
Data Structures and Algorithms 
Dr. Naveen Garg 

Department of Computer Science and Engineering 
Indian Institute of Technology, Delhi 

Lecture – 23 �
More Sorting 

 
Today we are going to continue our discussion on sorting. We will begin with radix sort. 
Then we are going to look at bucket sort. In place sorting is something that we have seen 
before which are the examples that we know of in place sorting. Heap sort, quick sort, 
insertion sort, selection sort, bubble sort. Bubble sort we have not done. We are going to 
see which is in place and which is not in place, not all of these are in place what you just 
said. We are going to see and then we are going to finally look at how fast we can sort. 
Can we do better than what we have been discussing so far. What is a radix sort?  
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See in radix sort we are going to look at the keys that we are going to sort. So recall that 
in all other sorting algorithm, we are only comparing the keys. We are not looking at 
what the actual structure of the keys is. It doesn’t really matter if the keys or people 
provided you have a way of comparing two persons. If you have a comparator function 
which is given two persons who can say one is less than the other then you can also sort 
people. But today or in radix sort, we are going to look at the key itself that we are trying 
to sort, the collection of keys. We are going to assume that the keys are represented in 
some base M number system and M is called the radix. If M equals 2 then the keys are 
essentially in binary, base two. 
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This could be an example 9 is 1 0 0 1 in binary, in base two. We are going to use this 
representation of 9 to do the sorting first. I can represent 9 in base form or some other 
base also, base three let us say. Then M would become three and I can still use that to do 
the sorting and we will see how. And in radix sorting, the sorting is done by comparing 
bits in the same position. If instead of comparing numbers, instead of comparing 9 with 
11, we are not going to compare 9. We are just going to compare the bits in 9 and 11. 
Which bits? Let us say look at the bit at position three and we are going to compare them.  
We will see all of that in a second and this idea can be extended when the keys are let us 
say alphanumeric strings also. Not just binary numbers, not just numbers like this but 
alphanumeric strings so name of people or some such thing. You can also use a same idea 
to do sorting on that and we will see how.  
 
I am going to talk of two variants on radix sort. One is called the radix exchange sort so 
what we are going to do in radix exchange sort is we are going to examine the bit. I am 
going to assume now that the keys we are trying to sort are some numbers represented in 
binary first and am going to examine the bits from left to right. Let us assume also that 
each of the numbers that are given to us have a fixed representation. They are expressed 
in the same number of bits. That can always be done if the largest number in your 
collection is let us say some N then you need basically log N bits to represent that largest 
number. So with log N bits, you can express all the other numbers in log N bits and that 
would be the number of bits that you would use to represent all the numbers in the 
collection you have. We are going to sort the array with respect to the leftmost bit first.  
 
Suppose the numbers are sitting in this array and the left most bit of this numbers. So it 
really doesn’t matter what these other bits are. I am just looking at the left most bit of 
each of these numbers. This is the first number, this row the second number is in this row.  
So there are 5 numbers, 5 rows. I am going to look at the left most bits and I am going to 
sort the numbers according to this bit which means these are two zeros, so they come 



first. So this number goes at this position, this number goes at this position and the ones 
come later. This goes here, this would go next and this would be the last (Refer Slide 
Time: 05:54). This is what I would do. Sort according to the left most bits and since the 
bit can have only two different values, it is easy. The zeros comes before the ones. Clear 
to everyone? Now we partition this array, so this is not yet sorted, this set of numbers is 
not sorted. I will now divide it into two parts. This is the top sub array and bottom sub 
array. I am going to sort this top sub array independently of the bottom sub array. What 
do I mean by sort the top sub array? Just look at these numbers, forget this bit because 
this bit is same for all of these numbers. It will not make any difference in the value of 
the number, I will just forget this bit. 
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Similarly when I am sorting this, I will forget this bit. What does it mean to forget this 
bit, when I am sorting these numbers? I am saying, I would take the number or remove 
and subtract some number from that. What is that number? If these where k bits number, 
I am subtracting 2 to the k from that number. If I subtract 2 to the k from each of the 
numbers and then sort them, then it is same as the sorting the original collection of 
numbers, it doesn’t makes a difference. I can sort this bottom sub array independently of 
the top sub array and then I just put them together and I would get a sorted sequence. It is 
a divide and conquer algorithm once again.  
 
