
Data Structures and Algorithms
Dr. Naveen Garg

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

 Lecture – 24
 Graphs

Today we are going to start talking about graphs. We are going to spend quite a lot of
time understanding the basic definition in terminologies associated with graphs, see some
examples and then if time permits we are going to do the graph abstract data type or I
think we will able to do the graph data type today.

(Refer Slide Time: 01:30)

So question is what is a graph? So pictorially this is what a graph is and what are terms
we are going to have. So graph is always represented by a two tuple V and E typically,
V’s what we will call the set of vertices and E will call the set of edges. So set of vertices
and a set of edges together specify a graph. In this picture these red circles are the
vertices. I have given each of these vertices a name a b c d e to distinguish them and the
blue lines are the edges, so edge really is a pair of vertices. An edge is a pair of vertices
or an edge is specified by giving a pair of vertices so this edge is said to connect what is u
and v or will not use the term connect but this edge is an edge between u and v; when I
say e = u v is an edge then that means it’s an edge between vertices u and vertex v,
vertices u and v.

(Refer Slide Time: 2:08)

So for instance in this example this graph could be specified either by giving this drawing
or giving these this detail. As in v the set of vertices is 5 vertices a b c d e and what are
the edges I have? Each edge as you can see is a pair of vertices, an unordered pair of
vertices here, a comma b is the same as b comma a. All that specifies is it is an edge
between vertices a and b. So a comma b, a comma c is this edge; a comma d is this edge,
b comma e is this, c comma d is that, c comma e is this and d comma e is this. So there
are 1, 2, 3, 4, 5, 6, 7 edges and there are the 7 pairs mentioned here. So set of vertices and
a set of edges. What are they used for? They are for lots and lot of applications, you can
model circuits as graphs, each of component of the circuit could be a vertex.

(Refer Slide Time: 04:18)

So this could be a vertex, this could be a vertex, this could be a vertex, this could be a
vertex, this is a vertex which is your CS201, you are trying to find out the path of these
resistance to get CS201, they can be used to model networks. So I can take the map of the
city and every intersection could be modeled as a vertex and the roads which are
connecting to intersections could be modeled as an edge and then that could be a graph
and then start asking various questions on whether how can I go from this place to this
place by asking the corresponding question on a graph. So transportation networks, lots
of this communication networks all of them are modeled as graphs.

(Refer Slide Time: 04:53)

One more example. So this is typically student day so you wake up, you mediate first 201
then you eat, may be you work then more CS201, play CS201 programming sleep and
you dream of CS201 cycles. [Student: so idealistic] There is no room for any other
course. This is the day before mine. So this is slightly different from the graph that I had
shown in the previous example. Why [student: directed] directed. So this is what we call
directed graph because we can’t do any meditation before you wake up. So there is
clearly an edge going from wake up to meditation. So every edge has a direction
associated with it, we will call such graphs directed graphs. So we also consider directed
graphs but in the rest of the lecture I am going to spend most of time with undirected
graphs. Whatever things I define will carry over in a straight forward way to directed
graphs as well so I will tell you what the difference is.

So to begin with let me go back to the previous slide. In this example or in this definition
where would the difference be when I am talking of a directed graph? So e comma u v is
not just a pair, it is an ordered pair let’s say. So the ordering is important, the first vertex
typically specify what the start of the edges is or the origin of the edge and the other
would specify the destination of the edge where the edge is going from, so what is the
start and what is the end.

So as I said today is a fairly simple lecture, we are going to look at lots of terminologies.
So now you have understood what a graph is. So there are two kinds of graphs a directed
graph and an undirected graph. So graph which is not directed is called undirected graph
and you understand what a vertex is, what vertices are, what edges are. Adjacent vertices,
so two vertices so this is all terminologies associated with an undirected graph so two
vertices which are connected by an edge are called adjacent. Is this vertex and this vertex,
these two vertices are they adjacent? No, they are not connected by an edge while this
and this are adjacent and this and this are not adjacent either. So what is it which are
connected by an edge are called vertices, the degree of a vertex.

