Data Structures and Algorithms
Dr. Naveen Garg
Department of Computer Science and Engineering
Indian Institute of Technology, Delhi
Lecture - 21
Binary Heaps

We will continue our discussion of binary heaps in this class. Recall that in the last class
we saw what a binary heap was, we also looked at the operations of insertion and heapify
on a binary heap. To recall a binary heap has two properties two critical properties, one is
the structural property where we require that the structure of the heap be similar to that of
a complete binary tree. So all the levels except the last level of full and even the last level
is what we called left full that is all the nodes in the last level are as left as possible. The
other property was the heap property which was that for any node, the priority of that
node should be less than or equal to the priority of its two children.

(Refer Slide Time: 02:05)

Building a h}ap in O{n) time
Heap Sort

So today we are going to look at the operations of deleting the minimum element from a
binary heap and building a heap. It is very easy to build a heap using repeated insertions
but today we are going to do a build operation, it just takes linear time. Then we are also
going to see how to use binary heaps to do sorting and that procedure is called heap sort.
So recall that the minimum element is the one at the top of the heap.

(Refer Slide Time: 02:35)

So one way of doing a delete min is to just remove this element and then we have an
empty space at the root. So we have to fill up this empty space and to fill up the empty
space it would be natural to promote one of the two children of this root element to fill
this empty space. So if you were to do that then this empty space would move down into
the tree, move down the tree and it might end up at any particular location in the last
level. So that the resulting tree might not be left filled. So just to illustrate what | am
saying here let us look at this picture.

(Refer Slide Time: 03:14)

We are trying to delete a minimum element from the heap which is eight. So suppose |
were to do that. So this creates an empty location here, now | am going to take the
smaller of the two children element and push it up here, move it up here. So 10 is the
smaller one I move 10 up there, so | have an empty location now here.

(Refer Slide Time: 3:36)

So it is natural to take the smaller of these two and move it up there and this moves the
empty location here and now it is natural to take the smaller of these two, 23 and 43 and
move it up there at that empty location. So that now we have an empty location here.

(Refer Slide Time: 03:59)

Now while this does satisfy the heap property. This is not a heap because it doesn’t
satisfy the structural property of a heap. The elements at the level are not left filled. There
is an empty slot here. So we can really do delete min in this manner but this is close to
what we will be doing in our delete min and let’s see what is the right procedure for
doing a delete min. So we need to get rid of 8.

(Refer Slide Time: 04:35)

Now when we get rid of 8, the number of elements in this heap is going to reduce. So
structurally this heap should not be having this node any more here.

So it makes sense to move this last element here, so we knock off eight and then we
move this last element at this place and remove this node. Now structurally this is a heap
but it doesn’t satisfy the heap property now. So to make sure if it satisfy the heap
property we have to adjust the contents of the various nodes but now note the following
interesting thing. This sub tree is a heap and so is this sub tree is a heap. The heap
property is violated only at this node, this does not have a priority less than the priority of
two children. So but we know for procedure for taking care of this problem. If this is a
heap and this is a heap, all we have to do is to run a heapify procedure on this particular
node. So we just have to do heapify one and recall what does heapify one do. Heapify
one we saw also saw this in the last class. Heapify one would take the minimum of these
two which is 10, swap 10 and 17. The heap property is valid at this node but it’s now
violated at this node.

So once again we are going to take the smaller of its two children 16 and swap it with 17.
Now the heap property is valid at this node but while it’s also valid at this node because if
| look at the two children, they are both larger than 17. So this entire thing is now a heap
and we have deleted the minimum element. So this is the delete min procedure.

To recap in the delete min procedure we are going to remove the minimum element, take
the last element of the heap which means go to the last level and take the right most
element. In the array implementation this just corresponds to the last element in the array.
Take that element and put it at the root and then just do a heapify of the root, heapify one.
So this would make this entire thing a heap once again.

(Refer Slide Time: 07:00)

= SE—
Building a heap

We start from the bottom and move up
All leaves are heaps to begin with

Bopp-Hear Al Y
Lfor i« [n/2] downio | =
i o Hiparev A i)

So this was the delete min procedure. Fairly simple all it required was the heapify
procedure. We are now going to see another application of heapify procedure and that is
to create a heap.