There is a divide step in which zeros come before the ones. There is a conquer step and 
the combined step is triviled here so the conquer step, this is the recursion. We will 
recursively sort the top sub array ignoring the leftmost bit. We will recursively sort the 
bottom sub array, ignoring the left most bit once again. How are we going to sort these? 
Using the same idea, we are going to partition this using the second left most bit, this left 
most bit and so on. How much time does it take to sort these n-bit numbers? I claim it 

takes order b n time, if I have n numbers and b bits. Why is it?   



Why can you do it in so much time? Pardon. No of bits is log n. Is the number of bits log 
n? Log of the largest number. The largest number need not be n. It could be much larger 
than n, it could be much smaller than n. [student: the number of keys can be at most the 
largest, n is only the number] n is the number of numbers and not the largest number. 
[Student: exactly sir the number of keys n is at most the largest number.] Number of keys 
is at most largest number, this statement is not true. You could have duplicates and also 
the largest number can be much larger than the number of keys [student: 1 to 20,000] 
okay great. 
 
We will continue this discussion later. So I claim to sort n b-bit numbers you will require 
order b n time and why is this? Let us try and understand this. Can I write a recurrence 
for this? Can someone write a recurrence for this? Let’s write a recurrence. Let me stretch 
and write a recurrence so T (n, b). Why comma b? Number of bits. So T (n, b) is the time 
to sort n b-bit numbers. Let’s say this is T (n, b). What is this equal to? We are going to 
partition this n numbers into two pieces. This was the top sub array, let’s say this has i 
numbers in it and the remaining would be n minus i. Now how much time does it take to 
sort these i numbers? Because we are going to do it recursively. So it should be T (i, b-1) 
that’s important the b minus 1.  
 
Why is it important? Because we are going to ignore the left most bit because the left 
most bit is going to be the same for all of these numbers. The time required to sort the 
other n minus i numbers is n minus i, b minus 1 plus something more. How much time? 
Because I had time to partition this numbers, the numbers in which the left most was 0, 
come before the numbers in which the leftmost bit was a 1. They had to be rearranged for 
each and that can be done in order n time. This is the kind of recurrence we would get.  
 
Now what is the solution for this recurrence? Anyone? What is the solution to this 
recurrence?  b n.  No, it’s perfectly right if you are saying b n. Let’s substitute, so this is 
the third method we had talked about. Solving recurrences by guessing a solution and 
substituting that solution on actually verifying weather its true or not. Let’s see what it 
should be? Let’s not worry too much about it. Let’s see, suppose T (n, b) was equal to b 
of n. May be I am wrong. Let’s see whether I am right. What is my right hand side then? 
The right hand side equals i because n is i times (b minus 1) plus (n minus i) times (b 
minus 1) plus n which is, this part is (b minus 1) times (i plus n minus i) plus n (b minus 
1) times n plus n which is b n which is also our left hand side. So this is correct. This is a 
solution to this reference. No harm, so this is the time taken and we will say other ways 
of arguing the same thing. 
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No, we don’t have to do that. This would be the same for all choices of i, we don’t have 
to any averaging here [student: but when we did quick sorting]. That was because we 
were doing a randomized quick sort. We were computing the expected time [i can be 
anything], i can vary but the whole point is no matter what i is. It will always be the 
same. Their depending upon what i were, the time would be different and so we were 
computing the average. If we try to compute the average here, you would get still the 
same. The point is it is always the same no matter what i is. No, even then you don’t have 
to go. If you do repeated substitution, once again you will see of course it will be more 
complicated which is why I did not do that method here. You can also solve it by 
repeated substitution and you will get the same answer. It is just that you will have to 
keep track of what i’s you use in the various points in the recursion and that will make it 
a bit more cumbersome. That you will get a same solution. These are all b bit numbers 
that is what we assume. 
 
The maximum number of bits is b exactly, n has to be less than or equal to two to the 
power b. No, this is not true. I never said these are distinct numbers, I could have 
repetitions. [Student: can’t we just say that we have] so that would be one way of arguing 
it. I just wanted you to show, how to solve recurrence relations also. There could be many 
ways of arguing the same thing, that’s one argument. Everyone understands what the 
algorithm is. Yes, how do you combine in this divide and conquer step. We don’t need to 
combine once we have sorted this top sub array and we have sorted this bottom sub array. 
All the numbers are b bit exactly. Here that is why this is all uniform. That is why I said, 
you will take the largest number, see how many bits you need to represent in that and you 
will use that many bits to represent every number. Otherwise it does not work.  
 
