Data Structures and Algorithms
Dr. Naveen Garg
Department of Computer Science and Engineering
Indian Institute of Technology, Delhi
Lecture — 25
Data Structures for Graphs

Today’s class we are going to be talking about data structures for graphs. If you recall in
the last class we discussed various things about graphs. Various terms actually, what
undirected graphs are, what directed graphs are, what is a path in a graph, what is a cycle,
what are connected components so on and on. We are going to start using the
terminology now. | am going to be discussing three different data structures for
representing graphs.

(Refer Slide Time: 01:36)

One would be the Edge list data structure, second adjacency list data structure and third
would be adjacency matrix data structure. We will see what these are and how they can
be augmented, how they can be combined to give better performances, faster running
times.

(Refer Slide Time: 02:43)

The simplest data structure is what we call an Edge list data structure. Suppose this is my
graph, it is a directed graph. This is just a graph of a various flights. These are airports the
blue vertices and the red arcs are flight numbers from a airport to some other airport and
suppose we want to represent this. One way is to have two lists, one of the vertices and
one of the edges. We call each edge is a pair of vertices. In this case it will be an ordered
pair of vertices so we could have two such lists. Let’s see what that corresponds to. That
is we called the edge list data structure. The edge list data structure simply stores the
vertices and the edges in two unsorted sequences. It’s very easy to implement and this is
what it looks like.

(Refer Slide Time: 02:59)

These are lists of vertices that you had and these were the various edges. Each edge recall
corresponds to a certain flight between two airports. This is a flight let’s say NW 35. It
goes from airport Boston to JFK and so this particular node has references pointers to
these corresponding vertices here. For each edge | will keep two pointers, two references
to the vertices between which that edge goes. This is called the edge list data structures. It
is very easy to implement so there are many operations which can be done very quickly.
For instance suppose there was one operation which was given an edge, find its two end
points. So that can be done very quickly. You are given the certain edge and you want to
find the two end points of that edge that can be done. Or there was an operation called
opposite, given an edge and a vertex, you wanted to find out what was the other end point
and so on and on. But there is one operation which is very inefficient and that is finding
the adjacent vertices of a given vertex.

Suppose | give you a certain vertex. | give you vertex DFW and | say which are the
vertices which are adjacent to this. How will 1 do thus? I will have to go through the list
of edges and | have to find out all such edges. Suppose | wanted to find out vertices
which are adjacent to DFW, | will have to look at this edge. This edge is not an end point
of this, so | go to the next one. This is not an end point of this, | go to the next one. This
is an end point of this so | will look at what the other end point is, that is LAX. So LAX
becomes adjacent to DFW and so on and on. This is what I will have to do to find out the
adjacent vertices of a given vertex.

(Refer Slide Time: 04:54)

If 1 look at the various operations, | can see what times they take. So let’s see. Size,
iISEmpty, replaceElement, swap these are all container operations. These are when | am
giving you the position, so size for instance is constant time, | can keep track of the
number of edges and vertices in the tool list. iSEmpty is again constant time, if the size is
zero than its empty. replaceElement, if I give you a particular position corresponding to
an edge and | say put some other edge at that location, that just takes constant time.

Similarly swap all of these take constant time. Number of vertices, number of edges takes
constant time. What does the method vertices do? It enumerates, it is an iterator over all
the vertices. Since | would have to run through all the vertices, that would take time
proportional to the number of vertices. Similarly these are iterator’s over the edges, so
they will take time proportional to the number of edges. Let’s look at some more
interesting thing. Suppose | say insertVertex, | want to insert a vertex. Then how much
time should that take? It should take constant or order n. It should take constant time
because these are unsorted lists.

Similarly insertEdge, insertDirectedEdge all of these can be done in constant time. Let’s
look at remove vertex. This last operation you will not able to see it very clearly perhaps
because it is getting overlapped here but it is removevertex. So suppose | wanted to
remove a vertex. How much time would it take? If | remove a vertex, | also remove the
edges which are incident to that vertex clearly. Because otherwise where would the end
points of the edges be referring to. | have to essentially get to that vertex and | also have
to traverse to the list of edges. The list of edges is, number of edges is order m. | have to
traverse through the entire list to find out whether which are the vertices which are
adjacent, which are the edges which are incident to this vertex and also remove those
edges. Which is why this operation is going to take order m time. [Student:] here when |
say removeVertex, | am assuming that you are given the particular vertex you want to
remove. Let’s say you are given the position in the list. [Hindi]. In this manner you can
look at this slide more carefully and understand the times.