One way of building a heap is to just repeatedly insert the elements in the heap. So we
could insert the first element, second element and the third element and so on and on and
how much time does this procedure take? So recall that to insert an element we take log
of the number of elements that are already in the heap. So to insert the first element we
will take order log one time, for the second element we would take order log two time,
for the third we will take order log 3 time and so on and on all the way up to n, if you
were to insert n elements the last element would take order log n time to insert. So if you
some up this series it’s exactly log of n factorial which is the same as n log n. This simple
minded method of creating a heap by repeated insertion takes order n log n time.

So we are going to look at this other method of creating a heap which is going to take
only linear time and the key to this is to create the heap bottom up. So note that this point,
this is not the heap. These are the elements that were given to me, | just put them at
arbitrary locations in this heap. So in the array so it just means that since we
implementing heaps using array, so we just put all the elements that we have to make into
a heap, we just put them into the array. Now we are going to create the heap bottom up,
so note that these are already heaps.

Look at this sub tree rooted here which is just this node itself, this is a heap because it
doesn’t have a child, any children. So it does satisfy the heap property. So these
individual leaves are heaps so no problem here. Now what we are going to do when we
say we are going to create the heaps bottom up is we are going to make a heap out of this.
So we would want that the sub tree rooted at this node also becomes a heap. What is the
sub tree rooted at this node? It’s this sub tree. How will we make this into a heap? This is
already a heap, we have to make this entire thing into a heap. So we will just run a
heapify procedure on this and that is what happening here. This element would be at
location n by 2, floor of n by 2. We are going to run a heapify procedure on this file.

What would heapify do? Heapify would just compare this with its two children
whichever is the smaller child, so it has only one child, so it will just take this smaller
child and swap it here. Now this entire thing is a heap. Now we are going to look at this
element, so we are going to make a heap out of all of these four sub trees now. So we are
basically go to this element, we are going to look at the sub tree rooted at this element
and make it a heap. So what is a sub tree rooted at this element? It has these 3 nodes in it
13, 11 and 19. How do | make a heap? I run heapify on this. To run heapify the first thing
that heapify does is it takes this, looks at the two children, takes the smaller of T children
and swaps it with this. So | am going to make a heap out of this. The smaller of the two
children is 11 so | am going to swap 11 and 13. So this also now becomes a heap.

Similarly 1 now need to make this, the sub tree rooted here a heap. The smaller of the two
children is 8, I swap 8 and 21. Now | need to make the sub tree rooted at this node a heap,
these are the two children | want to make this a heap but note this is already a heap. This
is a heap, this is a heap and this entire thing is a heap because the heap property is also
satisfied here (Refer Slide Time: 11:15). So now | have these 4 heaps, these are all heaps.
Now | am in a position to run a heapify operation here.

Why run a heapify operation here? This is a heap, this is a heap so I can now run a
heapify operation on this one and make this entire thing a heap. To see the advantage of
heapify, this is already a heap, this is already a heap so | can make a heap out of this. So
to make a heap out of this when I run heapify what does it do? So | am going to make the
sub tree rooted at this node a heap now. To do that | have to take the smaller of these two
and swap it there so that is 11 and 26 swapped and now recall we are doing heapify. So
heapify would bubble up the element all the way to the bottom if need be. So as a
consequence of this swap, the heap property is violated at this one. This node now has a
larger priority than its two children.

So once again we are going to take smaller of these two and swap it with this and now
this entire thing is a heap sort. This was just a heapify operation on this node. The heapify
operation on this node just doesn’t stop with one swap. It will swap and if need be bubble
the element down and that’s what happened here. Now | need to run a heapify operation
on this node to make this entire thing a heap. This is already a heap, this is already a
heap, | need to make this entire thing a heap. So once again it will take the smaller of
these two which is 8 in this case and swap it with 43 and now this is not a heap because
the heap property is violated here. So | need to run a heapify essentially on this one or
actually we are just part of the larger heapify, so we are doing the heapify. We took the
smaller of the two children swapped, now we come to this node.

If the heap property is validated here which it is, I will take the smaller of the two
children, swap with it 43, so 21 and 43 get swapped. So now this is a heap, this entire
thing is a heap and all that remains is to make this entire thing a heap. The heap property
is violated here so | run a heapify operation on this. The heapify operation will take the
smaller of these two nodes and swap it with 23. So it’s going to happen now, 8 and 23 get
exchanged.

