
Data Structures and Algorithms 
Dr. Naveen Garg 

Department of Computer Science and Engineering 
Indian Institute of Technology, Delhi 

            Lecture – 24 
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Today we are going to start talking about graphs. We are going to spend quite a lot of 
time understanding the basic definition in terminologies associated with graphs, see some 
examples and then if time permits we are going to do the graph abstract data type or I 
think we will able to do the graph data type today. 
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So question is what is a graph? So pictorially this is what a graph is and what are terms 
we are going to have. So graph is always represented by a two tuple V and E typically, 
V’s what we will call the set of vertices and E will call the set of edges. So set of vertices 
and a set of edges together specify a graph. In this picture these red circles are the 
vertices. I have given each of these vertices a name a b c d e to distinguish them and the 
blue lines are the edges, so edge really is a pair of vertices. An edge is a pair of vertices 
or an edge is specified by giving a pair of vertices so this edge is said to connect what is u 
and v or will not use the term connect but this edge is an edge between u and v; when I 
say e = u v is an edge then that means it’s an edge between vertices u and vertex v, 
vertices u and v. 
 
 
 
 
 
 



(Refer Slide Time:  2:08) 
 

 
 
So for instance in this example this graph could be specified either by giving this drawing 
or giving these this detail. As in v the set of vertices is 5 vertices a b c d e and what are 
the edges I have? Each edge as you can see is a pair of vertices, an unordered pair of 
vertices here, a comma b is the same as b comma a. All that specifies is it is an edge 
between vertices a and b. So a comma b, a comma c is this edge; a comma d is this edge, 
b comma e is this, c comma d is that, c comma e is this and d comma e is this. So there 
are 1, 2, 3, 4, 5, 6, 7 edges and there are the 7 pairs mentioned here. So set of vertices and 
a set of edges. What are they used for? They are for lots and lot of applications, you can 
model circuits as graphs, each of component of the circuit could be a vertex.  
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So this could be a vertex, this could be a vertex, this could be a vertex, this could be a 
vertex, this is a vertex which is your CS201, you are trying to find out the path of these 
resistance to get CS201, they can be used to model networks. So I can take the map of the 
city and every intersection could be modeled as a vertex and the roads which are 
connecting to intersections could be modeled as an edge and then that could be a graph 
and then start asking various questions on whether how can I go from this place to this 
place by asking the corresponding question on a graph. So transportation networks, lots 
of this communication networks all of them are modeled as graphs.  
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One more example. So this is typically student day so you wake up, you mediate first 201 
then you eat, may be you work then more CS201, play CS201 programming sleep and 
you dream of CS201 cycles. [Student: so idealistic] There is no room for any other 
course. This is the day before mine. So this is slightly different from the graph that I had 
shown in the previous example. Why [student: directed] directed. So this is what we call 
directed graph because we can’t do any meditation before you wake up. So there is 
clearly an edge going from wake up to meditation. So every edge has a direction 
associated with it, we will call such graphs directed graphs. So we also consider directed 
graphs but in the rest of the lecture I am going to spend most of time with undirected 
graphs. Whatever things I define will carry over in a straight forward way to directed 
graphs as well so I will tell you what the difference is.  
 
So to begin with let me go back to the previous slide. In this example or in this definition 
where would the difference be when I am talking of a directed graph? So e comma u v is 
not just a pair, it is an ordered pair let’s say. So the ordering is important, the first vertex 
typically specify what the start of the edges is or the origin of the edge and the other 
would specify the destination of the edge where the edge is going from, so what is the 
start and what is the end.  



So as I said today is a fairly simple lecture, we are going to look at lots of terminologies. 
So now you have understood what a graph is. So there are two kinds of graphs a directed 
graph and an undirected graph. So graph which is not directed is called undirected graph 
and you understand what a vertex is, what vertices are, what edges are. Adjacent vertices, 
so two vertices so this is all terminologies associated with an undirected graph so two 
vertices which are connected by an edge are called adjacent. Is this vertex and this vertex, 
these two vertices are they adjacent? No, they are not connected by an edge while this 
and this are adjacent and this and this are not adjacent either. So what is it which are 
connected by an edge are called vertices, the degree of a vertex.  
 