The degree of the vertex is the number of adjacent vertices it has. So what is the degree
of this vertex? 3. So in fact I have written down the degrees of the various vertices on
these so this vertex is degree is 2, this vertex is degree 3, this is degree 3, this is degree 3,
everyone understands the degree of the vertex. It is the number of adjacent vertices.
Sometimes we say that this edge is incident to these two vertices. Should I write down
the word? So this edge, let’s say this vertex is vertex a and vertex b and this edge is e, so
e equals a b is incident to vertices a and b. So this edge is incident to these two vertices
similarly this edge is incident into this vertex as well as this vertex. So degree of a vertex
can also be defined as the number of edges which are incident to that vertex. There are
three edges which are incident to this vertex, so the degree of this vertex is 3. These are
equivalent ways of saying the same thing. So question is what is the sum of the degrees
of all the vertices, [Hindi Conversation] twice the number of edges. Because when I am
counting, so let’s think of it in the following manner. So the answer is right, twice the
number of edges and the argument is actually half a line of an argument.

So pictorially I would say the following; when I am counting three for this, I am counting
three because I am counting this one edge, this edge and this edge. So let me put 3 stones,
one on each of these three edges then when I am counting 3 here I am counting this edge,
this edge let me put down 3 stones. Then here I am putting down 2 stones, here I am
putting down 3 stones, here I am putting down 3 stones.

(Refer Slide Time: 10:50)

So I have to put as many stones or pebbles, if you want as many peppules as the sum of
the degrees of the vertices. Now if I look at any edge, how many pebbles are there on that
edge? Exactly 2, so the sum of the degrees of the vertices equals two times the number of
edges. So that’s degree and you understand what degree is, you understand what adjacent
vertices are. Now let’s define the notion of a path.

(Refer Slide Time: 10:57)

So a path in a graph is a sequence of vertices let’s say V1, V2, Vk such that consecutive
vertices have an edge between them. So if I take vertex Vi and Vi+1 then these two
vertices are adjacent there is an edge between this vertices. So there are two examples

here. So this is my graph, the same graph as before recall that there is an edge between c
and e also. So this is the path a b e d c e. Why is this a path? Because there is an edge
between a and b, there is an edge between b and e, there is an edge between e and d,
between d and c and c and e, so this is a path. Similarly this is the path b e d c because
there is an edge between b and e, between d and e, between d and c. it is easy to construct
examples which are not paths.

Suppose I had written down a b c, a b c is not a path in this graph. Why because while
there is an edge from a to b there is no edge from b to c, so everyone understands what a
path is. A simple path is a path in which no vertex is repeated so this is an example of a
simple path b e c.

These three vertices are all distinct so it is a simple path. A cycle is a simple path in
which the first and the last vertices are the same. So a c d a is a cycle, d a c d is the same
cycle, c d a c is also a same cycle. So you can read the cycle anywhere, this is a cycle this
is a simple path. In the previous slide we had an example of a path which is not simple.
This is not a simple path. Why, this is not a simple path because vertex e is repeated here.

(Refer Slide Time: 13:05)

So this is a simple path except that the first and the last vertices are the same. That’s what
a cycle is. A graph is said to be connected if there is a path between every pair of vertices
in the graph, [Hindi conversation] that the graph is connected.

(Refer Slide Time: 13:48)

Is this graph connected? [Student: yes, the path] path [Hindi Conversation]. So this graph
is connected, this is not connected there is no path from here to here, so this is connected
this second one is not connected and this is the common mistake connected [Hindi
conversation] there should be a path between every pair of vertices.

 (Refer Slide Time: 15.37)

If there is a path then it is connected, if there is no path it’s not connected. So these two
vertices so again this is the common mistake when you are writing a minus especially
you are going to say these two vertices are not connected because you don’t see an edge
between them that’s wrong terminology. These two vertices do not have an edge between

them but they are connected because there is a path between these two vertices. So we
say two vertices are connected if there is a path between them and a graph is connected if
there is a path between every pair of vertices. Is this clear to everyone? Let’s understand
the notion of a sub graph, so this is a graph on the left hand side suppose I take a subset
of the vertices and of the edges such that the resulting thing is also a graph.