(Refer Slide Time: 07:10)

This is not the only way of representing a graph. There could be other ways. We are now
going to look at what’s called the adjacency list data structure. This is your graph, here |
am taking an example of an undirected graph but all these data structures, all the three
data structures that 1 am going talking of today can be used to represent both directed and
undirected graphs.

If so in this undirected graph how do | represent it? | have an array of vertices, an array
corresponding to vertices let’s say. This location corresponds to vertex a, this corresponds
to the vertex b, this location corresponds to ¢ d and e that’s how it should be. Now what
are the vertices which are adjacent to a? They are b ¢ and d, so | will have a link list
starting from this location which will have elements b ¢ and d in it. This corresponded to
location vertex b. So which are the vertexes adjacent to b? a and e so this links contain
only a and e in it. This was corresponding to d, vertices adjacent to d are a ¢ e so that’s
why we have a c e in this. These lists are also unsorted lists. So adjacency list of a vertex,
so what we are keeping track of is the adjacency list of each vertex.

How much space does this data structure require? | will have an array of size n and what
will be the length of the link list at each location. The degree of that vertex. The total
space required in this part is sum of the degrees which we argued is two times m. The
total space required is N plus M, so it should be of the order of theta of N plus M.
[Student: so having implementing this as a link list [Hindi] we could keep them in an
array, that’s the next data structure. We will see what are the pros and cons for that.
[Student: array implementation of the linked list] pardon [student: array implementation
of the linked list] No, what he is saying is, we will come to what he is saying in the next
slide, when | show you the adjacency matrix implementation.

What’s the advantage of this? How is this better than the previous data structure?
[Student: moving a vertex] Adjacent vertices, to find out what are the adjacent vertices of
a given vertex that can be done much more quickly here. How much time does it take
now? [Student: order] order degree [Student: order degree] If 1 want to list out all the
adjacent vertices. If | give you two vertices and | ask you are these two vertices adjacent?
How much time would you take? [Student: order degree] order degree still. Degree of
one of the vertices let’s say, the smaller one. [Student: the smaller one] [Student: the
larger one] this is an array. This one is an array. This is an array of just references of
pointers, nothing else. There is nothing else stored in this array. You can store more
information if you want, any information associated with the vertex you can store at this
storage location in the array. [Student:]It’s just an array, you can. [Student:] it’s an array
typically indexed by... Suppose so you typically number your vertices 1 2 3 4 and so on
and then that would correspond to this location.

(Refer Slide Time: 10:59)

(R o

NPT D A
Sercrecrerere)

We can combine this with the edge list data structure and we will get something more
complicated like this. What is this? [Hindi] is just your edge list. Just I showed you and
now with each of these vertices, | have the adjacency list associated with each of these
vertices. | have both the in adjacency list and the out adjacency list. From each of these
elements, there are two pointers. One is pointing to a list of incoming edges and the other
IS pointing to a list of outgoing edges. We have combined this and that. The adjacency list
and the edge list data structure, somehow we have combined them. Let’s see in what
regard is this better than this? [Student:] here for instance the operation, suppose | said,
given a particular edge. Here we actually have no mechanism of storing edges really. We
are not really storing edge information. We are storing information only with regard to
vertices, given a vertex what are the adjacent vertices. [Student: so edge information
regarding the edges easily obtained what information regarding the edges do we want that
we what].

Suppose | had the same picture as before. | have this graph. | ask you flight UA 120
which airport from, what is the starting airport, what is the ending? Yes, so we have
information associated with edges and that is somehow not getting represented in this.
[Student: we can store name of] pardon [student: we can store] you can store there is no
harm. You can store, so with this whichever was that airport you could do that, but now if
you have to retrieve that information. Suppose you have to answer that question, given a
particular flight number, what are the starting and the ending airports. You will have to
go through this entire data structure to be able to figure that out. While here you could get
that information very quickly. [Student: there is also an]. That’s not connected to the top.
[Student: as good as having a double arrow for an edge list so this thing is as good as
having a double arrow for the edge list] double arrow, what do you mean by double
arrow? [Student: doubly length like in the above portion of this slide an arrow points
from an edge to its vertex] vertices and from here it’s pointing from the vertex to the

edges exactly. Let’s look at what are the time requirements for this particular data
structure let’s see.