Now the heapify continues it just doesn’t stop with this because now this is not a heap we
have changed the content of this node. So we are going to take the smaller of these two
and swap it with 23 and then now this is not a heap. So we go and take the smaller of
these two and swap it with 23 so we get that. Since this does not have any other children
we are done. So this entire thing now becomes a heap. So that was the build heap
procedure. The build heap procedure all it is saying is essentially just go down, so recall
thiswas 1, 2, 3, 4, 5, 6, this is how the elements are laid out in the array. If this is element
n then recall that its parent is going to be at location n by 2. So this element on which we
first have to run the heapify procedure is at location n by 2.

So we first run the heapify on this then we run heapify on this, then we run the heapify
here, then we run the heapify here and after we have done all of these we know that these
are already heaps. So we can now go and run the heapify here and then the heapify here
and then the heapify here. The right order of running heapify is really to first run the
heapify on all of these nodes then on all of these nodes and then on all of these nodes and
that is exactly what is being done here through this single for loop.

We first run the heapify on all of these then on all of these then all of these. Of course
this here is saying that you first run the heapify here then here, then here, then here (Refer
Slide Time: 15:10) this is not necessarily required. You could also run the heapify in this
order but remember that the heapify has to be run first on this level only then can you
proceed to run the heapify here. Why is that? That is required because to run the heapify
on this node these two should already be heaps and this can be a heap only after you have
run a heapify here. So this is the entire build heap procedure. We are using the heapify
sub routine crucially which takes as parameter the location at which you want to run

heapify.

(Refer Slide Time: 15:53)

"
Building a Heap: Analysis

Correctness: induction on i, all trees

rooted at m > j are heaps

Running time: n calls to Heapify = n Oflg

n) =0fn ign)

We can provide a better O(n) bound.
Intuition; for most of the time Heapify works
on smaller than n element heaps

So let’s analyze the build heap procedure so to prove correctness and | am not going to
discuss it in detail here. You can do an induction on i and the induction claim would be
that all trees rooted at locations m which are more than i are already heaps. So given this
induction statement, with this induction hypothesis you can do the induction step and
prove the correctness of the build heap procedure. A simple minded approach to do the
running time computation would just be as follows. There are n calls that we make to the
heapify procedure or n by 2 calls that we make to the heapify procedure. Each one of
them we saw in the last class takes in the worst case order log n time. So the total time
taken by the build heap procedure is n log n but we said the build heap takes order n time
and we can actually prove a better bound of order n. The intuition for this is most often
we are doing the heapify procedure on heaps which are very small and let us see what
this really means. So let’s define the height of a node as the length of the longest path
from the node to a particular leaf.

(Refer Slide Time: 17:22)

So the height of this node is one, the height of this node is 2 and the height of this node is
3. We will call the leaves at height zero, we will say that the height of the leaves is zero.
So 1, 2 and 3 and the height of the tree is just the maximum height of any node which is
therefore 3. So the height of the tree is the same as the height of the root and its 3 in that
example.

Now the time for heapify, if | do a heapify on i on location i, the time for heapify is just
the height of the sub tree rooted at that node i because in heapify as you recall, we might
have to move the element all the way down but if the height of the sub tree is some
quantity h then we can only move it h levels down and so the time is proportional to just
the height of the sub tree. This we will have to remember that the time for heapify on i is
just the height of the sub tree rooted at i. We are also going to assume that the number of
nodes in the heap is of the form 2 to the k - 1 so that it is a complete binary tree. This will
only help us simply the analysis, it is not really required to we can also do without this.

(Refer Slide Time: 18:48)

F—
Building a heap: Analysis (3)

For the n/2 of height 1, heapify() requires
at most 1 each.

For the n/4 nodes of height 2, heapify() requires
at most 2 swaps each.

For the n/2' nodes of height i, heapify() requires

at mast | swaps each.
So total number of swaps required is

[e) 1l 13
rﬁli..lp-;;_qmg; g x 2

If the number of nodes was of the kind 2 to the k-1 then we know that there are roughly n
by 2 nodes of height one and for each of these nodes, we require only one swap. These
are height one nodes, the sub tree rooted at these nodes is height one. So we require only
n by two swaps. For the n by 4 nodes at height 2, the number of nodes is half the number
of the nodes at height 1, height 3 the number of nodes is half the number of nodes at
height 2 and so on and on. So at height i there are n by 2 to the i nodes and for each of
these nodes you require at most i swaps. So the total number of swaps that are required
by swaps | mean the time, so you can count the time required by heapify in terms of the
number of times you have to swap the location of two elements.

