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Data Compression 
 

 Today we are going to be talking about Data compression. 
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We will begin with what the idea behind file compression is and then we are going to be talking 
about Huffman Tries which is the way of doing data compression. We are going to see how 
“ABRACADABRA” translate into these sequence of 0’s and 1’s. So what is file compression? 
As you know, if you have a piece of text, it’s stored as bits in your computer and what is 
typically done is that, for each character, you have what’s called an ‘ASCII code’. So if you were 
to go into a unique shell and type <man ASCII>, then that will give you the ASCII code for all 
the various characters.   
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The ASCII code is an 8 bit code which means that every character is stored as 8 bits. So this is 
what is called ‘fixed-length encoding’. why fixed length because for each character, I have the 
same number of bits but our idea today is to try and reduce the amount of space required to 
encode a piece of text. If each character I am going to use 8 bits then the total number of bits 
required will be 8 times the number of characters in the piece of text. But suppose I don’t have to 
do fixed-length coding.  
 
You know some character might have two bits associated with them. Some character will be 
encoded using three bits, some using four and so on, can we exploit this and the fact that some 
characters occur more frequently than others to design a coding screen which will represent the 
same piece of text using lesser number of bits using lesser number of bits. You understand the 
need for doing this kind of compression?  Clearly the lesser memory you require, you know if 
you are transmitting the file, you have to send less number of bits. 
 
If you are storing, you will have to store less number of bits and so on. So it’s very useful to be 
able to compress the information that you have. That will bring us to what we call variable-
length coding. So the number of bits used to represent each character would be different. In 
particular, character which occur more frequently, we are going to represent them using less 
number of bits and use that. Characters which appear very infrequently, let’s say x or z in the 
English alphabet, we can have longer sequences. May be more than 8 bits. Let’s see how this is 
done. So let’s say my piece of text is just 4 characters java and I decide to encode ‘a’. How many 
characters are there?  
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Suppose my alphabets were just a, j and v.  The only things that ever encoded were strings on 
this alphabet a, j and b. So java is1 example of such a string and suppose I were doing fixed 
length encoding, how many bits should I associate with each of these? I will need at least two. I 
can’t do with just1 because there are three different characters and there are only two possible 
values if I choose1 bit. So I need at least 2 bits and if I take 2 bits then how many bits do I need 
to represents java? 2 times 4 is 8. As straight forward as that. But suppose I decide to use 0, just 
single bit for ‘a’ and11 for j and 10 for v and I will tell you why I am doing this. Then java can 
be encoded as110100.  That would be the encoding and it will take only 6 bits. It will take the 
lesser number of bits. Then you can ask me, “well, why did I do j as11 and v as10?” so the 
problem with variable length decoding - variable length encoding is that of decoding. How do 
you decode? Given a sequence of bits you want to decode it uniquely. So suppose I gave you a 
sequence of bits, then you should be able to retrieve java from this. Of course I’ve told what the 
codes were. You should be able to get back to java. Suppose for instance, I had used this as my 
encoding, for ‘a’ I use 0, ‘j’ is 0 1 and ‘v’ is00. So still it should take 6 bits only and the encoding 
would be 01000 and 0.  From here can I get back to java given this code? Well 01 could be either 
‘a’ or it could be a ‘j’. It has to be a ‘j’ because we are using this ‘1’. So what would you do with 
these 4 0’s? It could be ‘java’, it could be ‘j v v’ or it could be ‘ja’. It’s ambiguous. You see the 
problem?  If you have to use variable length encoding, then you could have this problem of 
ambiguity while decoding.  
 