Suppose | want to find out the incident edges. Edges incident to a certain vertex so | can
get to that vertex, so given a particular vertex | can find both the in edges and the out
edges in time proportional to the degree, the in degree and the out degree respectively. So
that’s the incident edges. Given two vertices, are those two vertices adjacent? How much
time do | need for this? So given one vertex | just need to run through the... it’s given a
particular vertex DFW and let’s say MIA. Are this two adjacent? Is there a flight from
DFW to MIA, what will I do? I will go in the out list of this and see. No, I will have to do
more, | will come to this. I will come to the out list and then I have to go from here to this
list here. This is just numbers or whatever, this would be referenced to this information.

It depends upon how you organize it. This could be organized as out list of edges or it
could be organized as out adjacent vertices. If it were organized as out adjacent vertices it
would have been easy. But if like here, | am organizing it as edge list, so you will have to
now go to the corresponding edge and see what the other end point of that edge is. All of
that is constant time.

There are many ways of organizing a graph. |1 am just giving you a very high level idea
and then for your particular application, depending upon what operation you are doing
more often, you will have to choose the appropriate organization. [Student: organize the
data it will be in minimum of degree of u and common degree of worst case will be
maximum] Worst case would be maximum but suppose | also kept degree information
associated with each vertices. That’s not very hard to do. Just one integer variable which
will keep track of them, then | can make this. It depends upon where you want to
optimize. If you are doing this kind of operation very often then it makes sense keep
degree and try and reduce running time. If you are not doing this operation then there is
no reason why you should keep track of the degrees of the vertices.

Third representation is what’s called the adjacency matrix representation and this is very
simple representation. Here you just have an n cross n matrix and there would be
basically just binary entries bits 1 0, there is a one which is a true, if there is an edge
between those two vertices. There is a one here because there is an edge between a and b.
What can you say about this matrix? What property does it have? [Student: symmetric]
it’s symmetric. If it is an undirected graph it would be symmetric. If its directed graph it
need not be symmetric. If in a directed graph you can have it that this would be one, if
there is an edge from b to a or you can have it the other way round depending upon what,
you can keep any way you like. M [i, j] is true that means there is an edge i, j in the
graph. M [i, j] false means there is no edge in the graph and the space requirement is N
square. It’s again a very simple implementation, it’s also quite efficient in a certain sense
or let’s see.

(Refer Slide Time: 17:37)

[Student: adding a vertex means] Adding a vertex would mean creating a new row and a
new column. It is order n time, order n so that will be order n time. | could have for
instance... Again there is a possibility of, instead of having 1’s and 0’s, you could keep
track of the edge information here. You could keep... The adjacency matrix structure
augments the edge list structure with a matrix, so you could also have the edge list
together with the adjacency matrix both of them together. In the edge list recall that for
each edge you would have information about what are the two end points.

(Refer Slide Time: 18:21)

;?MBWHEEE

= uuﬂuuuﬁ i

There could be referring to the corresponding locations here, instead of pointers they
could just be integers not they are telling which row they corresponds to and here instead
of 1’s and 0’s, for the ones you could also have the corresponding edge. Augmenting an
array, again so this is an operation which is not done very often. Quite often the graphs
that you work with are static graphs. That is you don’t add new vertices in the graph, you
don’t add, remove new vertices from the graph. If you want to have a data structure
which implements that then perhaps this is not the right data structure. [Student: array
implementation] you could do that, of course all of those thing could be done. I am not
saying it cannot be done here at all but then this would perhaps not be the best data
structure to use.

If this was a frequent operation you were doing, adding vertices. [Student: even that will
take order n time only because just when 2n minus 1 basically n square] Let’s look at
what are the times required for the various operations here? Given two vertices to
determine if they are adjacent or not, it is just a constant time operation. But now given a
particular vertex to find out all the vertices which are adjacent to it, how much time does
it take? [Student:] Row or column which is order n. It is not order degree now, it is order
n this is the difference.