The degree of the vertex is the number of adjacent vertices it has. So what is the degree 
of this vertex? 3. So in fact I have written down the degrees of the various vertices on 
these so this vertex is degree is 2, this vertex is degree 3, this is degree 3, this is degree 3, 
everyone understands the degree of the vertex. It is the number of adjacent vertices. 
Sometimes we say that this edge is incident to these two vertices. Should I write down 
the word? So this edge, let’s say this vertex is vertex a and vertex b and this edge is e, so 
e equals a b is incident to vertices a and b. So this edge is incident to these two vertices 
similarly this edge is incident into this vertex as well as this vertex. So degree of a vertex 
can also be defined as the number of edges which are incident to that vertex. There are 
three edges which are incident to this vertex, so the degree of this vertex is 3. These are 
equivalent ways of saying the same thing. So question is what is the sum of the degrees 
of all the vertices, [Hindi Conversation] twice the number of edges. Because when I am 
counting, so let’s think of it in the following manner. So the answer is right, twice the 
number of edges and the argument is actually half a line of an argument.  
 
So pictorially I would say the following; when I am counting three for this, I am counting 
three because I am counting this one edge, this edge and this edge. So let me put 3 stones, 
one on each of these three edges then when I am counting 3 here I am counting this edge, 
this edge let me put down 3 stones. Then here I am putting down 2 stones, here I am 
putting down 3 stones, here I am putting down 3 stones.  
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So I have to put as many stones or pebbles, if you want as many peppules as the sum of 
the degrees of the vertices. Now if I look at any edge, how many pebbles are there on that 
edge? Exactly 2, so the sum of the degrees of the vertices equals two times the number of 
edges. So that’s degree and you understand what degree is, you understand what adjacent 
vertices are. Now let’s define the notion of a path. 
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So a path in a graph is a sequence of vertices let’s say V1, V2, Vk such that consecutive 
vertices have an edge between them. So if I take vertex Vi and Vi+1 then these two 
vertices are adjacent there is an edge between this vertices. So there are two examples 



here. So this is my graph, the same graph as before recall that there is an edge between c 
and e also. So this is the path a b e d c e. Why is this a path? Because there is an edge 
between a and b, there is an edge between b and e, there is an edge between e and d, 
between d and c and c and e, so this is a path. Similarly this is the path b e d c because 
there is an edge between b and e, between d and e, between d and c. it is easy to construct 
examples which are not paths.  
 
Suppose I had written down a b c, a b c is not a path in this graph. Why because while 
there is an edge from a to b there is no edge from b to c, so everyone understands what a 
path is. A simple path is a path in which no vertex is repeated so this is an example of a 
simple path b e c.  
 
These three vertices are all distinct so it is a simple path. A cycle is a simple path in 
which the first and the last vertices are the same. So a c d a is a cycle, d a c d is the same 
cycle, c d a c is also a same cycle. So you can read the cycle anywhere, this is a cycle this 
is a simple path. In the previous slide we had an example of a path which is not simple. 
This is not a simple path. Why, this is not a simple path because vertex e is repeated here. 
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So this is a simple path except that the first and the last vertices are the same. That’s what 
a cycle is. A graph is said to be connected if there is a path between every pair of vertices 
in the graph, [Hindi conversation] that the graph is connected.  
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Is this graph connected? [Student: yes, the path] path [Hindi Conversation]. So this graph 
is connected, this is not connected there is no path from here to here, so this is connected 
this second one is not connected and this is the common mistake connected [Hindi 
conversation] there should be a path between every pair of vertices.  
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If there is a path then it is connected, if there is no path it’s not connected. So these two 
vertices so again this is the common mistake when you are writing a minus especially 
you are going to say these two vertices are not connected because you don’t see an edge 
between them that’s wrong terminology. These two vertices do not have an edge between 