(Refer Slide Time: 16.23)

So I took some vertices from here, this vertex you can see it’s corresponding. I took 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11 vertices from here. There are 13 vertices in here I took 11 of
them and I took some of the edges between these vertices. I am not taken all the edges, as
you can see this edges is not here, this would be called a sub graph of this graph. I cannot
takes this edge because the other point of this edge is not there, I have not included here
at all. For an edge, the two vertices between which the edge is running are also called the
end points of that edge. Each edge has two end points and those are the two end points so
this is called the sub graph of this graph.

(Refer Slide Time: 17:39)

Now let’s understand what a connected component is. A connected component is a
maximal connected graph. Suppose this is one graph, it is not 3 graphs I have drawn just
one graph in. This is not a connected graph. Is this connected? [Hindi conversation]
[Student: this is not connected] this is not a connected graph. Why, because there is no
path from here to here [Hindi conversation]. This is not connected because there is no
path from here to here, there is no path from here to here, so it is not a connected graph.
If I look at this sub graph it is connected just this sub graph. These three vertices and
these three edges it’s connected.

These 4 vertices and these 3 edges are also connected, these 5 vertices and the 7 edges on
them are also connected. These 3 are the connected components of this graph. Now
what’s the definition of connect? It’s a maximal connected sub graph. What does a
maximal connected sub graph mean? This needs to be understood more carefully.
Suppose I were to take this vertex and this vertex and I were to take this edge and this
edge. This is a sub graph, yes or no? This is a sub graph of the original graph but this is
not a connected component, I am not going to call this a connected component. Why?
Because it is not maximal so what does maximal mean? So when we say maximal in this
class, we mean a set is called maximal if we cannot increase the size of the set while
retaining the property. So a set is said to be maximal with respect to a certain property.

If we cannot add more elements to the set and retain the property that’s not true here I can
add more elements to this set, I can add more edges or I can add more vertices and both.
So I can add this edge and it is still connected I can this vertex and this edge and it is still
connected, I can add this vertex and this edge and it is still connected, I can add this edge
now it is still connected, I can add this edge now it is still connected. Now if I add any
other vertex or any other edge, suppose I decided to add this vertex, I add this but it is not
connected anymore. So this is a maximal connected sub graph and so we will call this a
connected componenent so this entire thing is the connected component. This is also a

connected component and this is also a connected component. [Hindi Conversation] I
cannot add any other vertices and still have the property of it being connected.

So essentially intuitively how do you think of connected component? You just see which
are the pieces which are connected among each other, each of them is a connected
component as simple as that. So this graph is 3 connected components. More
terminologies; what is a forest? Forest is a jungle, jungle is a collection of trees and
animals but we will leave out the animals. So we are thinking of forest as a collection of
trees so these are trees in the forest now what is a tree here.

(Refer Slide Time: 23:38)

A tree here is a connected graph which does not have any cycles in it. It’s the same as the
tree that we till now except the [Hindi conversation] (Refer Slide Time: 23:00). So this is
an example of the tree it is a connected sub graph as we can see and it does not have any
cycle in it. This is also a tree, this is also a tree, this is also a tree when you have
collection of trees it is a forest. So forest is a collection of trees so everyone understands
this. What a trees? Tree is a connected sub graph which does not have any cycle in it. So
I am typically going to use n to denote the number of vertices and m to denote the
number of edges in any graph. So what is the complete graph? A complete graph is one in
which there is an edge between every pair of vertices, between every pair of vertices
there is an edge. This is an example of a complete graph.

(Refer Slide Time: 24.41)

This is a graph on 5 vertices between every pair of vertices there is an edge. So how
many edges does a complete graph have? nc2, because there are n22 pairs of vertices and
there is an edge between every pair and so you will have so many edges. How many
edges does a complete directed graph have? [Student: three by two two] two times nc2 a
directed and a complete. So basically there will have to be and edge in both directions
right so it will become twice. If a graph is not complete then the number of edges going
to be strictly less than n chose two. So in an undirected graph this is the maximum
number of edges that a graph can have, n chose two [Hindi conversation].