 
 
 



You just target with zero’s to the left. If 8 is 1 0 0 0, 4 bits then 2 would be 0 0 1 0, 4 bits.  
Great so let’s continue [student: what about negative] we will not worry about negative 
numbers right now. If you had negative numbers and positive numbers what will you do?  
First split the numbers into negatives and positives, sort them separately and put them 
together. Why make life more complicated in that? You can always sort them separately.  
No, that will not happen. We will see more examples and it will be clear. In the previous 
slide I said that you will have your zero’s before your one’s. That was the first step we 
did let me go back [HINDI] we took these numbers, we changed this so that you had the 
numbers in which the leftmost bit was a 0 appearing before the numbers in which the 
leftmost bit was a 1. We did this kind of partition.  
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How do you do this quickly? If you recall in my recurrence, I wrote order n for this and 
you did not arrays occur on that. The point is we can use the partitioning algorithm that 
we employed in quick sort to do this. What does that mean? We will scan from top to 
down, finding the first key with the one in the left most bit and from bottom to up finding 
the first key with a zero in the left most bit and swap. The same kind of technique we use 
for quick sort and we will exchange these keys and we will keep doing that until you 
know the scan indices exchanged. So that we know that there are zero’s above and ones 
below. How much time did it take? At most the size of the array.  
 
In this manner we can do the partition and then we can just call it recursively. We will get 
a time of order n b. So that is what we are doing here. We are scanning from the top to 
bottom so this is the first place we find a 1, this is the first place we find a 0. We swap 
them, 0 comes here, 1 comes here. Then the next index would be this one and the next 
here would be this zero. We will also scan them and we would get this and now we are 
done. 
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What is happening? How is this different or related to a quick sort? I will come to that in 
a minute but before that see what we are doing at each step. Suppose these are the 
numbers before we sort them. What does this mean? These are the numbers, the first 
number in my array is this let’s say this is the value. The y coordinate is the value of the 
number, this is the number, the second number is this, this is the third, this is the fourth, 
this is the fifth, this is the sixth. What I am doing at the first step is that I am partitioning 
the numbers according to numbers which are more than 2 to the b minus 1 and numbers 
which are less than 2 to the b minus 1. The numbers which are less than 2 to the b minus 
1. Why 2 to the b minus 1? Because the first bit, the most significant bit we are saying 
should be a 1. They will come together and the ones for which it is a 0, they will come 
together.  
 
I am partitioning the numbers according to 2 to the b minus 1. Those numbers whose 
value is more than 2 to the b minus 1, I am moving it to the right part of my array. This is 
what is happening. These are the numbers with values more than 2 to the b minus 1, so 
they are in the right part of my array and the numbers which are less than 2 to the b minus 
1, they are in the left part of my array. I repeat this on this one. Once again I am going to 
divide this up and now I am going to consider the numbers here which are larger than 2 to 
the b minus 1 plus 2 to the b minus 2 essentially. Within this part of course more than 2 
to the b minus 2 after I ignore the leftmost bit but otherwise, so we keep doing this 
eventually we will get something like this which corresponds to a sorted sequence. This 
is pictorially what is happening. But you understand the algorithm. Now how does this 
compared to quick sort? Both the algorithms partition the array, both recursively sort the 
sub arrays. So structure is very similar, the difference is in the way we partition. In the 
case of radix exchange sort, we are partitioning with respect to not a pivot element but 
with respect to a fixed quantity.  
 



We are saying anything more than 2 to the power b minus 1 goes there in the bottom half 
of the array, anything less than 2 to the b minus 1 goes in the upper part of the array. It is 
the method of partitioning which makes the difference. In the radix exchange, divide the 
array based on whether the number is larger than 2 to the b minus 1 or less than. While in 
quick sort we are partitioning based on a pivot element. The difference is also in the time 
complexity. For radix exchange we argued just now that the time complexity is order bn. 
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For quick sort we argued that the average case is n log n. Sometimes this might be a 
better scheme depending upon what the value of b is for you. That was a radix exchange 
sort where we were exchanging the elements in the array. I am going to look at another 
one version of radix sort, the principle is the same. This is also another way of 
implementing radix sort. Quick sort can be better when b is larger than log n. b can be 
larger than log n. You can have one number, you can have numbers which are 2, 3, 7, 11 
and one number which is one million and three. Now you need a huge numbers of bits 
because there is one very large number so that b would be much larger than log n. 
Because the number of numbers is very small but the largest number is very large so that 
the number of bits you require to do your sorting is large.  
 