them but they are connected because there is a path between these two vertices. So we 
say two vertices are connected if there is a path between them and a graph is connected if 
there is a path between every pair of vertices. Is this clear to everyone? Let’s understand 
the notion of a sub graph, so this is a graph on the left hand side suppose I take a subset 
of the vertices and of the edges such that the resulting thing is also a graph.  
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So I took some vertices from here, this vertex you can see it’s corresponding. I took 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11 vertices from here. There are 13 vertices in here I took 11 of 
them and I took some of the edges between these vertices. I am not taken all the edges, as 
you can see this edges is not here, this would be called a sub graph of this graph. I cannot 
takes this edge because the other point of this edge is not there, I have not included here 
at all. For an edge, the two vertices between which the edge is running are also called the 
end points of that edge. Each edge has two end points and those are the two end points so 
this is called the sub graph of this graph.  
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Now let’s understand what a connected component is. A connected component is a 
maximal connected graph. Suppose this is one graph, it is not 3 graphs I have drawn just 
one graph in. This is not a connected graph. Is this connected? [Hindi conversation] 
[Student: this is not connected] this is not a connected graph. Why, because there is no 
path from here to here [Hindi conversation]. This is not connected because there is no 
path from here to here, there is no path from here to here, so it is not a connected graph. 
If I look at this sub graph it is connected just this sub graph. These three vertices and 
these three edges it’s connected.  
 
These 4 vertices and these 3 edges are also connected, these 5 vertices and the 7 edges on 
them are also connected. These 3 are the connected components of this graph. Now 
what’s the definition of connect? It’s a maximal connected sub graph. What does a 
maximal connected sub graph mean? This needs to be understood more carefully. 
Suppose I were to take this vertex and this vertex and I were to take this edge and this 
edge. This is a sub graph, yes or no? This is a sub graph of the original graph but this is 
not a connected component, I am not going to call this a connected component. Why? 
Because it is not maximal so what does maximal mean? So when we say maximal in this 
class, we mean a set is called maximal if we cannot increase the size of the set while 
retaining the property. So a set is said to be maximal with respect to a certain property.  
 
If we cannot add more elements to the set and retain the property that’s not true here I can 
add more elements to this set, I can add more edges or I can add more vertices and both. 
So I can add this edge and it is still connected I can this vertex and this edge and it is still 
connected, I can add this vertex and this edge and it is still connected, I can add this edge 
now it is still connected, I can add this edge now it is still connected. Now if I add any 
other vertex or any other edge, suppose I decided to add this vertex, I add this but it is not 
connected anymore. So this is a maximal connected sub graph and so we will call this a 
connected componenent so this entire thing is the connected component. This is also a 



connected component and this is also a connected component. [Hindi Conversation] I 
cannot add any other vertices and still have the property of it being connected.  
 
So essentially intuitively how do you think of connected component? You just see which 
are the pieces which are connected among each other, each of them is a connected 
component as simple as that. So this graph is 3 connected components. More 
terminologies; what is a forest? Forest is a jungle, jungle is a collection of trees and 
animals but we will leave out the animals. So we are thinking of forest as a collection of 
trees so these are trees in the forest now what is a tree here.  
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A tree here is a connected graph which does not have any cycles in it. It’s the same as the 
tree that we till now except the [Hindi conversation] (Refer Slide Time: 23:00). So this is 
an example of the tree it is a connected sub graph as we can see and it does not have any 
cycle in it. This is also a tree, this is also a tree, this is also a tree when you have 
collection of trees it is a forest. So forest is a collection of trees so everyone understands 
this. What a trees? Tree is a connected sub graph which does not have any cycle in it. So 
I am typically going to use n to denote the number of vertices and m to denote the 
number of edges in any graph. So what is the complete graph? A complete graph is one in 
which there is an edge between every pair of vertices, between every pair of vertices 
there is an edge. This is an example of a complete graph. 
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This is a graph on 5 vertices between every pair of vertices there is an edge. So how 
many edges does a complete graph have? nc2, because there are n22 pairs of vertices and 
there is an edge between every pair and so you will have so many edges. How many 
edges does a complete directed graph have? [Student: three by two two] two times nc2 a 
directed and a complete. So basically there will have to be and edge in both directions 
right so it will become twice. If a graph is not complete then the number of edges going 
to be strictly less than n chose two. So in an undirected graph this is the maximum 
number of edges that a graph can have, n chose two [Hindi conversation].  
 