Suppose I give you a graph on n vertices, zero, it might not have any edge at all. So the
minimum number of edges in a graph on n vertices is zero and the maximum number of
edges is n chose two. So once again we have n number of vertices, m number of edges.
[Student: minimum elements connected in graph]. That’s the slide, suppose in a tree so
what is a tree? Recall a tree is the connected graph which does not have any cycle in it.
How many edges are there in a tree? I have said number of edges in the tree is n – 1,
why? [Student: every pair of] [Student: start from a node and we end and we cannot have
a like a cycle so starting] So [student: we can have about one two one two two three after
and the number of edges these vertices two] each vertex is degree two. In a tree every
vertex is degree two, no. [Hindi conversation][Student: nodes we write a so that will be n
minus one you can’t have repetition sir we get we can count the edges by, we will take
the direction so the edge coming to a node is one].

(Refer Slide Time: 25.54)

What do you mean coming to a node? So is this edge coming into this node or this edge
coming into this node? [student: sir we take this as even starting from if you start from
any particular node you don’t have whether number of node have to have a] Let’s prove
this. [Hindi conversation] it is a true statement [Hindi] so let’s prove that so what will be
the proof? We have to prove that a tree on n vertices has n - 1 edges, induction [Hindi] as
simple as that. So proof by induction, so what should be the base case? Let’s say n equals
two so suppose I have a connected graph on two vertices [Hindi] statement is true. So
number of edges equals n - 1 equals one. So induction hypothesis [Hindi] statement true
for all n less than or equal to k let’s say.

So now the induction step. So given a graph on k + 1 vertices. Why should this have k
edges? [Hindi] one leaf good. So he is saying something useful, he is saying there is no
cycle in the graph. We have to use somewhere the fact there is no cycle in the graph
[Hindi]. He says that there has to be one leaf [Hindi] [student: degree one] good. So let’s
define a leaf, now as a vertex, a leaf is a vertex of degree one. So his claim is that given a
tree on k + 1 vertices. We are given a tree, we are proving this. The tree or every tree has
a leaf [Hindi] so maybe we come back to one of the vertices we have already visited
[Hindi] so it is not a tree [Hindi] because that was a leaf [Hindi]. [Student: there should
be part of the path relating these vertices] exactly this edge cannot be part of any simple
path between any two vertices because [hindi] this edge cannot be part of any simple path
and so even after I remove this edge and this vertex this there is a path between every pair
of vertices. So this is still connected, this is connected and by removing an edge and a
vertex I cannot create a cycle [Hindi]. I can apply my induction hypothesis on it so
[Hindi] we have removed only one vertex. So this is a tree on k vertices and has k - 1
edges, this is by induction hypothesis [Hindi] and so we prove that [Hindi].

(Refer Slide Time: 35.40)

You have to use the fact, both the facts are critical that it is a connected graph and it does
not have a cycle in it. Otherwise you will not be able to argue that it has k - 1 edges
[Hindi]. That’s the proof for this, everyone follows this. Most text books would have this
proof also, you can also go back and and look at one of the text. So if the number of
edges is less than n - 1 in a graph then the graph cannot be connected at all. Why? This
statement, if the number of edges is less than n - 1 then the graph is not connected proof
by contradiction.

Suppose if it is connected then so let’s follow this argument. So suppose it is connected,
if it is connected then why is it not a tree? It is not a tree because it has a cycle. So let’s
take lets remove an edge from the cycle [Hindi] I should have switched but okay so what
what are we trying to argue? If number of edges is less than n - 1 then G is not connected.
So this is another useful thing to remember that suppose I have a cycle, G is a graph.
Suppose I have a graph in which there is a cycle [Hindi] if you have a cycle and if you
remove any edge from the cycle you cannot make the graph disconnected by doing that.

So what is the argument that to prove this claim? If suppose I have a graph on less than n
- 1 on less than n - 1 which is connected. Why it is not a tree? It is not a tree because
there is a cycle in let me remove an edge from the cycle I only reduce the number of
edges and it’s still connected. If there is another cycle let me still remove another edge so
I will only get less than n - 1 edges and the graph will remain connected eventually I will
get a tree after removing all of this. So I am contradicting the earlier claim which says
that any tree has to have exactly n - 1 edges in it.

It cannot have less than n - 1 edges so any graph which has less than n -1 edges cannot be
connected [Hindi]. Is there something that is not clear? So couple of examples n =5, m=4
this is a tree on 5 vertices.