We will continue. This is another version as I said of radix sort, straight radix sort. We 
are going to examine once again the bits from right to left now. Not from left to right but 
from right to left. The k equal to 0 corresponds to the right most bit now. The least 
significant bit also called the least significant bit. So k equal to 0 is a least significant bit 
and b minus 1 is the most significant bit. We are going to sort the array based on this bit, 
the k th bit in a stable way. Sort the array in table way looking at only k th bit. Let’s see 
what this means? Do you understand what’s table way means? No, great we will come to 
that in next slide but let me show you what this is. This is the collection of numbers you 
have, what the algorithm is. You are first going to look at the rightmost bit and you are 
going to sort these numbers based on the right most bit.  



As you can see after you sorted them, you first have the numbers which have the 
rightmost bit as 0 then you have the numbers which have the rightmost bit as a 1. Then 
you sort these numbers based on the second right most bit. This corresponds to k equals 
1, so you are sorting them based on this and then finally you are sorting these numbers 
based on this. What will happen? At the end of that you will have a sorted sequence. 
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As you can see this is originally non-sorted and what you have here is a sorted sequence. 
Why is this magic happening? You understand the algorithm. Take the rightmost bit, sort 
the numbers based on that which means that just restrict your attention to the rightmost 
bit. Anything that is a 0 comes before everything that is a 1. Now you have done some 
rearranging of the numbers. Now look at the second rightmost bit. They do the sorting 
with respect to the second right most bit. Everything which is a 0 comes before 
everything which is a 1 and so on and on.  
 
How much time does this take? b n once again, because for each bit you are spending 
time proportional to n [student: partitioning] partitioning will not be used. We will see 
how to do it. It is not completely clear why b n but will come to that argument also in a 
minute. First we need to understand what is sorting in a stable way. What does this mean?  
A table sort is one in which two numbers are the same then after sorting, so if two keys 
are the same, equal keys then after sorting their relative order remains unchanged. 
Suppose I have two numbers so I have a collection of numbers. I have 1 3 11 3 5, these 
are my numbers. I have two threes in there, equal keys. Now if after sorting, of course 
after sorting this array would become 3 3 5 11. But the two 3’s I have now, suppose with 
those threes I had one which was colored red and the other was colored blue. 
  
The first was colored red and the second was colored blue and after sorting, the red 
should appear before the blue. Although they are still threes, they should appear in the 
same relative order as was the case before we did the sorting. 



That is called table sort and we will see why it is relevant here and why it is important 
here. Let’s look at this now. This is what we were sorting and let us say we are sorting 
with respect to the right most bit. 
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I have 4 keys with 0, they will all come before the 4 keys which are at a one which have 
the rightmost bit at a one. But I would like that this appears before this, so the first 
number should better be 0 1 0. The next should be all three zero’s. The next should be 1 0 
0, the next should be 1 1 0 which is the case here. I am not permitted to rearrange them. 
When I am saying I just sort with respect to the last bit, you could also create this array 
post sorted in which this was the first number but that would be wrong. That would not 
be a stable sorting and similarly for the one’s. The first should be a 1 0 1, the next should 
be 0 0 1, the next should be 1 1 1 and the next should be 0 1 1, this is crucial for the 
correctness of the sorting algorithm. If you don’t do it this way, this will not give you the 
sorted sequence at the end. So everyone understands what table sorting is.  
 