Suppose I give you a graph on n vertices, zero, it might not have any edge at all. So the 
minimum number of edges in a graph on n vertices is zero and the maximum number of 
edges is n chose two. So once again we have n number of vertices, m number of edges. 
[Student: minimum elements connected in graph]. That’s the slide, suppose in a tree so 
what is a tree? Recall a tree is the connected graph which does not have any cycle in it. 
How many edges are there in a tree? I have said number of edges in the tree is n – 1, 
why? [Student: every pair of] [Student: start from a node and we end and we cannot have 
a like a cycle so starting] So [student: we can have about one two one two two three after 
and the number of edges these vertices two] each vertex is degree two. In a tree every 
vertex is degree two, no. [Hindi conversation][Student: nodes we write a so that will be n 
minus one you can’t have repetition sir we get we can count the edges by, we will take 
the direction so the edge coming to a node is one]. 
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What do you mean coming to a node?  So is this edge coming into this node or this edge 
coming into this node? [student: sir we take this as even starting from if you start from 
any particular node you don’t have whether number of node have to have a ] Let’s prove 
this. [Hindi conversation] it is a true statement [Hindi] so let’s prove that so what will be 
the proof? We have to prove that a tree on n vertices has n - 1 edges, induction [Hindi] as 
simple as that. So proof by induction, so what should be the base case? Let’s say n equals 
two so suppose I have a connected graph on two vertices [Hindi] statement is true. So 
number of edges equals n - 1 equals one. So induction hypothesis [Hindi] statement true 
for all n less than or equal to k let’s say.  
  
So now the induction step. So given a graph on k + 1 vertices. Why should this have k 
edges? [Hindi] one leaf good. So he is saying something useful, he is saying there is no 
cycle in the graph. We have to use somewhere the fact there is no cycle in the graph 
[Hindi]. He says that there has to be one leaf [Hindi] [student: degree one] good. So let’s 
define a leaf, now as a vertex, a leaf is a vertex of degree one. So his claim is that given a 
tree on k + 1 vertices. We are given a tree, we are proving this. The tree or every tree has 
a leaf [Hindi] so maybe we come back to one of the vertices we have already visited 
[Hindi] so it is not a tree [Hindi] because that was a leaf [Hindi]. [Student: there should 
be part of the path relating these vertices] exactly this edge cannot be part of any simple 
path between any two vertices because [hindi] this edge cannot be part of any simple path 
and so even after I remove this edge and this vertex this there is a path between every pair 
of vertices. So this is still connected, this is connected and by removing an edge and a 
vertex I cannot create a cycle [Hindi]. I can apply my induction hypothesis on it so 
[Hindi] we have removed only one vertex. So this is a tree on k vertices and has k - 1 
edges, this is by induction hypothesis [Hindi] and so we prove that [Hindi]. 
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You have to use the fact, both the facts are critical that it is a connected graph and it does 
not have a cycle in it. Otherwise you will not be able to argue that it has k - 1 edges 
[Hindi]. That’s the proof for this, everyone follows this. Most text books would have this 
proof also, you can also go back and and look at one of the text. So if the number of 
edges is less than n - 1 in a graph then the graph cannot be connected at all. Why? This 
statement, if the number of edges is less than n - 1 then the graph is not connected proof 
by contradiction.  
 
Suppose if it is connected then so let’s follow this argument. So suppose it is connected, 
if it is connected then why is it not a tree? It is not a tree because it has a cycle. So let’s 
take lets remove an edge from the cycle [Hindi] I should have switched but okay so what 
what are we trying to argue? If number of edges is less than n - 1 then G is not connected.  
So this is another useful thing to remember that suppose I have a cycle, G is a graph. 
Suppose I have a graph in which there is a cycle [Hindi] if you have a cycle and if you 
remove any edge from the cycle you cannot make the graph disconnected by doing that. 
 
So what is the argument that to prove this claim? If suppose I have a graph on less than n 
- 1 on less than n - 1 which is connected. Why it is not a tree? It is not a tree because 
there is a cycle in let me remove an edge from the cycle I only reduce the number of 
edges and it’s still connected. If there is another cycle let me still remove another edge so 
I will only get less than n - 1 edges and the graph will remain connected eventually I will 
get a tree after removing all of this. So I am contradicting the earlier claim which says 
that any tree has to have exactly n - 1 edges in it.  
 