(Refer Slide Time: 20:21)

" S
Performance of Adjacency Matrix

i Fparwiian Lima
mew, s mipey peplacel lasmens. awnp L8

e Y erhaces | nom Fdges ICH T

T O L Hmi

midgos. dirccies] Fibges . amudisec el F iges [O
elinomnls, pusdilioiis |
il Eriicme, oppeamin, smgin dewtimmtinn LE 1)
el haecied, dejrew. mDegres. onil legres
II:I-.l.iI.‘.i.F.IJ:II.‘E'i .I.!.Ill‘!L:‘Hl;":“.[“ :I'iﬂi-..-:llﬂ.lllcl: I I1
gl g ww, aulljraesil Vet i G
cedlyerikces, oubhdiscanlVernoss,
[RLERTE
vmeriEadger, imemtThreciedBelge, remsm
efulge, makel mlipeoted, ivwisel it
el D tiesii Ficen, st D iisctionTo

ve'h T

Why because now you will have to take that particular row or column and look at all the
entries and see which are ones and which are zeros. That will give you order n. So
incident edges, inIncidentEdges, outincidentEdges all of them will take order n.
insertVertex, remove a vertex | have put down order n squared here because I am
assuming that you have to copy them into a new array. It’s not very easy to take a two
dimensional array and extend it by one row and one column. You understand why?
Because the problem is that two-dimensional arrays are stored as one dimensional arrays.
You know after all in a particular row major or column major form,

If you want to extend it now how does that happen? Because you have to then move all
the information. That’s why extending a two dimensional array is not an easy task. You
essentially have to copy all the information into a new array. That’s all I will have to say
about data structures for representing graphs. There are three different things you have
seen adjacency list, adjacency matrix and the simple edge list. You can depending upon
what operations are critical, which are the ones that you are doing more often combine
them in a suitable manner. If space is not such an issue then you can keep the adjacency
matrix data structure because it’s quite simple but it requires a lot of space. It requires n
squared space. The standard implementation which is preferred very often is the
adjacency list. If you can’t think of anything then just use the adjacency list data structure
to implement a graph. Now | am going to go onto graph searching algorithms. This is
something that you have done in a certain sense which is why | am going to be taking it
up right in this class.

(Refer Slide Time: 22:27)

What is the graph search algorithm? It is basically a mechanism of visiting all the vertices
of the graph in some systematic manner. By systematic | mean, you know in some
organized manner so that you don’t miss out on any vertex. A graph could be either a
directed or an undirected graphs and we are going to be assuming adjacency list
algorithm implementation of the graph for the algorithm that we would be discussing.
Graph searching algorithms are the most common algorithm that you typically perform
on graphs and it appears on a whole lot of settings.

(Refer Slide Time: 23:03)

The algorithm that 1 am going to be discussing now is what is called the breadth first
search algorithm or BFS for short. What does BFS do? It will visit all the vertices of a
connected component in a graph and it will define for us what we will call a breadth first
search tree which will be a spanning tree on this particular connected component. We are
going to be discussing breadth first search on undirected graph only today. Breadth first
search makes more sense in undirected graphs and the idea is roughly the following. You
start from a vertex and this starting vertex let’s call it as s, it is assigned a initial distance
of zero.

We are going to proceed in rounds. In the first round you are going to, so think of
yourself as in a maze, in some kind of a maze. You have a string with you, you are going
to use this to help you search the maze. You have tide one end of the string at one
location in the maze. Now you unroll the string by let’s say just one unit and you see
where all can you reach by unrolling this string by just one unit. Those in some sense will
be, what we will call the vertices at a distance of one from the starting vertex. After you
visited all such vertices then you will unroll the string by one more unit and see which all
vertices, new vertices you can visit as a consequence of that and so on. You will
understand all of this when we start discussing the algorithm in more detail. We will do
this, so we will unroll the string by one more unit find out all that we can visit now.

(Refer Slide Time: 24:59)

Unroll the string by one more unit, find all the vertices that can be visited now and so on
and on. Each vertex we are going to give it a label which will be that when it was first
visited what was the length of my string then? If it was visited in the first round then I am
going to give it a label of one. If it was visited in the second round | am going to give it a
label of two and so on and on. What this label will signify eventually would be the
distance of the vertex from the root, from the starting vertex or the root as I call.

(Refer Slide Time: 25:34)

All of these will be clear with some example. Suppose this was my graph, very simple
graph and s was my starting vertex. | give it a label of 0. I am going to have a Q, so this is

the only data structure | need to implement in this algorithm a Q. Recall this is very
similar to your minor question. You have a Q and on which you have s. At any point
what you are going to do is look at the front element in the Q and look at all the
neighbours of that front element. The neighbours of this front element are w and r, so you
are going to put them into the Q now. | am going to remove an element from the queue,
remove the front element from the queue, find its neighbours and put them into the
queue, insert them into the queue. When 1 insert a vertex into the queue | color it gray,
after |1 remove a vertex from the queue I color it black.

