 1 so you can always say order m. So let’s just say order m and we have assumed 
graph is connected. Now let’s try and see what’s happening here. For this I am going to 
use my adjacency list representation because that will also give you a better picture of 
what this is. Recall that in the adjacency list representation of the graph, there will be one 
entry corresponding to node v. This would be the adjacency list of v, the nodes which are 
adjacent to v. If a node x is adjacent to v then v is also adjacent to x because it is an 
undirected graph.  
 
So x [Hindi] (Refer Slide Time: 04:57). When I do this step for all w adjacent to v, what 
does this say? How will I actually translate it into code? This is pseudo code, you don’t 
really have a statement like for all w adjacent to v. What will you do? You will basically 
have to traverse this list, for that you will have one pointer which points to the first node 
and then when you have looked at this node then you will update the pointer to point to 
the next and so and on till the pointer becomes null or reference becomes null. Then you 
would have reached the end of the list. That’s how you will be actually implementing it.  
Basically every time I go through this loop I advance that reference, I advance that 
pointer by one. Now if this was the very first node u and it was not visited then what 
would I do? I would start a DFS on u. As a consequence I will do some other 
computation and when that computation finishes, I come back to this DFS procedure. The 
DFS that I was doing on v and I retrieve that pointer. 
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Essentially I would have that the pointer is still pointing here. That because that was a 
local variable so to say. You follow what I am saying? I would not start so, suppose let 
me say I advance through this pointer. This was the longer list and I reached this pointer 
reached at this point. Let’s say this node is A and A was not visited, so I went and did 
DFS of A. When I came back from DFS of A then what is the next node I will see in this 
for loop. I will go beyond this A, I would not continue. I will not start all the way from 
beginning and how I am retrieving the fact that I was here last, this pointer was pointing 
to this information. This is coming from the recursion. The fact that in a recursion when I 
make a recursive call I store the local variables. [Hindi]   
 
If I were not to write for all w adjacent to v, I would have written something like the 
following. I would have let’s call this array A. I would have p equals A of V. What is P? 
P is this pointer of v, so p initially is pointing to here and I would be replacing this by, 
while p not equal to null, good. Something like this, this might not be completely correct 
but it will be something like this. While P not equal to null what would I do? I will do 
something like this and I will do P equals p dot next. You understand what this is. 
Basically each one of them has a next and this w will p dot data or p dot node or some 
such thing. What is w? Because we don’t have notion of w, so it will be p dot data let’s 
say. Basically I am saying each one of these nodes has two members, one is data and one 
is next and P is referring to this. 
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Why am I going into all of this? If I have to replace this line, I would have to do 
something like this. This is how you will actually code it up and this while loop, this 
braces ends here. The while loop will now have these two statements in it. Why am I 
doing this? Now note that visited is not local variable, visited is some global array. The 
only local variable that I have here now is my P. When I make this recursive call, this P is 
stored on the stack. So that when I return from this recursive call, when I finished DFS of 
A I was so let’s now say P was pointing to here, I am doing DFS of A. When I return 
from here, I will retrieve this P back and I will increment p or advance p like this, P 
would now point to the next one. I would come back to this P, I would not come back to 
this P right at the beginning or some such thing. Why am I saying this? This is crucial for 
the running time of the procedure. You can understand why, because if every time I was 
going to start from the beginning then I can’t say order m. I am now using a same fact, I 
will be traversing this list only once for each node. [Hindi]  
 
Once I start traversing the adjacency list of a node, I don’t repeat any entry in it. I kind of 
just keep moving forward in that adjacency list. What does that mean? For each node I 
am effectively spending time proportional to the degree of that node. Some of that 
degrees of that node is the number of edges, two times the number of edges in the graph 
and so the total time required is order m. Yes, she said each edge is visited twice. That’s 
also true, v x, x v. The edge v x is being looked at here when I look at this node because x 
is now treated as a adjacent node of v and the same edge v x is looked at here, when I 
look at this node x. Because v is being treated as an adjacent node of v. Actually every 
edge is looked twice, exactly twice. This gives you the running time. Is this clear? We are 
heavily using the fact that this is a recursive program and when this recursive call 
finishes, we retrieve this particular local variable. This local variable gets back the same 
value it had before this recursive call was made. Now if I told you that implement DFS 
without using recursion, you will have to use a stack.  