So you have to be careful when you are using variable length codes. This problem would not 
arise when you have fixed length codes. You understand why because you will take those many 
bits and then you now determine what exactly the character was. So to prevent ambiguities in 
decoding, we will ensure that our encoding satisfies what’s called ‘the prefix rule’ which is very 
simple. It says that no code is a prefix of another code. By code, I mean the bits I use for a 
particular character. When this was our code, you can see 0 was not a prefix of either j or v. j and 
v were also not prefixes of each other. The encoding arising out of this would be unambiguous 
and we will see an example to show that to illustrate that. But the encoding arising out of this  



(Refer Slide Time: 08:15) will be ambiguous because ‘a’ is the prefix of these (Refer Slide Time: 
08:21) and I will show you an example. You must understand what the prefix rule is. So if your 
codes satisfy the prefix rule, then decoding will be unambiguous. But if it does not, then you will 
have ambiguity in decoding. So I will come back to the prefix rule in the next slide. Code is the 
collection of code words. 
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What I have written out here is a code. Each one of these is called a code word. For each 
character the sequence of bits what’s called the code word and the entire thing is called a code. 
So code which satisfies the prefix rule can be represented as a tree. In particular as a trie. So 
recall the ‘trie’ that we have discussed in the last class, the branching was a 26 way branching. 
But here branching will only be a 2 way branching. Each node will have only a 2 children. Here 
my alphabets are a b c d r. five characters only. 
 
The characters will be stored at the leaves or the external nodes and every for every node the left 
edge will label with 0 and the right edge will be labeled with 1. Now a = 010 because you know 
if you look at this, from root two A, you will encounter 010. When you are coming to R, the code 
for R will be 011. Can you see that if I drew such a picture for you, then the code word for any 
character will not be a prefix of the codeword for some other character.  Otherwise it could have 
ended midway. But it’s not because everything is a leaf. Each character corresponds to a leaf. 
That’s the very first statement here. So the code word for one character would not be a prefix of 
code word for another character. We will represent our codes using such a we trace a from the 
root to the particular leaf to determine the code word for each character. I need not have shown 
this picture at all. I could have just drawn this trie and from this you can figure out what is the 
code word corresponding to this.  Now how do we do the decoding? Suppose this is my trie and 
these are the code words (Refer Slide Time: 11:33). 
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Now I give you a sequence of bits that’s this is my encoded text and I have to decode this text 
(Refer Slide Time: 12:01). As you can see, the code satisfies the prefix rule. So how do I do the 
decoding? So I start from the beginning. You always start from the beginning. You start from the 
beginning 010. So you will trace out 010. You will get a leaf. You stop and these 3 characters go 
away and I get an ‘a’. So I have struck off these 3 and I have written down an ‘a’. Now I will 
take 1 and the next 1 is also1. So I get a ‘b’ and I will strike these two off. I have taken care of 
these two. Now I get a 011. Its 01.1 so 0 remains. As you can imagine it will come to the same 
‘abracadabra’. So that’s what this will turn out to be and we can decode it and see. 
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Suppose I give you this trie and I give you this encoded text, how much time does it take to 
decode? Clearly I am just looking at a bit and I am going to spend 1 unit of time with every bit. I 
just look at that bit and go down one level in that trie.so it’s basically length which you have to 
spend clearly. So this is another trie (Refer Slide Time 13:55) and you know this is a long piece 
of encoded text and you can figure out what this is. 
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You can take this is an exercise. So what is our aim in doing this? 
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Recall we wanted to build up a code in such a manner such that the total length of the encoding 
is as small as possible.  Suppose this trie was specifying my code and once again I was encoding 
abracadabra, this has 29 bits. How will you compute such a thing? Well let’s quickly do that to 
make sure that you understand.  What is the frequency of each character? A – 5,B - 2, C – 1,D – 
1 and R – 2. Im using 3 bits for A, 2 for B, 2 for C, 2 for D and 3 for R. I am just counting the 
number of bits. So this becomes 15, 4,2 and 6.29 totally. Now suppose I had another trie say this 
one (Refer Slide Time 16:06), you think this will have less or more?  
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This will have less.  ‘A’ was occurring 5 times. Here I’m using 3 bits and I am using 2 bits here. 
I’m saving 5 bits for ‘a’. Of course, I will have to compensate elsewhere.  c and d, there are 2 
here and 3 there.  But c and d occur very infrequently. So it’s good. This will have less than 29.  
We are also saving on R. this you can check. It will require 24 bits. We have to design this in 
such a manner so that the number of bits required it as little as possible. So let’s try and 
understand. What is it that we are given? We are given the frequency of that character. Suppose I 
give you a piece of text. You will count the frequency of characters and we are trying to compute 
the trie so that the length of the encoding we get is as small as possible. 
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Recall that each character is a leaf in our tree. Number of bits used to encode the character is its 
level number where I’m assuming that the root is number 0. So if the ith character has frequency 
of f i and has level number of  l i, then what is it that we are trying to minimize? It is summation fi 
li. so we have to choose a tree so that this quantity is minimized. Our tree will determine the li’s. 
fi is given to us.  We cannot change the fi’s. We can pick a tree so that we can get appropriate  
li’s.  So summation fi li is called the ‘total external weighted path length’ of a tree. It should be 
very easy to see why. 
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External because we are talking about external nodes which are our leaves. What is its path 
length? The length of the path from the root to the leaf which is basically the number of levels. 
‘Weighted’ because we are multiplying it by the frequency and ‘total’ because we are summing 
it up.  So we are viewing each leaf as having a weight which is equal to the frequency of the 
corresponding character.  The weights in the weighted are referring to this frequency.  From now 
on, I might call the same thing is weight or frequency. This means the same thing. Here for 
instance given these weights or frequencies, f1 through fn, we wish to find the tree whose total 
weighted external path length is minimum.  
 