The time required by the heapify procedure is just proportional to this to the number of
swaps. So we are just counting the number of swaps. What is the total number of swaps
required then? It is n by 2 times 1+ n by 4 times 2+ n by 2 to the i times i. So this is what
the sum would look like, it is basically n +1 or n times summation i over 2 to the i, as i
goes from 1 through log n. Why log n, because that’s the height of the heap.

It is this sum that we are really interested in and now this summation here, summation i
going from 1 through log n. i over 2 to the i is just 2 and I will show you why in a second.
So if this is just a constant then this entire thing just becomes order n. So this is what we
said earlier, heapify all though we are making n calls to the heapify procedure, most of
the calls are being done on heaps which are very small. n by 2 calls have been done on
heaps of size of height 1, n by 4 calls have been done on heaps of height 2 and since the
time taken for heapify is proportional to the height of the tree on which the heapify
procedure is being called much less time is spent here then just saying n by 4 log n which
is a crude upper bound.

(Refer Slide Time: 21:37)

I have to argue that the summation i over to 2 to the i is 2 and this is a simple argument
for that. So recall that summation x to the i, i going from zero through infinity is 1 over 1
- X, if x is less than one. Now if | just differentiate this I get i times x to the i -1, i going
from one through infinity. | have dropped the i equal zero term because that would now
contribute to zero. The differential of the right hand side is 1 over 1- x square.

Now | multiply both sides by x to get i times x to the i equals x over 1- x square and now
i plug in x equals half. So I get i over 2 to the i, i going from one through infinity equals 1
over 2 divide 1 over 4 which is equal to 2 and if you recall what we required was that this
sum go from one through log n. So that then is only going to be less than or equal to 2 or
strictly less than 2. So the sum from 1 through infinity is 2. So that completes analysis to
show that one can build a heap in just order n time. The key thing here was that we build
heap procedure went bottom up, it first created smaller heaps and then combine them into
larger heaps by just using the heapify procedure repeatedly.

(Refer Slide Time: 23:09)

‘Todo an in place
sort, we move -
deleted element
to end of heap.

Today we have seen how to delete the minimum element from a heap. We have also seen
how to build a heap in linear time, in order n time. Now we are going to see how to sort
using heaps. So give you a bunch of elements and | want to put those elements in
increasing order. So what would be one way of doing it using a heap? I could just do the
following, I could take those elements, build a heap using them. Then | could repeatedly
remove the smaller element from the heap. So that is exactly what | have said here. I first
create a heap, this can be done in order n time as we just saw then | repeatedly remove
the minimum element from the heap till the heap becomes empty. So how many elements
would I have to remove in all? There are n elements in the heap, | am going to be
removing n elements in all and each of the delete min procedure, each of the delete min
steps requires order log n time. So I do n steps here, so the total required would be order
n log n and this requires order n times, so the total time required is order n log n.

Now suppose you have to do an in place sort by in place sort | mean that you are given an
array of n elements and you are given no other space. This is all the space you have and
you just want to swap the elements in this array so that finally you have a sorted
sequence. Recall that our heaps are implemented using arrays. So we first create a heap,
for that we did not require any additional space. Starting with the initial array, just create
a heap in that array.

Now the contents of the array are basically 8, 10, 11, 12 so on and on, in this order sitting
in the array. Now when | delete the minimum element, where does it go? Where would |
put this element, because | don’t have any additional space. So now what we are going to
do is when we delete this element we are going to put it at the end of the heap. So recall
that for deleting the element, 1 am going to move this element here to the top, so which
means that this location in the array is now available to me.

It is free so | am going to use this location to move 8 to put 8 in. Essentially I am
swapping 8 and 31 and now this location is really not part of the heap. The heap is this
now and actually this is not a heap because it doesn’t satisfy the heap property. So to do a
heapify, to make this into a heap so which means that the same as before. | take the
smaller of the two children’s, swap the element with that now again heap property
validated here, smaller of these two and swap and now this is again a heap. So all | have
done is, so this was essentially the delete min procedure. | have done a delete min, | have
removed 8 but | have kept the 8 in my array at the very end.

So this is in place sorting. We are not using any additional space, we delete the element
but then we keep it in the array in an empty location and now once again we do a delete
min. so we delete 10 and 19 is going to come here. So this location is going to become
empty so ten and nineteen essentially are getting swapped. This location now goes away
from the heap, so this is not marked which essentially means that this is the part of my
heap.