It cannot have less than n - 1 edges so any graph which has less than n -1 edges cannot be 
connected [Hindi]. Is there something that is not clear? So couple of examples n =5, m=4 
this is a tree on 5 vertices. 
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It has to have four edges, this is a graph on 5 vertices and 3 edges and it cannot be a tree, 
it cannot be a connected graph at all. Let me ask you a question suppose I have graph on 
n vertices and it has n - k edges n - k edges. How many connected components do you 
think it has? I have a graph on n vertices and n - k edges, how many connected 
components it has? k or more, k when there would be no cycle and if there were cycles 
then it could have more number of connected components, try to prove this. This is a very 
simple exercise. So a given a graph on n vertices and n - k edges how many connected 
components does it have? So more terms; a spanning tree is a sub graph which means you 
are given a graph so it is a sub graph of a graph and this sub graph has to be a tree and it 
should include all the vertices of the graph.  
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So spanning tree [Hindi] tree which means the sub graph has to be a tree and [hindi] it 
should include everything; include everything here means include all the vertices. So as 
you can see this sub graph includes all the 4 3 7 and 3 10 13 vertices that are there and it 
is a tree. There is no cycle here so this is the spanning tree of this graph, this is the graph 
and this is the spanning tree of this graph. G has to be connected if G is not connected 
then there is no notion of the spanning tree. If G is not connected then no sub graph of the 
graph of G cannot be a spanning tree [Hindi]. So this is a useful thing to have, quite often 
your network could be a just spanning tree.  
 
Suppose these are points I want to connect so these are cities, these are possible roads 
that I can build but I just want to put the minimum amount of effort, I want to build has 
few roads as possible so that all these cities are still connected so I could built a spanning 
tree but this does not provide you any fault tolerance what does that mean [Hindi] you 
cannot reach from some city to some other city now. As you can see if I cut of this link 
then these 4 vertices would be disconnected from the other 8 vertices [Hindi] these 6 
vertices would be disconnected from the other 7. Spanning tree is a useful but they 
provide don’t provide much fault tolerance.  
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Let’s talk about bridges. Koenigsberg, this is a city in Germany or Austria I don’t 
remember where. So pragal river okay I don’t remember where this is. This city has this 
nice thing, there is a river flowing through the city and there is an island in the river and 
there are bridges in this manner so A is this island and there is a bridge from here to here, 
here so there are 7 bridges in all. This black bar are the edges so question is can you start 
from here let’s say or any point. So can one across each bridge exactly once and return to 
the starting point. Why no, so suppose I start from here I can take this bridge go here 
[student: it will land up] and you can go on land up [Hindi] so on and see. 
 
Let’s see whether we can solve this problem or not? Suppose this would have been useful 
if you were a postmen who had to visit the various brides and you did not want to retrace 
the steps. So this is also known as koenigsberg problem and Euler proved that this is not a 
problem and we will give a simple proof for that one. So we can model this thing as a 
graph, there is this island A so these are the going to be the vertices of my graph. This 
island A this is one piece of land and there is this part B because I can go from anywhere 
to here. This is one vertex, there is a vertex D and there is a vertex C which is this part. 
So I will have a graph with 4 vertices in it A B C D and then depending upon so since 
there is a bridge from B to A. 
  
In fact there are two bridges from B to A so I will put two edges between B and A. 
similarly there are two bridges between A and C so I will put two edges between A and 
C. There is one bridge from A to D so I will put one edge between A and D, there is an 
bridge between D and B so I will put one edge between B and D and an edge between C 
and B so I will get. This is not a graph. Why is this not a graph? Because we did not 
define a notion of two edges between pair of vertices, we just talked about pair of 
vertices. The edges don’t form a set, they form a multi set so this is called multi graph.  
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What is a multi-graph? In which they put the many edges between a pair of vertices is 
called a multi graph but this captures that problem in certain sets. So eulerian tour is a 
path that traverse every edge exactly once and returns to the first vertex and that’s exactly 
what we want to do. Because these are the bridges so we want to traverse each bridge 
exactly once and return to the starting vertex.  
 
Can you do that on this graph? So same problem can now be thought of here, can is start 
from A and come back to A and and visit each or traverse each exactly once. So the same 
question a same, can you draw this picture without lifting your pencil or redrawing an 
edge, you know coming back over a line twice. So [Hindi] Euler theorem says that you 
can do this if and only if every vertex has even degree [Hindi]. When you come to a 
vertex, you come by one edge and then you have to go by another edge and if you come 
again then you will need another edge to or fresh edge to go off by so every vertex has to 
have an even degree for this to work but here there are all vertices of odd degrees so 
clearly this cannot be done.  
 