That’s what we want to do. We are given the weight on the leaf. We want to build a tree whose 
leaves will be these and who’s weighted external path length will be minimum and will denote 
this minimum weighted external path length by this quantity. so given ‘n’ leaves with weights f1, 
f 2, f 3,… fn; your problem is to build a binary tree  whose leaves will be these ‘n’ leaves and 
which will have a minimum total weighted external path length. So we have managed to translate 
our question of finding the minimum length in encoding such that the length of the encoded 
message minimum to that of designing an appropriate tree.  One thing I am going to assume is 
that when I write it in this way, f1 is smaller than f2 and these are in increasing order. Now let 
me show you what the algorithm is. Once again, my text is the same “abracadabra”. There are 5 
characters and I have put down the frequency of these 5 characters.   
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I have put red boxes around them. These will have to be the leaves of my tree. Now what I am 
going to do at the very step is I am going to take the 2 with the smallest value which are the ones 
in the ends. These are the two smallest ones. I am going to combine them. How am doing that? I 
am going to create another node. I am building up a tree now. These are my leaves. I make 
another node as the parent of these two and this node gets the value of weight of sum of these 
two. Now these two will disappear from the picture and I will just be left with 4 nodes and I will 
repeat the process. So what is the process? Take the two smallest and combine them together into 
one. Take the two smallest and combine them together into a node and when you combine, you 
basically sum up their weights. So at the next, we have an option .we can either combine b and r 
or we can combine r with this one (Refer Slide Time: 22:13) that we have created. Let’s see 
which one I take. I decide b and r to be combined into one.  When you have an option we can 
pick whichever you feel like.   
 
So they have combined into one and what we are left is only three node. Now many times I will 
have to do this process? If I started off with ‘n’ leaves, how many times will I have to do this 
process? Every time you are reducing a node by 1. so it is (n -1) times not n by2. Now which will 
we combine? Two and four clearly because they are the two smallest ones.   
 