Initially this is the only vertex in the queue so it’s grey. All the vertices which are in the
gueue will always have a color of grey. In some sense the grey vertices are vertices which
have been discovered till now but I have not gone beyond that, grey signifies that. Black
means that | have also gone beyond those vertices and white means undiscovered, | have
not reached those vertices at all. This is the order in which the thing is. This is the first
picture, the second, the third and the fourth.

Let’s understand this, | had s in the Q, | removed s, colored the vertex black, took its two
neighbors and put them into the queue. I assigned them a label of one node then the label
of s, so the label of s was 0 so | gave them both of them a label of a 1. Now let’s see what
the procedure here would be. | remove the front element of the queue which is w. I will
color it black, I will look at its neighbors. How many neighbors does w have? 3 neighbors
s, tand x. Amongst these s already is black so I don’t touch it at all. t and x are white so |
will put them into the queue and color them grey. From white | color grey, grey color
gets colored to black.

When an element gets inserted in the queue, its gets colored grey. When it gets knocked
off from the queue, it gets colored black, as simple as that. t and x get to put into the
queue. What label do they get? They get a label of one more than the label of w. Why one
more than the label of w? It was because of w, the t and x came into the queue. When |
had knocked off w and then looked at its adjacent vertices, | have found t and x so they
get label of one more than that. So they get a label of two.

This is the Q at this point. Now | look at vertex r which is the front of the queue. What
will 1 do? First color it black, look at its adjacent vertices which are white and put them
into the queue. Color it black look at its adjacent vertices which are white, this is the only
vertex which is white, put that into the queue with the label equal to one more than the
label of r. That’s what this is and this get a grey color. Once again you see all the vertices
which are grey are sitting in the queue. At any point this is the invariant you have. If a
vertex is grey, it is in the queue. If a vertex has not yet been visited it is white, if a vertex
has been visited and removed from the queue its black. Everyone understands this. Next
vertex we are going to touch is t. We are going to remove t from here, going to look at its
adjacent vertices. How many adjacent vertices it has? 3 but the only vertex which is white
is u. It is only u which will get entered into the queue and nothing else and u will get
colored grey. What will be its label? [Student: three] 3. u will get colored grey, its label is
3 and its get added to the queue.

Now | knock x out of the queue, it gets colored black. I look at its neighbours which are
white. This is the only one which is white, this gets a label of a three, it gets colored grey
and it’s added to the queue. So y is colored grey, gets a label three and is added to the
queue. This is what the queue looks now like. Now | remove the front element that’s two,
look at its right neighbours, it has no white neighbour nothing needs to be done. It gets
colored black and we remove it from the queue, so the queue is now u and y only. So |
remove u from the queue, | color it black, look at its white neighbours, it does not have
any white neighbour so nothing to be done. Then I look finally at y, y is at the front of the
queue. | look at its white neighbours, no white neighbour nothing needs to be done. This
gets removed from the queue and the queue becomes empty. The procedure stops when
the queue become empty, these are the labels on the vertices.

(Refer Slide Time: 31:29)

Now what do these labels signify? One signifies that it was discussed in the first round,
two that it was discussed in the second and three that it was discovered in the third round.
This one is also the length of the shortest path from s. [Hindi] if I look at this vertex u,
there are many paths from s to u. | am interested in the path which has the least number
of edges on it, the smallest number of edges on it and the path with the smallest number
of edges is this path with three edges on it and so this is label three. We will see why this
is getting done in this manner shortly.

(Refer Slide Time: 33:41)

So one more way of thinking of this so that you understand this completely, | started
from this. In the first round | am visiting the adjacent vertices of this. These are the
vertices which are getting a label of one. These are also called level one vertices, these
are the vertices which are getting a label of a one. In the next step, all though | am going
one vertex at a time but now the vertices which are going to get a label of two will be
vertices which are adjacent to these. Which are these vertices? These are | and c, so these
are the two vertices which will get a label of a two now. The vertices which get a label of
a three are the ones which are adjacent to the vertices which are at two and they are
basically m, j, g and d. This is getting a label of a three.