Now let’s understand the correctness of the algorithm. We are now going to show that 
any two keys are in the correct relative order at the end that means if I take two keys, one 
is smaller than the other. Then in the end, the key which is smaller appears before the key 
which is larger, very simple proof. So suppose these are the two keys that were given to 
me. Let me look at the leftmost position at which they differ. 
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Leftmost, so this they don’t differ at this place. They don’t differ at this place even but 
they differ at this place. Let me call this position k (Refer Slide Time: 28:50). Now when 
I am sorting this bunch of numbers what is going to happen? When I am sorting 
remember I am sorting by considering first the right most then the second right most then 
the third right most and so on. Let’s us understand this. The claim is that the step k, the 
two keys are put in the corrective relative order. At the first step they may be rearranged I 
don’t care, they are put in some order. At the second step also they are put in some order, 
I don’t know. But at the k th step, this key would put before this key because this is a 0 
and this is a 1. At the k th step the two keys are put in the correct relative order but all is 
not done now.  
 
We want to argue that at the latest step, at the k plus 1 th step and the k plus 2 th step and 
so on, the relative order is not interchanged [HINDI] because of stability. Now when I am 
looking at the k plus one th step, at the k plus one th step these are the same. These are 
the same, because it is a table sort this key which is appearing before this would continue 
to appear before this and similarly at this next step and so on and on. Beyond the k th 
step, the relative order would not change anymore. At the k th step you would get the 
right order between these two keys, the smaller key will appear before the larger key and 
add sub sequent steps, this relative order would be preserved. The smaller key would be 
continued to appear before the larger key [HINDI]. 
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Let’s take an example. This is the two keys once again that I am considering. Initially 
they could be in some arbitrary order. I have in fact that the larger keys appearing before 
the smaller key. This is the array in which the numbers are… [HINDI]. This is location 
zero of the array and so on. You would like that the keys be in increasing order but right 
now bigger number is appearing before the smaller number. When I am looking at the k 
th step, at this step when I am sorting with respect to this bit, the k th bit I would have put 
0 1 0 1 1 before 0 1 1 0 1 clearly because at the k th position, this is a 0 and this is a 1. 
  
Now when I am looking at the next more significant bit, I would continue this relative 
order because at the next more significant bit they are the same. If they are the same then 
stable sorting ensures that I have to maintain the relative order that was there till that 
point in which this was appearing before this. So this will continue to appear before this 
step and in subsequent steps also. So because the sort is stable, the order of the two keys 
will not be changed when bits more than k are greater than or bits at position larger than k 
are compared. You can also see now, why I had to start from the right end. If I start from 
the left end then this technique is not going to work. Take this is an exercise, think of an 
example if I were to start from the left end, this would not give me a sorted sequence at 
the end. There is nothing sacrosanct about binary numbers, I can also apply the same 
technique to decimal numbers.  
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What do I do? First I sort with respect to the right most digit which means that the ones 
would come before the two’s would come before the three’s and so on and on. Again the 
sorting is stable. After the first step as you can see, the first number would be, so there is 
a 1 1, there are two 2’s here and so on and on. There is a unique one 0 3 1, so 3 1 
becomes the first number. Then there are these two 2’s, 0 3 2 and 2 5 2 which should be 
the second number. 0 3 2 because it’s stable. So 0 3 2 is the next, 2 5 2 is the third and so 
on and on. So I sort with respect to this. Next I sort with respect to this, so there is a 1 
here, 0 1 5, there is another 1 so I will first put this and then I will put this and so on. As 
you can see at the end I get a sorted sequence.  
 
Now we need to figure out the time complexity, how much time have you taken? So how 
man passes, such passes are we are making? We are making as many passes as the 
number of digits or the number of bits or whatever it is. But we need to now see what we 
are going to do in one pass. How are we getting a one’s before the two’s before the 
three’s and so on in a stable manner. How much time does that take? What kind of a 
scheme should be employed for that? 
  
Exactly, for exchange radix sort we basically wanted to partition the array into two parts 
only but here because these are digits, not just 0 1 it is not a two way partition anymore. 
For decimal numbers, we will have to represent it in a binary form to be able to do this.  
What is like an insertion? I don’t quite follow what you are saying. We will discuss this 
later. Let’s figure out what the time complexity is. For k equal to 0 to b minus 1, we are 
sorting the array in a stable way looking only at k th bit. Suppose this could be performed 
in order n time then the total time complexity would be order bn. That’s completely clear 
provided we can do this sorting in order n time which sorting we are talking about. We 
are looking at a particular digit, one pass. We are looking at a particular digit or a bit and 
we want to ensure that all the numbers, if I am looking at decimal numbers all the 
numbers are sorted based on that digit. The one’s before the two’s before the three’s and 



that the sorting is stable. We want to be able to do this in order n time and the method of 
choice is what is called the bucket sort algorithm. 
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That brings us to the second sorting scheme that we talked about. So what is bucket sort? 
Lots of buckets. We have n numbers, each number is in a certain range. Let’s say one 
through m, so bucket sort is a stable sorting algorithm and it will take time order n plus 
m. You understand what we are talking of. This is very useful when you have a large 
number of numbers with lots of duplicates perhaps and the numbers are coming from the 
small range.  
 