So you combine them into one and we get a six. Finally we have only two nodes left – 5 & 6. 
They will get combined. This is the picture. We will combine them into one and these are 
11.now how do I label? I can just label whichever way I like to. It really does not make a 
difference. The length of the encoding was determined by the depth of these things. This 
becomes encoding now and the claim is this is the best. This will give you the same minimum.  
Whatever was the minimum for abracadabra will be achieved by this. As you can see ‘a’ which 
was occurring five times is getting only1 bit. Looks like it is the right thing to do. So this is our 
final trie. 
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This is my text. This is the corresponding code. As you can see for ‘a’ you have 0. For b you 
have 100, the next three characters. For r you have 101, the next 3. For c you have 3 and so on 
and on. There should be a gap between this 101 and 0 because ‘a’ corresponds to the last one and 
these are only 23 bits. These is even better than the previous code which was 24 and this is the 
best possible which is what we will argue in this class. Can you do better than this?  Let me take 
the same example and then build another trie.  How can I build another trie? We recall that there 
was an option at each point. Let me take the other side of the option. Let me see what trie I get 
now. Here there are 2 minimums. Here there are 3 2’s (Refer Slide Time: 25:44). First I 
combined these two. Let me do that. I decide to combine r with this one (Refer Slide Time: 
25:49). I get a four.   
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Now which do I have to combine? This four with this two (Refer Slide Time: 25:55). I combine 
the four and the two and then I get six. Finally I am going to combine this and this.  So this is the 
final trie I get. It’s the same piece of text. Once again ‘a’ gets only 1 bit. b gets 2. r gets 3. ‘a’ 
gets 1. ‘c’ gets 4 now and d also gets 4.  You think it will be different from 23? It should not be.  
Otherwise the theorem I am claiming is false. It should be the same.  You can count. It will be 23 
because this algorithm is computing the tree with the minimum weighted external path length. 
Since it’s the minimum, it cannot be smaller or larger than the other one because they are both 
the minimum. So we now need to argue correctness. Why is this computing the minimum?  
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Why does this algorithm compute a tree with the minimum weighted external path length? So 
there’s no reason to believe its too simple to do anything useful. Let us see what the argument for 
this one is. We will be proving it by using induction on the number of leaves which is same as 
the number of characters.  Suppose I gave you only two leaves, then what is the algorithm going 
to do? It will just combine them into one and so it will basically give you a tree with the three 
nodes, one root. this will be 0 and this will be 1 (Refer Slide Time: 27:54) and this will be 
something and this will be something and clearly it’s using 1 bit for each of the character, you 
cannot do better. You cannot take 0 bits for a character. so it’s true when you have only two 
leaves. So we are going to assume the claim is true when you have (n -1) characters or leaves and 
we are going to show that it’s going to be true when you have ‘n’ characters or leaves. So when 
we have ‘n’ characters, what are we doing at the very first step? We are taking the two characters 
with the smallest frequencies and combining them into one. 
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We are taking the two characters frequencies f1 and f 2 and we are replacing it with one node of 
weight f1 + f 2. It’s as if you have one character now of frequency (f1+f2). so once it does that, 
beyond this point the behavior is as if it was given (n-1) characters with frequencies as f1 + f 2, 
f3, f 4, f5 upto fn.  Beyond that the point it’s the same behavior. so beyond the point the 
algorithm behaves as if it had only (n-1) characters with frequencies f1+f2, f3 all the way up to 
fn. using our induction hypothesis it would have computed the best possible tree because these 
are only (n-1) characters now and it would have computed a tree on these (n-1) characters with 
total weighted external path length as this quantity.  This was the minimum quantity. This was 
the notation we used for the minimum. The tree computed by this algorithm has weighted 
external path length f1 + f2+ this quantity (Refer Slide Time: 32:02).  This is what our algorithm 
has computed. This is the weighted external path length computed by this Huffmen’s Algorithm. 
Now we have to argue that this is the minimum possible. It will not go lesser than this. What we 
will argue is that the best solutions for f1 through f n equals f1 + f 2 + exactly the quantity that 
the algorithm had computed. We will argue this now.   
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This quantity that algorithm has computed is actually the best. It is the minimum weighted 
external path length when your weights are from f1 through fn. How do we argue this? This will 
follow from the fact that in the optimum tree, by optimum tree I mean that tree whose weighted 
external path length is minimum. So let’s prove this fact.  Suppose this factor is true, how does 
this implies this? Why does this imply? Let’s do one step at a time. 
 