(Refer Slide Time: 40.46)

It has to have four edges, this is a graph on 5 vertices and 3 edges and it cannot be a tree,
it cannot be a connected graph at all. Let me ask you a question suppose I have graph on
n vertices and it has n - k edges n - k edges. How many connected components do you
think it has? I have a graph on n vertices and n - k edges, how many connected
components it has? k or more, k when there would be no cycle and if there were cycles
then it could have more number of connected components, try to prove this. This is a very
simple exercise. So a given a graph on n vertices and n - k edges how many connected
components does it have? So more terms; a spanning tree is a sub graph which means you
are given a graph so it is a sub graph of a graph and this sub graph has to be a tree and it
should include all the vertices of the graph.

(Refer Slide Time: 42.13)

So spanning tree [Hindi] tree which means the sub graph has to be a tree and [hindi] it
should include everything; include everything here means include all the vertices. So as
you can see this sub graph includes all the 4 3 7 and 3 10 13 vertices that are there and it
is a tree. There is no cycle here so this is the spanning tree of this graph, this is the graph
and this is the spanning tree of this graph. G has to be connected if G is not connected
then there is no notion of the spanning tree. If G is not connected then no sub graph of the
graph of G cannot be a spanning tree [Hindi]. So this is a useful thing to have, quite often
your network could be a just spanning tree.

Suppose these are points I want to connect so these are cities, these are possible roads
that I can build but I just want to put the minimum amount of effort, I want to build has
few roads as possible so that all these cities are still connected so I could built a spanning
tree but this does not provide you any fault tolerance what does that mean [Hindi] you
cannot reach from some city to some other city now. As you can see if I cut of this link
then these 4 vertices would be disconnected from the other 8 vertices [Hindi] these 6
vertices would be disconnected from the other 7. Spanning tree is a useful but they
provide don’t provide much fault tolerance.

(Refer Slide Time: 44.43)

Let’s talk about bridges. Koenigsberg, this is a city in Germany or Austria I don’t
remember where. So pragal river okay I don’t remember where this is. This city has this
nice thing, there is a river flowing through the city and there is an island in the river and
there are bridges in this manner so A is this island and there is a bridge from here to here,
here so there are 7 bridges in all. This black bar are the edges so question is can you start
from here let’s say or any point. So can one across each bridge exactly once and return to
the starting point. Why no, so suppose I start from here I can take this bridge go here
[student: it will land up] and you can go on land up [Hindi] so on and see.

Let’s see whether we can solve this problem or not? Suppose this would have been useful
if you were a postmen who had to visit the various brides and you did not want to retrace
the steps. So this is also known as koenigsberg problem and Euler proved that this is not a
problem and we will give a simple proof for that one. So we can model this thing as a
graph, there is this island A so these are the going to be the vertices of my graph. This
island A this is one piece of land and there is this part B because I can go from anywhere
to here. This is one vertex, there is a vertex D and there is a vertex C which is this part.
So I will have a graph with 4 vertices in it A B C D and then depending upon so since
there is a bridge from B to A.

In fact there are two bridges from B to A so I will put two edges between B and A.
similarly there are two bridges between A and C so I will put two edges between A and
C. There is one bridge from A to D so I will put one edge between A and D, there is an
bridge between D and B so I will put one edge between B and D and an edge between C
and B so I will get. This is not a graph. Why is this not a graph? Because we did not
define a notion of two edges between pair of vertices, we just talked about pair of
vertices. The edges don’t form a set, they form a multi set so this is called multi graph.

(Refer Slide Time: 48.43)

What is a multi-graph? In which they put the many edges between a pair of vertices is
called a multi graph but this captures that problem in certain sets. So eulerian tour is a
path that traverse every edge exactly once and returns to the first vertex and that’s exactly
what we want to do. Because these are the bridges so we want to traverse each bridge
exactly once and return to the starting vertex.

Can you do that on this graph? So same problem can now be thought of here, can is start
from A and come back to A and and visit each or traverse each exactly once. So the same
question a same, can you draw this picture without lifting your pencil or redrawing an
edge, you know coming back over a line twice. So [Hindi] Euler theorem says that you
can do this if and only if every vertex has even degree [Hindi]. When you come to a
vertex, you come by one edge and then you have to go by another edge and if you come
again then you will need another edge to or fresh edge to go off by so every vertex has to
have an even degree for this to work but here there are all vertices of odd degrees so
clearly this cannot be done.