Of course | once again need to ensure that the heap property is satisfied, so | am going to
do the swaps, 11 and 19 get swapped, 13 and 19 get swapped and 10 and 19 are not going
to get swapped because this is not part of the heap any more, the heap is just this. So the
heap property is satisfied here because this is only one child and it has priority less than
the priority of its child, its lone child. So this is now a heap.

So once again | do the delete min, so 11 is going to be deleted, 26 is going to come here,
11 is going to come here because this location is now going to be empty and so this is
what is going to happen. This location is going to go out of the heap now because the
heap is only this part and once again we are going to do the swaps. We are going to do a
heapify at the root so as to convert this into a heap and that is what we are doing now and
now this is a heap.

As you can see the last element is the minimum element. The second last element is the
second minimum and so on and on. Eventually this is what is going to happen, we are
going to have a sorted sequence but in decreasing order and that can easily be reversed in
linear time to get a sorted sequence in increasing order. So | will just continue the
procedure, we swap the last element with the root and then this element goes away from
the heap. Now we are just going to do the swapping so 13 and 29 get swapped, here the
smaller of these two, 17 and 19; 17 is going to get swapped with 29 and now this is again
a heap furnace.

Now the minimum element is sitting here, 13 is going to swapped with the last element,
this element is going to go out of the heap now. It fades away out of the heap and now we
are going to ensure the heap property by doing the necessary swaps. So smaller is 16, it
got swapped, smaller is 21 it got swapped and now this is a heap because these two are
not part of the heap. So heap is only this thing, this is the smart. So once again you swap
the last element in the heap with that root element. So 16 comes here and 26 comes there,
this goes away. It is not part of the heap any more and then we are going to ensure the
heap property by doing the necessary swaps.

So 17 and 26 get swapped and now the heap property is violated here because this has
higher priority than one of its children so 19 and 26 are going to get swapped and now
this is a heap. This again is now going to swap with the last element, 17 and 31 get
swapped, 17 is going to drop off from the heap, 17 drops off and now we are going to
ensure that this entire thing is a heap by taking the smaller of its children, swapping heap
property validated, take the smaller of these two and swap.

The heap property is now valid. This is a heap so this is a minimum element, swap it with
the last element, 19 and 29 get swapped. This element goes away from the array, gets
dropped and now we have to ensure that this is a heap. The heap property is violated
here, take the smaller of these two, 21 and 29 are swapped. The heap property is still
violated; take the smaller of these two, 23 swap it with 29. This entire thing is now a
heap. So we are going to remove the minimum element which is 21 we remove it, 31
goes in this place and since this location is now empty, 21 comes at this location.

Now we need to ensure that this is a heap, 21 dropped away now take the smaller of these
two children twenty three, thirty one. Swap 23 and 21 and then take the smaller of the
two children and swap it with 31. So now this is a heap, so the minimum element is 23
we are now going to remove the minimum element which essentially means swap it with
the last. This is not part of the heap anymore and once again ensure the heap property by
swapping and this is now a heap. The smallest element is 26, exchange 26 and 31 remove
it from the heap and now ensure the heap by doing the necessary swaps. So the smaller of
these two children’s is 29, so 29 and 31 are going to be swapped. This is a heap now,
smallest element is 29.

So | am going to remove this and 43 is going to come at this location, so 43 comes here
29comes here, this is not part of the heap anymore so | drop this off and now | need to
ensure that this is a heap. So this now has only one child, this is the remaining part of the
heap, this has only one child and which is smaller, so | need to swap them. So this is a
heap now. So the minimum element is 31, | remove this minimum element and the last
element is 43, it will come at this place. So 43 comes here, 31 is removed and it is put at
the location of the last place because this location now gets empty. So essentially that
corresponds to 31 and 43 getting swapped again and this element going away from the
heap. Now this is the only element left in the heap and so it is a heap. | do a delete min
which means | remove this element and it’s not part of the heap anymore. So this is what
we get, as you can see this is a sorted sequence in decreasing order now if you read it like
this and this is how we do heap sort.