(Refer Slide Time: 34:02)

The vertices which are getting the label of a four would be the one which are adjacent to
the vertices which are at a label three, which are these vertices. So these get a label four
and these would finally get a label of a five. You can think of a breadth first search as
dividing your vertices or partitioning your set of vertices into levels or sets. There is one
vertex at level zero, some vertices at level one, some vertices at level two, some vertices
at level three and so on. What will be the number of levels going to be? The number of
levels would be the maximum distance of any vertex from s.

(Refer Slide Time: 34:56)

Now this is what the algorithm is, so let’s run through the algorithm and then we will
look at the other aspects of the algorithm. Initially every vertex is given a color of a
white. So du is the label on that vertex, on a vertex u du is the label so it’s initially
infinite which means | have not put any labels on it and pi u, | will come to what pi u is.
Pi u signifies the predecessor vertex. The vertex because of which you got its label. What
I mean by this is so for instance let’s look at this vertex c here. This got a label of 2 which
was the vertex because of which it got the label 2 b, so pi of ¢ would be b. What is the pi
of k? You can tell me, this vertex got its label from either this or this. I do not know
which, it could be any. We will just pick one of them arbitrarily. This is the initializing all
vertices and then how do we begin?

We color the vertex s which is our starting vertex grey, we give it a label of a 0. Its pi of u
is null because it doesn’t get its label from anyone else but from itself and we add it to
our Q. We insert it into our queue and this is the entire process. This green should have
extended all the way here. What we are doing is while the Q is not empty, we keep
repeating something. Let’s say we remove the element from the head of the queue, so u is
the element from the head. We are not removing it yet, so u is the element at the head of
the queue. We are looking at all the adjacent vertices of u. For all v which are adjacent to
u, if the color of v is white only then we do process it. If it is already grey or black, we
don’t do anything with it.

If the color of v is white then what do we do? We add it to the queue, we color it grey and
we give it a suitable label. What is the label we give it? d of u plus 1. Whatever was the
label of u, we add one to that and we give back to this. Since this vertex v is getting its
label from u, pi of v becomes u. We add the vertex v, such vertex into the queue and once
you have done it for all the vertices, we do this dequeue operation which is we remove u
from the queue. This could have been done here also, it could have been done at the end,
it could also have been done here that’s okay and u is colored black to signify that it has
been removed from the queue. We keep doing this till the queue has an element in it.

Does everyone understand what | am saying? [Student: so for initializing also we have to
do some operations like breadth first search] What do you mean for initializing? [Student:
making the color of every node to be white] Making the color of every node to be a
white, what can we do? What is color? Color is something like an array. For every vertex
so this is an array of size... [Student: values into it is less than the value we would assign
to it] but we can also assign it, you know it is we are just creating an array, so let’s say
white is zero. So just assign, put zero to all the entries in the array. We just giving a color
to... each of these color d and pi will have to be separate arrays indexed by the vertices,
we are just assigning that.

(Refer Slide Time: 39:09)

How much time does the breadth first search procedure take? What are we doing?
Basically all the time is being spent in this loop. Yes, because this is just, how much time
do I spend here? One for each order n for each vertex, | am spending constant amount of
time. How much time do | spent in this part? Constant time and here, all the time is
getting spent in this loop. How many time is this loop executed? Order n times. How
many times is this part of the loop executed? This is two loops, one within the other. For
each vertex v adjacent to u, | am doing. So we are doing as much as the degree times. If |
look at these statements they are being, what is the total time I am spending on these
statements? Order degree for each vertex and summed over all the degrees of the vertices

which is order m, twice the number of edges. Let’s look at each statement and see what is
the total time, what is the maximum time that could be spent on each statement. How
many times the statement is executed, how many times the statement 10 executed?
[Student: order n] Order n. How many times is statement 12 executed? [Student: order m]
Order m because 12 is executed degree many times for each of the vertices. So order m,
so 12 is executed order m times in the worst case. Similarly if 12 is executed order m
times so 13, 14, 15 and 16 could also be executed no more than order m times.

Actually you can say something about 16, how many times is 16 executed? [Student:
order] order n and not order m because you Enqueue a vertex only once. Once you
Enqueue it, it becomes grey, once it get removed from the queue it becomes black. You
don’t ever touch it again. Once it becomes black you don’t ever put it back into the
queue. You only put a white vertex into the queue. In fact this statement 16 here is
executed order n times and so this is also executed order n times and this is also executed
order n times. It is only this if statement which is really executed order m times. Yes, you
understand why if this is executed order n times, this is also executed? Because they are
one after the other with no condition in between them. In any case the total time spent on
the entire thing is order m plus n.