Now let’s quickly do the uninteresting part, the abstract data type. The graph can be
thought of as a container of positions. So you have the regular methods for any positional
container like queues and stacks. We always had this methods called size and Is Empty
and elements; elements would return all the vertices and the edges that’s in and you can
have some methods like swap which can swap two positions replaceElement those kind
of thing, these are methods associated with the regular positional container swap is the
generic method for any positional container. When you are saying that provide two
positions and swap the contents at those two positions that’s the swap method. So here I
am not saying it specifically to the graph abstract data type, you will have to think of
what it would mean. So you could decide what it means here for this particular data type
but I am saying it is a generic methods. These are all generic methods for positional
container and I am just saying in that context. So here I have methods which are specific

to graphs so numVertices would be a method which returns number of vertices
numEdges number of edges vertices would know be an enumeration of all the vertices.

(Refer Slide Time: 51.05)

So it would be a method returns an iterator which will let you iterate through the various
vertices of the graph, edges could be a method which returns all the edges. DirectedEdges
would be a method if you had a directed graph, it would return all the enumerated all the
directed edges in the graph. What does enumerator do and an iterator? It basically returns
an object which has two methods associated with it, one method is next and the other
method is whether there is anything left, has next whether there is a next method next
element at all or not.

So as you every time you call next it gives you a next object in the enumeration so when
you are enumerating edges I call next once it will give me one edge, when I call next
again it will give me another edge. What order this edge is come in that you typically do
not know. It depends upon how you implemented the iterator. UndirectedEdges could
similarly enumerate all the undirected edges incident Edges, if I specify a vertex it would
enumerate all the edges incident at that vertex. This is for an undirected graph incident
Edges; for a directed graph right there are two kinds of edges either there would be edges
which start from this vertex or there would be vertex which end at this vertex. So it could
have a notion of any incident edges which are edges entering a vertexV which are ending
at vertex V and you could have an out incident edges which are edges which are starting
from vertex V going out of vertex, opposite. so I specify an edge e, all of these are
objects an edge is also an object and I specify one end point on the edge so this method
gives me the other end point of that edge.

(Refer Slide Time: 53.24)

Degree gives me the degree of the vertex, inDegree so degree would be for an undirected
graph, for a directed graph there would be the notion of in degree and an outdegree.
Indegree would be n number of edges coming into the vertex outDegree would be the
number of edges leaving the vertex. Similarly I could have adjacent vertices, adjacent
vertices would be a method which will turns an iterator over all the vertices which are
adjacent to this particular vertex. This would be for the undirected graph, for a directed
graph you could similarly have a notion of inAdjacent and an outAdjacentVertices. Then
you could have a method areAdjacent whether vertices two vertices v and w are adjacent
or not. So this would be return a Boolean value; endVertices given an edge it will return
the two end points of that edge.

(Refer Slide Time: 53.31)

Origin, for a directed edge e it would return where the edge is starting from, destination
for a directed edge e it would return where the edge is ending. Given an edge e it will tell
whether it is directed or not. This method would be useful when you have, what are
called mixed graphs, mixed graphs some edges are directed and some are undirected. Can
you give me a setting where it would be useful to have a mixed graph, what kind of a
problem setting can you imagine there?

It would be natural to have a [student: roads] roads, traffic network once again where you
have some roads are one ways. So you are bi directed edges, roads which are two way
could be undirected edges and roads which are only one way could be directed edges.
There such a methods could be useful because given an edge you can then determine
whether it is a directed edge or an undirected edge. I will just take, I guess this is last
slide yes it is.

Make Undirected e, so you are given edge and you set it to be an undirected edge. You
can have a method which reverses the direction so you can have tonnes and tonnes of
update method also. You can have methods to create the graph, change remove an edge,
remove a vertex do whatever you want. So set direction from, so you can set the direction
of an edge suitably we just look through this these slides that I have given. So this is just
a subset of method depending upon what application you have, you could design your
own set of methods.

(Refer Slide Time: 55.50)

So graph can be thought of as data type, is an abstract datatype on which you can have a
bunch of methods which you can use to update and modify the data type. So with that we
will end our discussion on graphs we will continue in next class however to see how to
actually represent a graph what kind of data structures can you use to represent graphs.