(Refer Slide Time: 33:40)

F—
Running times of heap operations

Insert: O(log n)
Heapify: Olegn)
Find minimum: O(1)
Delete-min: O(log n)
Building a heap: O(n)
Heap Sort: Ofnlog n)

So let’s quickly summarize the running times of the various heap operations that we have
seen so far. The last thing we saw was the heap sort which takes a total time of order n
log n. Why did it take a time of n log n? This was because it was a two step process, first
we created a heap. This took only order n time and then we did delete min repeatedly till
the heap becomes empty. So the first time we did the delete min operation we spent log n
time, the second time we did a delete min operation we spent order log n - 1 time let’s say
because the size of the heap reduces and so once again we have a series of this kind log n
plus log n -1 plus log n-2 plus log n -3 going all the way down to a one but the sum of
this series is log n factorial which is the same as n log n. The total time taken by this
system is order n log n.

So while this is only order n, the total time taken by this step is order n log n and that
implies that heap sort takes a total time of order n log n. Building a heap, we saw a
bottom up procedure for building a heap. So there are two ways of building a heap, one is
repeated insertion. Repeated insertion we insert one element at a time and we argued that
takes total time of n log n and you can actually come up with the examples were it takes
that kind of time. So repeated insertions would take n log n time but if we did this bottom
up process of building the heap where in the leaf elements are already heap, the sub trees
of height one you made them a heap then you made the sub trees of height two a heap
then you made the sub trees of height 3 a heap and so on and you repeatedly use the
heapify procedure to be able to do that.

So if you were to do it this way this bottom up construction of a heap this takes order n
time. The delete min operation which we also sorted is takes only order log n time this
was because the delete min operation is a two-step thing. First we remove the minimum
element which is sitting at the root, take the last element in the heap.

So in the array implementation this corresponds to the very last element in the array and
put it at the root location, put it at the location of the first element which we have
removed which was the minimum element. So once you did that, now this is not a heap
because the heap property could be violated at the root but the two sub trees the two
children of the root, the left child and the right child and the two sub trees rooted at this
two children are heaps. So we can invoke the heapify procedure on the root.

Heapify we have already discussed and we are going to recap today, a recap just now
takes only order log n time. So the total time taken for delete min then is log n for the
heapify and constant time to do this swap of moving the last element to the very first
location. So total time taken is order log n so this was delete min where you are removing
the minimum element. If you just wanted to find what the element was, the element with
the least priority that we said is the element sitting at the root node. Now that we can just
directly access and so finding the minimum element just take constant time.

In the last class we saw the heapify operation we also saw it repeatedly in the delete min
and the build heap procedure today and also in heap sort actually. Heapify is really
crucial operations and we saw that it takes only log n time this is because heapify we are
bubbling the element down the tree and the worst case we might have to bubble it all the
way down but since the height of the tree is no more than log n, it will take no more than
log n steps to do that.

In the insertion process on the other hand we are moving the element up the tree, so first
we decide what the new structure of the tree is, so we add an additional node, we put the
element there and then we keep moving it up till the property at all the node is not
satisfied. So we keep moving it up so it bubbles up the tree. Since once again the height
of the tree is only log n. in the worst case we might be bubbling up the tree at most log n
levels and so the total time taken by the insert procedure is at most order log n. So as you
can see, if i use a heap to implement the priority queue data structure then the worst case
time complexity of any of the operations, so forget heap sort because the typical
operations that we are doing are insert, find min and delete min. These were the three
operations we started of with and while find min is done very quickly, it’s just constant
time. Insert and delete min also don’t take too much time they take only order log n time.

Compare this with the implementation we had done using a sorted sequence in an
unsorted sequence. In the case of an unsorted sequence we said insert would take
constant time but find min and delete min will both take order n time. In the case of a
sorted sequence we said that insert would take order n time while both find min and
delete min could be done in constant time. So it’s not the case, in some settings you
might be interested in implementing a heap, implementing a priority queue using a sorted
sequence and which would those settings be. If you were implementing it using a sorted
sequence then as | said both find min and delete min just take constant amount of time
but insert takes a lot of time. It takes order n time. If you had a setting where you were
doing a lot of find min operations, very few insert operations then it might make sense to
use a sorted sequence.

So depending upon the application one has, depending upon the settings one is in, one
might have to choose between I mean the different ways of implementing a priority
gueue. So we have looked at three ways heap, sorted sequences and unsorted sequences
and depending upon which operation of occurring more often, one might have to choose
an appropriate implementation. With this | am going to end today’s class. Today we
looked at the other operations on heap. In particular we looked at the delete min operation
and the operation for building a heap in a linear time. We also saw how to use a heap to
do sorting in order n log n time only. This sorting that we saw was an in place sorting
algorithm.

Thank you.