Then you don’t need something like n log n time or some such thing. You can then do it 
in time order n plus the range of the numbers essentially. Let’s see how this works. 
Suppose this is my collection of numbers 2 1 3 1 2 so m is 3 because you can see the 
numbers are in the range 1 2 3. The m is 3, there are two two’s and two one’s. So first 
what we are going to do is you are going to create an M buckets. You can understand 
what you will do in each bucket. Just take a number and throw it in an appropriate 
bucket, so we have these 3 buckets. 
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One corresponding to each possible value in this range and each m element of array is put 
in one of the m buckets. So these are my buckets, take the first number it goes into bucket 
two, I put it here. 
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Then I take the next number it goes into bucket one, so I put into here. The third number 
goes into bucket three, I put it here. The fourth number goes into bucket one, so I append 
it at the end of this list. End is important to maintain stability and then I take this two and 
append it at the end. 



Now I will just read the numbers, I will take the numbers in the first bucket, basically 
append all of these lists. So 1 1, 2 2, 3 and so on. I will put the elements from the buckets 
into an array and just read it off in this manner. 
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This gives us a stable sorting. You understand why it is stable? Because if two keys are 
the same then they would be in the bucket but we would also have put them in the right 
order. That’s why we are appending. If we were attaching at the front then we would 
have to read it the other way around which is the same as that. So with that you should be 
able to argue that our straight radix sort takes order bn time now. We said for each pass 
we want to do it in order n time and you can do it order n time using such a scheme, using 
bucket sort. So you do that in order n time, there are b passes in all so it becomes order 
bn. Yes, you are going to get one question from this in the exam. Yeah, okay in-place 
sorting. Yes, you want to know what the question is.  
 
A sorting algorithm is said to be in-place if it uses no auxiliary data structures. It could 
use a constant amount of additional space over here and it updates the input sequence 
only by means of the operations replaceElement and swap. Basically it’s just you have a 
bunch of numbers, it replaces one of them by some other or it just swaps two numbers. 
That’s when we call the algorithm to be in-place. So let’s see which algorithms we have 
seen can be made to work in in-place. 
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Bubble sort actually you have not seen right or you know what bubble sort is? You don’t 
know what bubble sort is? I will not go into bubble sort then. Let’s see. Who can tell me 
heap sort. Is heap sort in-place? [Student: yes sir] We can have one array and basically 
implement a heap in that array and we are just changing the elements in that array. Merge 
sort. Is merge sort in-place? [Student: no] Why not? To merge two list, you need 
additional space. You cannot merge in the same list, so merge sort is not in-place. Quick 
sort [student: yes sir] Quick sort is in-place because we partition in the same array and 
then we just did recursively left and right.  
 
To do the merge, to merge two lists you need additional space because what were we 
doing in merge? We are taking the first element of the two list, comparing them and 
putting it out into some other space. You can’t just copy it back there, it would not work. 
[Student: in an algorithm uses what are one space would increase] Yeah, order one space 
is okay. It is in-place but not space proportional to the number of elements, it should be 
independent of the number of elements. You can look at the other algorithms and think 
off whether they are going to be in-place or not. Radix sort. Is radix sort in-place?  But 
number of buckets is independent of the number of numbers. [Student: but we are 
inserting] then nodes that we are creating. Yes, that is additional space.  
 
So can you modify the scheme to make it in-place? [Student: to keep every bucket just 
count the number of those elements that are in the array] Yeah, you will have to think 
about it, think about this. Can you make it in-place? Can you make radix sort in-place? It 
is a good thing to think about. Let me get to the last topic that we are going to cover as far 
as sorting is concerned and that is a lower bound for comparison base sorting. What does 
comparison based sorting mean? It basically means that we are only looking at sorting 
algorithms in which all you have permitted to do is to compare two numbers.  
 