Now let’s quickly do the uninteresting part, the abstract data type. The graph can be 
thought of as a container of positions. So you have the regular methods for any positional 
container like queues and stacks. We always had this methods called size and Is Empty 
and elements; elements would return all the vertices and the edges that’s in and you can 
have some methods like swap which can swap two positions replaceElement those kind 
of thing, these are methods associated with the regular positional container swap is the 
generic method for any positional container. When you are saying that provide two 
positions and swap the contents at those two positions that’s the swap method. So here I 
am not saying it specifically to the graph abstract data type, you will have to think of 
what it would mean. So you could decide what it means here for this particular data type 
but I am saying it is a generic methods. These are all generic methods for positional 
container and I am just saying in that context. So here I have methods which are specific 



to graphs so numVertices would be a method which returns number of vertices 
numEdges number of edges vertices would know be an enumeration of all the vertices.  
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So it would be a method returns an iterator which will let you iterate through the various 
vertices of the graph, edges could be a method which returns all the edges. DirectedEdges 
would be a method if you had a directed graph, it would return all the enumerated all the 
directed edges in the graph. What does enumerator do and an iterator? It basically returns 
an object which has two methods associated with it, one method is next and the other 
method is whether there is anything left, has next whether there is a next method next 
element at all or not.  
 
So as you every time you call next it gives you a next object in the enumeration so when 
you are enumerating edges I call next once it will give me one edge, when I call next 
again it will give me another edge. What order this edge is come in that you typically do 
not know. It depends upon how you implemented the iterator. UndirectedEdges could 
similarly enumerate all the undirected edges incident Edges, if I specify a vertex it would 
enumerate all the edges incident at that vertex. This is for an undirected graph incident 
Edges; for a directed graph right there are two kinds of edges either there would be edges 
which start from this vertex or there would be vertex which end at this vertex. So it could 
have a notion of any incident edges which are edges entering a vertexV which are ending 
at vertex V and you could have an out incident edges which are edges which are starting 
from vertex V going out of vertex, opposite. so I specify an edge e, all of these are 
objects an edge is also an object and I specify one end point on the edge so this method 
gives me the other end point of that edge. 
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Degree gives me the degree of the vertex, inDegree so degree would be for an undirected 
graph, for a directed graph there would be the notion of in degree and an outdegree. 
Indegree would be n number of edges coming into the vertex outDegree would be the 
number of edges leaving the vertex. Similarly I could have adjacent vertices, adjacent 
vertices would be a method which will turns an iterator over all the vertices which are 
adjacent to this particular vertex. This would be for the undirected graph, for a directed 
graph you could similarly have a notion of inAdjacent and an outAdjacentVertices. Then 
you could have a method areAdjacent whether vertices two vertices v and w are adjacent 
or not. So this would be return a Boolean value; endVertices given an edge it will return 
the two end points of that edge.  
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Origin, for a directed edge e it would return where the edge is starting from, destination 
for a directed edge e it would return where the edge is ending. Given an edge e it will tell 
whether it is directed or not. This method would be useful when you have, what are 
called mixed graphs, mixed graphs some edges are directed and some are undirected. Can 
you give me a setting where it would be useful to have a mixed graph, what kind of a 
problem setting can you imagine there? 
 
It would be natural to have a [student: roads] roads, traffic network once again where you 
have some roads are one ways. So you are bi directed edges, roads which are two way 
could be undirected edges and roads which are only one way could be directed edges. 
There such a methods could be useful because given an edge you can then determine 
whether it is a directed edge or an undirected edge. I will just take, I guess this is last 
slide yes it is.  
 
Make Undirected e, so you are given edge and you set it to be an undirected edge. You 
can have a method which reverses the direction so you can have tonnes and tonnes of 
update method also. You can have methods to create the graph, change remove an edge, 
remove a vertex do whatever you want. So set direction from, so you can set the direction 
of an edge suitably we just look through this these slides that I have given. So this is just 
a subset of method depending upon what application you have, you could design your 
own set of methods.  
 
 
 
 
 
 
 



(Refer Slide Time:  55.50) 
 

 
 
So graph can be thought of as data type, is an abstract datatype on which you can have a 
bunch of methods which you can use to update and modify the data type. So with that we 
will end our discussion on graphs we will continue in next class however to see how to 
actually represent a graph what kind of data structures can you use to represent graphs.  
 
 
 
  