You will essentially simulate the recursion by using the stack but now it should be clear 
what variables will you store on the stack. What information would you store on your 
stack? [Student: current pointer] basically P, the value of P. In the case of recursion two 
things are stored actually, not just P someone else has to tell me what else is stored. 
[Student: v also] v local variable [Hindi] they are stored and the parameters to that 
procedure are also stored. The parameters to this procedure is v, that will also have to be 
stored in the stack. Of course the stack also stores return address and stuff like that. But 
those things you don’t need here because you know exactly where it is returning to. This 
will be your sixth assignment. You will have to implement it. I will give out the details 
later but you will have to implement DFS without using recursion so that you understand 
this way. 
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We looked at DFS, we have classified, the edges has tree edges and back edges and we 
have looked at what the running time of DFS is. One other thing that perhaps we should 
do before we proceed further is look at this distinction between tree edges and back edges 
once more. So tree edges and back edges. Suppose I have an edge u v which is a tree 
edge and if u v were a back edge let’s see what can we say about the relation between the 
arrivals time and the departure times for the nodes u and v. Let’s see, let me ask you these 
questions. Suppose I tell you that the arrival time of u was less than the arrival time of v. 
That is I reached node u before I reached node v [student: back edge] pardon [student: u v 
form a back edge] u v form a back edge.  
 
Suppose I told you, I gave you this information. I reached u before I reached v. Now what 
is the relation between the departure times of u and v? [Student: departure of v is less 
than is less than the departure of] departure of v is greater than or less than [student: less 
than less than] departure of u is less than or departure of v is less than [student: departure 
of um v is less than] [Hindi] you reached u first, u v is a back edge.  



You reached u first and then you reached v. What does that mean? v is a descendant of u 
in the tree. u v is a back edge, so there has to be an ancestor descendant relationship 
between the nodes of u v. One has to be an ancestor of the other. Which is an ancestor of 
which? Clearly you will reach an ancestor before you reach the descendant because you 
are coming down from the top of the tree. So u is a ancestor of v. In fact I have shown 
that in the picture essentially. So u is an ancestor of v. If u is an ancestor of v in this tree 
then first I would have finished v and only then I would have backtracked all the way and 
come back to u and finished u. [student: same] No, this is for the back edge. This is not a 
tree path, sorry.  
 
There is some tree path between u and v also of course and lets say this is the edge u v. 
There are other nodes on this tree path, so you would have finished a descendant before 
you move up because that’s how you backtrack. You finished a node and only then you 
move back up and then you finish that and you move back and back and so on. The 
departure time of u is more than the departure time of v. You would have left v, we 
would have finished v before we finished u. What if u v is a tree edge? Would that make 
the difference? Suppose once again that arrival of u is before arrival of v. If arrival of u is 
before arrival of v then u is a parent of v. So u v have a parent child relationship not just 
an ancestor dissonant but an parent child. u is a parent of v [student: why] because it is a 
tree edge. u v is a tree edge. So when I depart from v after that only will I depart from u. 
So departure time of v is less than the departure time of u. Note I cannot say that the 
departure time of u is one more than the departure time of v [student: because] because it 
might have more children. Similarly I cannot say that the arrival time of v is one more 
than the arrival time of u because there could be other children also.  
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The relationship is the same but these are the same relationship but they coming from 
different reasons, roughly the same reason agreed, granted.   



Now let’s look at an application of depth first search to determine if a graph is two edge 
connected. Let me write down connected. So that’s the term that I am going to be using. 
Graph G is two edge connected if and only if G minus e is connected for all e. [Hindi] I 
am saying take any edge, capital E is the set of edges. When I write graph as v, E; v is the 
set of vertices and capital E is the set of edges, little e is an edge, G minus e means 
remove the edge from the graph. If it is still connected and this is true for every edge for 
the graph then we say that the graph is two edge connected. In words a graph is two edge 
connected if it remains connected even after the removal of any edge. Yes, only one edge.  
 
A graph is two edge connected if and only if it remains connected after the removal of 
any one-edge. Let’s see. Is this graph two edge connected? if I remove this edge then it 
becomes disconnected. Such an edge whose removal disconnects the graph is also called 
a bridge. This edge we would call it a bridge. This graph is not two edge connected. Is 
this graph two edge connected? [Student: yes] yes, so graph which is two edge connected 
will not have any bridge edge. A graph which is not two edge connected will have a 
bridge edge.   
 