(Refer Slide Time: 42:18)

Let’s look at the couple of properties of BFS. BFS what it is doing is it starts from a
certain vertex, a source vertex s and it is visiting all the vertices which can be reached
from s. It will visit all such vertices which can be reached from s. What do | mean by
that? All such vertices to which there is a path from s, all those vertices will get visited
which means that all those vertices which are in the connected component of s, connected
component containing s will get visited.

If the graph was in more than one connected component, if the graph had more than one
connected component then if s is in a certain component, | will only visit those vertices.
The vertices in the other connected component | will never be able to reach them at all.
The first thing to keep in mind is that it will discover all the vertices which are reachable
from a source vertex. If a vertex v is at level | then there is a path between s and v with |
edges on it. | have not told you what a BFS tree is? So let’s first understand what a BFS
tree is. So my slide order is a bit wrong here. What is a BFS tree that we have generated
as a consequence? So recall that for each vertex, | have kept track of one edge which
gave that vertex its label.

(Refer Slide Time: 44:16)

So let me consider the following graph of the graph G. What is the sub graph? The set of
vertices or all the vertices which are reachable from s, all those vertices which have a pi
of v which is not null and s was given a pi of v which was null. So pi is also known as the
predecessor. Each of the vertices which have a predecessor is the set of vertices Vy;.
Every vertex is given a predecessor, every vertex which was visited given a predecessor.
It is basically the set of all vertices which are visited. What are the edges in the sub
graph? The edges in the sub graph are the edges from the predecessor vertex to this
particular vertex for every vertex. Let me illustrate this. Let’s look at this picture here.
This picture if I ignore the dotted edges, if | just keep the dark edges with me, the solid
edges they are my... this is the sub graph that I am talking about. Note that each of these
vertices has a predecessor except for this starting vertex, this has no predecessor.

(Refer Slide Time: 45:41)

What is predecessor of this? It was this, the predecessor of this was this and the
predecessor of this was this. So these are 3 edges that | am including in my sub graph.
The predecessor of this is this, the predecessor of this is this one, this was level 2. At
level 3 when | had vertices, this has the predecessor as this, this had a predecessor let’s
say this. This has its predecessor this, N has | as its predecessor, M has | as its
predecessor. (Refer Slide Time: 46:00) Is this clear to everyone? Because this vertex was
discovered because of 1. When | took | out from my queue and looked at its adjacent
vertices which were not yet visited which are colored white then | found M N and j, so M
N and j have as their predecessor vertex | and D and G have as their predecessor vertex c,
k could have G or J as its predecessor.

Let’s say we decided G as its predecessor and H as D as its predecessor and L has G as its
predecessor. These are the predecessors and then finally P has L and O has K as its
predecessor. [Student: G and J are at the same level] G and J are at the same level, yes.
Why is not? [Student: not necessary] It is. They both, why are they at the same level?
Because they both get the same label, same level number [student: G is not necessary]
they would, it is necessary because they are both adjacent to vertices which have label
two, G is adjacent to a vertex which is... [Student: is but I am saying for deciding for an
element K which has two predecessors] yeah [Student: you will see which which
predecessor has the shortest label] No, both will have the same label then. [Student: then
you will not assign] both will have the same label.

If there was such a, you cannot have a vertex which has two predecessors at different
levels. [Student: but this we only call ordered at which order can be different that we can]
This is the predecessor information and these solid lines now form a spanning tree. Why
do they form a spanning tree? How many solid lines are here? How many solid lines do |
have? [Student: n- 1] n - 1, yes. Why n - 1 and not n?

There is no edge entering A because A did not have any predecessor. Every other vertex
has a predecessor, for every other edge there is one solid line, exactly one. So exactly n
minus 1 edges. Using these solid lines | can go from A to any other vertex. Yes, if there is
a solid line entering here that means that | can come to this vertex from that vertex and
there is a solid line entering here, so | can come to this vertex, from there is a predecessor
of that and there is a solid line entering here, so | can come to this vertex from some other
and so on. So eventually | hit the root. Basically starting from s, | can get to every other
vertex. This is a tree, it is a connected graph. These solid lines form a connected graph
with exactly n minus 1 edges. It has to be a spanning tree. Recall that we said that if a
connected graph has no cycles in it then it has n minus 1 edges. If a connected graph has
n minus 1 edges then it has no cycles in it and it is a tree. This is what we have. This is
called the breadth first search tree, the BFS tree.