Suppose you have a bunch of elements, I am not even saying numbers now and you want 
to sort those elements. I give you those elements, I have a comparison function which 
you have to use to do the sorting. So like your comparator, so you give me the two 
numbers, I will tell which of them is smaller than the other because may be these are not 
numbers but some objects and I am the only one, who knows how to compare these 
objects. That is a comparison operation, you give me these two numbers, I decide 
whether one is less than the other or not, whether the first is less than the second or the 
second is less than the first and I give you the answer.  
 
Now the question is how many times will you have to ask me for a comparison? You 
understand, you wanted to sort this n numbers, how many times will you have to ask me? 
May be I charge you 1 rupee every time you give me certain comparison to do. The 
comparison is let us say an expensive operation. Every time you say compare these two 
numbers for me, I am going to charge you 1 rupee. How much money are you going to 
spend? n log n, you have seen algorithms which would take no more than n log n time. 
What we are going to argue now is that there can be no algorithm which takes less than n 
log n time, n log n comparisons. No one can come up with an algorithm so that algorithm 
will always take less than n log n comparisons for all inputs. For certain inputs it could 
take less than n log n comparisons but for all inputs, it would take n log n comparisons. 
That is not possible at all. We are going to understand this in the following way. 
  
(Refer Slide Time: 45:50) 
 

 
 
Let’s look at the particular algorithm. You have a certain algorithm and let’s say your 
objects are sitting in some array and you algorithm works on that array. The first step it’s 
going to ask me to compare two elements of that array. Let say that two elements are at 
position S1 and S2 [HINDI]. So my very top node here is this node whether S1 is greater 
than S2 or not. It is going to ask me this and I am free to say whether one is less or 
whether one is more based on what my comparative functions says. These are so to say, 
the questions that the algorithm is asking me. 



First it asks me to compare S1 and S2. If I said a yes then it would have asked me for a 
comparison of S1 and S3. Let’s say I have such a thing. If I had said no, maybe it ask me 
for a comparison of something else, this need not be S1 S3. It could be something else, 
depends upon what the algorithm is. But at each point it is coming back to me with 
certain comparisons, with certain numbers to compare. 
 
First time it says something then depending upon whether I say yes or no, then the next 
comparison it ask me something else. Now depending upon whether I said yes or no, the 
next comparison it could ask me would be something else and so on and on. The 
execution of the algorithm is really a path down this stream. Yes. Now at some point the 
algorithm is going to stop. It doesn’t ask for anymore comparison, it says well I am done, 
this is your sorted sequence, so which means that this path ends in this external node 
here, this leaf node here which corresponds to a particular permutation of those numbers.  
This sequence of moves would have been made, if I had certain ordering on the numbers 
for a certain permutation of the numbers.  
 
Let’s understand this. [student: there would be some finite criteria of the let me go for a S 
noise it is not necessary say S1 is less than S2 we can compare any] we can compare 
anything, yeah. [Student: so those numbers which we are comparing that is randomized 
over the entire set, any two numbers we pick up randomly] No, so don’t look at it that 
way. We are saying your algorithm, you have a certain algorithm which has the numbers 
written in an array, let’s say one through n. At the very first step it is going to come and 
make certain comparison. Let’s assume it is deterministic algorithm, no randomization 
for now. So same argument applies for randomization also but for now let’s assume it’s 
deterministic.  
 
It will say compare lets say, first time it comes to me it will say look at the number in 
location 3, look at the number in 7 and tell me which is smaller. Whether the number in 
location 3 is less than the number in location 7 or whether the number in location 7 is less 
than the number in location 3. I put a node here saying let’s say this array was S, so 
whether S3 is less than S7 is the first comparison it asked me for. If I had said a yes, I do 
not know. If I said a yes, it would go and ask me to compare some other two numbers. 
It’s your algorithm, I don’t know what it is going to ask me. But whatever it is going to 
ask me, I am going to put down here.  
 