Why do you think this notion of two edge connectivity would be useful? If this were a 
computer network and some link fails then you are interested in whether the network is 
still connected or not. If your network was two edge connected to begin with then no 
matter which link fails. Your network can still keep functioning because it will still 
remain connected. But if the network were not two edge connected to begin with then the 
failure of a link can call the network to break down into disconnected components. So 
that messages cannot go from one connected component to the other anymore.  
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This is basically measuring liability of the network. Now the question is a following. I 
give you a graph and I ask you is it two edge connected.  



How will you check if it is two edge connected? Anyone? [Student: if we can suppose we 
have from one end point to the other point of an edge sir each vertex] For each vertex if 
we can find a cycle. How you will check whether a given graph is two edge connected? 
We have to do it fast. Pardon [Student: we will look at the departure time] If you look at 
departure times. [Student: sir between any two node there should be a tree edge also and 
back edge also] Between any two nodes, there should be a tree edge and a back edge? 
[Hindi] [Student: so on removal of either of one its still remain connected] [Hindi] Each 
node should be visited twice? [Student: between any two node] Let’s don’t worry too 
much about DFS because that is not straight forward but you will see how to do it.  
 
Let’s see can you check this property of two edge connectivity by some other 
mechanism? [Student: sir by BFS] BFS yes, what will you do with BFS? You have to 
check if the graph remains connected even after removal of an edge. So take an edge, 
remove it check if it is connected then take another edge remove it, check if it is 
connected. Take another edge remove it, check if it is connected. [Hindi] So that’s more 
expensive. We can do it in order m square by removing every edge and checking if 
resulting graph is connected. Yes, but that’s expensive for us. So we want to do 
something in order m time, linear time. [Student: say that v vertex has a back edge] If 
every vertex has a back edge only then is the graph two edge connected. [Hindi] Is a 
cycle two edge connected graph? It is two edge connected. [Hindi] What will be the tree 
edges? [Hindi] This will be my DFS tree, the one in red and the only back edge will be 
this last edge. 
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My DFS tree, if I were to draw it differently would look like this. It would be a path, my 
DFS tree with one back edge only. [Hindi] [Student: when you are back tracking from 
that vertex if you get a back edge that means there is a cycle connected that particular 
path of traversal so you can then compute something] Good, we are getting somewhere.  



So let’s develop this, one step at a time. I did a depth first search, so clearly we have to 
do a depth first search. Suppose this is the depth first search tree I obtain. I have just 
drawn the tree edges, there are other back edges. I have not drawn them yet. Now when I 
am backtracking out of this node, backtracking means I am going back up because I have 
explored this entire thing. What do I require? I have explored this entire thing, I have not 
yet gone here. So I have come from here, I came like this, I came like this, I explored this 
entire thing.  
 
Now I am back tacking. I want to ensure that this edge along which I am backtracking is 
not a bridge. I want to ensure that it is not a bridge. [Hindi] What will ensure that this 
edge, I am only interested in this one edge not being a bridge? What we ensure that this 
one edge is not bridge? [Student: it is connected, it is also back edge] There is a back 
edge from where? [Student: from this vertex] From this vertex? [Student: yes yes] From 
this vertex [Hindi] any of these vertices say [Hindi] (Refer Slide Time: 29:25). If you 
remove this edge, let’s look at the blue tree, the DFS tree. In a tree when I remove one 
edge, I will get two pieces not more. This will be one piece and the other remaining 
piece. I cannot create more than two pieces by removing an edge. I create exactly two in 
a tree. Now these two pieces are connected among themselves by the tree edges, by the 
blue edges.  
 
I can go from any node to any other node. How will I go from a node in this piece to the 
other piece? By going from that node to the end point of this green edge, taking this green 
edge, going there and then going from here to whichever node I wanted to go to. So 
which means every pair of node is connected which means that the entire thing is 
connected, even after I have removed this red edge. This red edge is not a bridge. If such 
an edge is present then this edge is not a bridge. [Hindi] But it has to go to this node or 
beyond. [Hindi] I will get two pieces which are disconnected from each other because 
there will be no edge going from here to anyone here because we said there is no edge of 
this kind. [Hindi] This is the condition we have to check. Everyone understands? What is 
the condition we have to check? When I backtrack from a node, I have to check that there 
is some edge from here which is going to an ancestor of this node. [Hindi] How will I 
check this? Linear time [Hindi]. There should be some edge from its descendent to one of 
its ancestors, that‘s all.  
 