This spanning tree that we have which is the solid lines is the breadth first search tree. |
think in both of the previous examples | had this. This is the breadth first search tree here,
the blue lines they form the breadth first search tree. Once again for each vertex, | have
just darkened the line. | have not drawn the arrows here but | have just darkened the line
because of which was corresponded to the predecessor, because of which this vertex got
its label. This vertex got its label 2 because of this vertex this got its label 2 because of
this vertex and so | have darkened these lines and this forms your spanning tree so this is
the breadth first search tree.

Let’s quickly go on. This is the breadth first search tree. I will switch over to this screen
to show you something. | did not. So what has really happened is that we started from
this vertex s, these were my vertices at level 1, these were my vertices at level 2 and so
on. Let’s say the largest level was 7. Now this will answer some of your questions also.
When | was at s, all these vertices which are here at level 1 are adjacent to vertices in s.
That’s why they are at level 1. The vertices in level 2 are all adjacent to vertices of level
1. That’s why they got the level 2, number label 2. They got a label 2 because they were
adjacent to some vertex, may be more than one but they were adjacent to some vertex in
level 1.

Could these vertices have been adjacent to s? They would have been in level 1 because
when | looked at all the adjacent vertices of s, | would have discovered this vertex and
put it level 1 instead. So such an edge cannot appear. This is the nice thing about
structure that you get. I am not showing the tree edges here, I am just showing all the
edges of the graph now. All the edges of the graph just go between adjacent levels. They
cannot skip a level. | cannot have an edge which skips a level, it cannot go like this. This
cannot happen. Why? Because when | was this vertex, would then have been in this level
instead. | made a small mistake. | said all the edges go between adjacent levels. They
could also go within the same level, yes. Why could they? | could easily have this. This
vertex was adjacent, these two vertices were adjacent to s but they were also adjacent to
each other, no harm even later. This is what the graph looks like now and this is the
important property of breadth first search that you have to keep in mind. Certain edges
we would call them tree edges, so this is my BFS tree, this edge. So my BFS tree would
look like this now.

Let’s say these edges and then from each one of them, | have let’s say something like
this. I am basically covering all these edges. For each of these vertices is getting its level
number because of certain vertex at the previous level and it’s this edge having through
did in my BFS tree. This is what my BFS tree [student: from the edges that through from
elements of the each other if we have two elements of the same level in the] [Student: we
we wont count those] no, if | have an edge between two vertices of the same level, such
an edge, this edge was not part of BFS tree. Why? What are the edges which are in the
BFS tree? [Student: solid] the predecessor. This vertex did not get its level number
because of this vertex. It got its level number because of this vertex. It is this edge which
would be part of the BFS tree and not this.

(Refer Slide Time: 54:24)

l

Let me [student: multiple edges leading to a node we take only one] we take only one.
We have that, so just to show you all those things I just said to you, | had organized it like
levels but it is the same thing happening here. These are the levels zeroth level, level 1,
level 2, level 3, level 4, level 5. As you can see all edges are going either between
adjacent levels or within the same level. This vertex could have got its level number from
either this vertex or it’s this vertex, so | picked one arbitrarily and this I included in my
BFS tree. The BFS tree is not necessarily unique but the level number of each vertex will
be unique. Why would it be unique? The level number of a vertex would be the length of
the shortest path from s to that vertex. Why shortest path? We have not proved yet.

If there is a path from A to a certain vertex of length 6 then this certain vertex lets say
whatever z, will get a label of at most 6. If the shortest path was of length 4 then this
vertex cannot get a label of more than a 4 because on that path. If there is a path of length
4, what does that mean? There is s, there is a first vertex, the second vertex, the third
vertex and then this vertex z.

Then the first vertex would get a label level which means that the first vertex is adjacent
from s. It will get a level number of 1, the next vertex will get a level number of 2, the
third vertex will get a level number of 3 and this vertex will get a level number of 4. That
is why each vertex gets a level number equal to the length of its shortest path from s and
that is unique. We said in choosing the predecessor edges, you could choose any one but
the level numbers would be unique for each vertex because it corresponds to the length of
the shortest path from the route. With that we are going to end today’s discussion on
breadth first search. We are going to be using breadth first search for finding the
connected components in a graph and we will see that in the next class.