Suppose it came and said S2 verses S5, whether S2 is less than S5 and if had said a no, 
may be it came back and asked me something else. It came and asked me S6 is less than 
S13, it may be. It is your algorithm [HINDI] so depending upon what option do I have. I 
have an option of basically saying my yes and no. That’s all I say. I say a yes then I say a 
no and so on and on, depending upon what I rate as the relative order of these elements in 
these array. Think of these objects are some complicated objects. You don’t know what 
the relative order is so that’s why you are asking me about that. I have some way of 
figuring out what the relative order is. May be today I feel like that the relative order 
should be based on gpa. Then tomorrow I feel like relative order should be based on 
height or whatever it is like, I can decide. For that I would make a certain choices of yes 
and no, which would eventually end up in leaf, in an external node of this. When you 



reach this say, you well I have sorted it. You will sort because this is all the comparisons 
you did. 
  
The question is how many comparisons did you have to do? The number of comparisons 
is basically the length of the path that you took, the height of this tree. Yes. So how many 
comparisons would you have to do? How height does this tree have to be? [Student: n log 
n] Why n log n? [Student: n factorial permutations of the array so they have to be n 
factorial leaves] Yes, so that’s right. There have to be n factorial leaves in this tree. Now 
this is not a straight forward thing to understand [HINDI]. Depending upon what these 
objects are, I should be able to get all kinds of permutations. Every permutation is a 
possible solution at the end, every permutation of these n numbers. What is sorting? A 
sorting you are given the elements like this and eventually what do you generate? You 
generate a permutation of these elements. Yes or no? [HINDI] what is this? This is just a 
permutation of this set of elements [HINDI] this is just a permutation of this. Now all 
possible permutation should exist as leaves. That depends upon what the relative order is, 
what I have picked as the relative order.  
 
So given a certain permutation, if that is what I picked as the relative order then your 
algorithm should end up in that. If I took some other permutation and picked that as the 
relative order then your algorithm should end up in that and so on and on. Every leaf of 
this tree corresponds to a permutation and further more every permutation should be 
representable as a leaf. So which means that this tree has n factorial leaves. It is not a 
complete binary tree, may be it is. I don’t care; I know it is binary tree. It’s a binary tree 
with n factorial leaves. So what is its height going to be? At least log of n factorial. So 
height therefore is at least log of n factorial, at least [HINDI] yeah [student: sir our order 
to comparator, does it satisfy the symmetric or the transitive property] Yes, it satisfies all 
of them.  
 
Even then it can. I take a particular permutation of these elements and I say I am going to 
answer with respect to this permutation. All queries that are asked for me, I will answer 
with respect to this particular permutation that I have in my head. [student: is it possible, 
if suppose I have S1 there are 3 S1 S2 and S3] yeah [student: and at some point at that we 
have some decisions of S1 S2 and S2 S3] yeah [student: and then other point in the tree the 
other point in the tree decision based on S1 and S3] yeah [student: that cannot take both 
the paths yes and no because] Yeah I understand that, but that is not the point. The point 
all we are trying to say here is that [student: it is not necessary every node] that I could 
have a certain permutation in my head and I could use that to answer all your questions 
and it could consistent.  
 
So there have to be n factorial leaves and if in a binary tree, there are n factorial leaves. 
Then basically if there are some n leaves in a binary tree then it has to have a height of at 
least log n. So which means that the tree has to have a height of at least log of n factorial. 
Height of the tree is at least log of n factorial. This is roughly n log n which means that 
there is a certain permutation. What is the height? The height is the distance of the 
longest of the farthest leaf from the root.  



If this is the furthest leaf from the root, then if this were the permutation then your 
algorithm is going to take a time of at least n log n, on number of comparisons at least n 
log n it’s going to take [HINDI]. This is the argument, we can go over the slides once 
again and understand it more carefully. 
  
This is the argument for why any comparison based sorting algorithm has to have at least 
n log n time. So recall you are only permitted to compare two keys. Radix sort is not an 
example of a comparison based sorting algorithm because you are not comparing keys. 
You are going into the keys, looking at the bits or the digits and so that’s why radix sort 
doesn’t have the complexity n log n. It could be less than n log n, if B the number of bits 
or digits is less than log n. Yeah, so radix sort is the only such. All other algorithms have 
to have because they are all comparisons based sorting algorithm, they have to have 
complexity of at least n log n and there are many which achieve that bound. So with that I 
am going to end today’s class. We looked at radix sort, we looked at bucket sort, we 
understood what stable sorting is and finally we saw this lower bound on comparison 
based sorting.  