Let me write it down in words. When backtracking from a node v, we need to ensure that 
there is a back edge from some descendent of v to some ancestor of v. [Hindi] I have said 
descendent without saying proper descendent. So descendent includes the node itself but 
this ancestor is a proper ancestor which means parent or above. [Hindi] Now we have to 
somehow ensure this. How will we check this property and we have to do it all fast. 
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[Hindi] We are only permitted order m time. [Student: do we keep track of the back 
edges then we back track on particular node we believe from our record that particular 
back edge that node] keep track of all back edges. Do we need to keep track of all back 
edges? [Student: which] [Hindi] I am interested in a back edge but do I need to keep track 
of all the back edges starting from… which is the back edge which is of interest. [Hindi] 
If we keep track of every back edge then we are going to be spending a lot of time. 
[Student: sir we will delete the] but there is one back edge which is of interest to us. 
Which is the one back edge which is of interest to us? [Hindi] Clearly if I know [Hindi], 
you understand what I mean by [Hindi] is going to the node which is closest to the root. 
How can I figure out which is the deepest back edge? By looking at the arrival time of the 
other end point [Hindi]. So just by looking at arrival time of this end point, I can figure 
out what the [Hindi].  
 
Now question is how am I going to build this information recursively. I have to find out 
the deepest back edge from this sub tree. So I am just keeping track of the deepest back 
edge. Now I have to find out the deepest back edge from this sub tree. How will I find out 
the deepest back edge from this sub tree? Suppose recursively I have done this 
information. I have figured this information. From the sub tree I know the deepest back 
edge because after all we are doing recursively. When I run the DFS from here, I actually 
end up running DFS’s from let’s say these three. Suppose I figured out the deepest back 
edge from this sub tree, I figured out the deepest back edge from this sub tree and I 
figured out the deepest back edge from this sub tree.  
 
How can I compute the deepest back edge from this sub tree? [Student: compute that 
compare] Compare all three and take the minimum. [Student: and from u also] the one 
with the minimum arrival time. [Student: corresponding with the minimum arrival time]. 
So this will give me an edge whose other end point has a smallest possible arrival time. 
This will give me an edge whose other point has a smallest possible arrival time, this will 



give me an edge whose other end point has the smallest arrival time. Now if I take the 
minimum of these three, it will give me the edge which has the smallest possible arrival 
time which emanates from this sub tree. Is this true? [Hindi]. Now let’s write our DFS 
procedure. So this is our, lets give it some other name to distinguish it from DFS. Let’s 
call it two EC, two edge connectivity. So we are writing a two edge connectivity 
procedure. Once again it will take as input a particular node. We are going to write it as 
the DFS thing and I will tell you how we have to call the DFS, this two edge connectivity 
procedure eventually. 
 
Recall I need the arrival times of the nodes. So I should maintain my arrival counter 
suitably. So what should I do from my arrival counter? [Student: time is equal to zero] 
[Hindi] For all w adjacent to v, same thing. For all w adjacent to v do. What should I do? 
[Hindi] Arrival value of this node itself would be a natural thing to do. Let’s set that at 
that. Now deepest back edge [Hindi] as I do my DFS calls, I have to kind of keep 
updating this variable. What should I do for all w adjacent to v do. If not visited w then 
then what should I do? [Student: then if then arrival v or smaller than dbe] arrival v then 
dbe equal minimum of dbe, 2 EC of w [Hindi]. [Student: sir even it is even it is visited] if 
the node is visited then what does that mean, what edge is it? [Student: back edge] it is a 
back edge [Hindi]. So else what should I write on here? [Student: if you are maintaining 
that d ec w and some particular array then you can write that minimum of I will say I 
have to write the same thing again minimum]. We will just write the same thing, dbe 
equals minimum of dbe comma [student: 2 ec w arrival of] not 2 ec, we are not running a 
arrival of w. [Hindi]  
 
Now what do I have to check? [Student: if it is less than or] if dbe is less than arrival v. 
[student: never be possible] [Hindi] If dbe is less than arrival v then continue. [Student: 
There we can then we can continue] then we can continue. If dbe equals arrival v then 
[Hindi] then abort. Basically then you stop your procedure saying you found a bridge. 
You can do whatever you want, I will just write abort here. You should not write abort, 
you should end gracefully. But you understand what I am saying. Basically why have we 
said equal to and not greater than or equal to. Greater [Hindi]. [Student: sir can you 
explain else part if w is] he wants me to explain the else part. Why do we need the else 
part, you are wondering. [Student: we need the else part] you need the else part, great. 
[Student: but why arr w what is the significance of w] what arrival w? The else 
corresponds to a back edge starting from v. It is going to a node w. w is a node which is 
adjacent to v, so it is going to a node w.  
 