Suppose had proved this factor that in the best possible tree suppose we had prove that in the best 
possible tree that two lowest weights are siblings. We will do that in a slightly more formal way. 
Let’s assume that the two minimum are always siblings. Let’s argue that if this is true, then it 
will imply this (Refer Slide Time: 34:18). We have our best possible tree and the minimum are 
siblings. Why does it imply that we found the best> That’s because it implies the best over f1 
through f n equals this. This is the best tree. we are going from here to here (Refer Slide Time: 
35:28) which means that we have assumed this statement and we are proving that the best tree 
over f1 through f n has weighted external path length equal to f1 + f 2 + the weighted external 
path length of the best tree over f1 + f2 through fn. so now we are kind of trying to mimic what 
we have already done. let me now look at this tree. Now I am just looking at the remaining tree. 
This is a tree (Refer Slide Time: 36:08) and let me give this node weight equal to f1 + f 2. Now 
this is the tree over leaves f1 + f2, f 3 up to fn. What will its minimum weighted external path 
length become? If this is the best tree for the entire thing, for these values or leaves, this should 
be the best tree. We are looking at the best tree for f1 through fn.  I am saying the following.  
 
Let’s cut off the two leaves and just keep that. Let’s give this a name of f1 + f 2. Then this tree is 
the best tree for these choice of weights also. Suppose there was something smaller possible, 
then this (Refer Slide Time: 37:21) blue would not have been and best tree for these guys. The 
best would be a green tree.  So suppose the black tree was the best, better than this red one. 
(Hindi ) This tree is the best possible tree when you have leaves with weights f1+ f 2, f3, f4, f5, 
f6. This is the best possible tree. So this red weighted external path length is this quantity then 
and so blue total external path length is red external path length + f1 + f 2. 
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So which means blue weighted external path length which is this leaf is equal to this leaf which 
is equal to the best possible (Refer Slide Time: 41:28). What did we get in our previous 
algorithm? We got the right hand side exactly.  So the algorithm is completing the best possible. 
If this black is better than the red, then what have I done? I have only increased the black by a 
quantity equal f1 + f 2 while this blue also differs from the red by this quantity f1 + f 2. If this 
black is better than this red, then this bigger black is also better than the bigger blue which 
violates our optimal case. But why is this statement true?  
 
Why should it be the case that in the optimum tree, the leaves with those two lowest frequencies 
are siblings? Let’s take the leaf with the lowest weight. It will have the maximum level number. 
Suppose this leaf with the lowest weight comes in between and there is another leaf with a higher 
weight, this is not optimum. So we have to swap these two. So the total external weighted path 
length becomes minimum. So the leaf with the smallest weight has to be at the last level. Let’s 
look at its parent and let’s look at its siblings which is this (Refer Slide Time: 43:53) leaf. By the 
same argument this leaf is the second smallest weight because if it for anything else then once 
again you can swap and reduce. So the leaves with the two smallest weights are actually at the 
very last level. In all our examples you must have seen that happening. They are all at the last 
level and they are siblings. You just use this fact, make them siblings and then the problem 
reduces by 1 because now you have only (n -1) nodes. How do we take care of (n -1) nodes? It is 
the same way we took care of them.  Once again you take the two smallest ones, make them 
siblings and continue. So just this one property being exploited in this algorithm. We got the very 
simple algorithm to compute the best possible trap. So with that I am going to stop today’s class. 
After we have done priority queues, we are we are going to analyze these particular algorithm to 
compute its running time. So I’m leaving the bit about computing its running time today and I 
will take it up after we have developed the notion of paradigms.  
 