How am I keeping track of deepest? I am keeping track of deepest by arrival numbers of 
the nodes. So that’s why I am comparing it the arrival of that node with this. [Hindi] so I 
need that and if the deepest is less than this v then its okay, I can continue. If it is here 
only, deepest is this then this means that this edge is a bridge. [Hindi] No, we cannot say 
anything about the arrival time of this verses the arrival time of this. I have said this 
before. We cannot say that this is one less than that. Basically we have to modify this so 
that I am not considering this edge, this tree edge. This has to be modified so that the tree 
edge is not considered, this parent edge is not considered [Hindi] (Refer Slide Time: 
49:55).   



When we do the DFS from that vertex, we visit all the vertices. All the back edges, if any 
coming from below cannot go to some smaller number. Clearly they are only going up to 
this vertex because this vertex has the arrival number zero. There is now vertex with 
arrival number less than zero. [Student: dbe should not be zero] [Hindi] basically there 
are many ways of doing it. You could perhaps have marked this edge as a tree edge. You 
will have to think of ways of doing this. I will leave that as an exercise. These are two 
minor things but they are important. Your procedure would not run at all, if you were to 
ignore them. What is a running time? [Hindi] So essentially as same as before. For every 
edge we are spending a constant amount of time. The total running time is still order m. 
this is clear? So actually very sophisticated procedures can be built on top of DFS.  
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There are many other graph problems which can be solved in liner time. They might 
seem very complicated problem but you can essentially solve them in linear time using 
depth first search. I will mention one other problem because I have a couple of minutes. 
We will not of course discuss it. The other problem is, is G a planar graph? Do you know 
what a planar graph is? You are not done a discrete math’s courses. No, you are doing it 
next semester. [Hindi] that is not sufficient. What is a planar graph? A planar graph is a 
graph which can be drawn in the plane such that its edges do not intersect. [Hindi] This is 
a planar graph. I can draw it whichever way I want but the edges should not intersect.  
 
Now suppose what is this graph? This graph is the complete graph or almost the complete 
graph on five vertices. I told you what the definition of a complete graph is. Complete 
graph or a cleak (Refer Slide Time: 54.55) Is this the complete graph, compete graph on 
five vertices. No, why not? The edge 2 5 is missing, [Hindi] 2 5 is the edge which is 
missing. [Hindi] There is no way I can draw 2 5 here without crossing and that has 
nothing to do with the way I drew the initial thing [Hindi]. There is no way I can draw 2 
5. Actually this complete graph on 5 vertices is not a planar graph [Hindi].  



If I were to draw it this way, it would cross with this. If I were to draw it like this, it 
would still crosses with this edge. If I were to draw it like this, it would cross with this 
edge and so on and on. There is no over drawing this. So that’s the question, is a given 
graph a planar graph. This problem can be solved using depth first search. So that you 
can get an algorithm which runs in linear time, order m time, very sophisticated algorithm 
to check if the graph is planar or not. 
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This is an example of a non planar graph that I had shown. You learn more about this in 
your discrete math’s course. What are non-planar graphs, what can you say about non 
planar graphs? [Hindi] This is another example of depth first search but we are not going 
to be taking up this in this course. There is one third example which I will do in two 
minutes. So just as I defined two edge connectivity, I can define two vertex connectivity.  
Just replace the edge by a vertex. A graph is two vertex connected, if removing any 
vertex still keeps the graph connected. This corresponds to computer failures.  
 
Now instead of link failures earlier [Hindi] then you would call it a two vertex connected. 
So no matter which computer breaks down. If the network is still functioning, it is still 
connected. Then you would call it a two vertex connected graph. For instance this would 
be an example of a graph. Is this two vertex connected? No, why because if I remove this 
vertex, it becomes disconnected. When I remove a vertex, I also remove the edges 
incident to that vertex. Clearly it becomes disconnected but this is a two edge connected 
graph. This graph is two edge connected. Once again the same question given a graph, is 
it two vertex connected that can be checked by depth first search in linear time. Such a 
vertex is called a cut vertex, bridge [Hindi] corresponding notion is cut vertex here. 
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In today’s class we have done example of depth first search which is checking if a given 
graph is two edge connected. There are many other application that depth first search can 
be put to. I have shown you, I mentioned briefly two examples, checking if a given graph 
is a planar graph and checking if a given graph is two vertex connected. So next class we 
are going to look at depth first search in directed graphs and see how it is going to be 
different from undirected graphs.  


