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Lecture – 18 

Tries 
 

Today we are going to be talking about another data structure called “tries” and we are going to 
see it’s used in pattern matching. so I am going to be starting off with what are called “Standard 
Tries” which is the plain version of tries and we are going to move on to “Compressed Tries”. 
This is a space sufficient way of keeping tries and the last topic we are going to look at today is 
what are called “Suffix Trees”.  So first 2 terms have tries in them and the 3rd has trees in them. 
Recall in the last class we were looking at pattern matching. Given a piece of text, we were 
interested in matching patterns. Finding out at what all places certain pattern appears in the text 
and what we had done there if you recall was that we had preprocessed the pattern. That is, we 
took the pattern. We computed this failure function h on the pattern and then we used that 
information to search for the pattern in the text and the Time we took was proportional to the size 
of the text.  
 
(Refer Slide Time: 02:45) 
 

 
 
So this preprocessing the pattern speeded up the Time it took to match the pattern. If we did not 
compute the failure function h, then we just had this brute force method of matching the pattern 
which took order m n time. ‘m’ size of text and ‘n’ size of the pattern. So after processing the 
pattern in Time proportional to the length of the pattern, the Knuth-Morris-Pratt Algorithm 
searches an arbitrary text in time proportional to the length of the text. Now if the text is very 
large, this is not a very good situation to have. 
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So I have a very large piece of text which doesn’t change and I am searching for patterns in the 
text. Every Time I search for a small pattern, if I am going to spend Time proportional to the size 
of the text, that’s a lot of Time. so you have let’s say, collected works of Shakespeare in which 
you want to search for ‘veronica’ and you are going to spend Time proportional to the  size of 
the text which is very huge. Now what we want to do today is to process the text so that I can 
search for the pattern in Time proportional to the length of the pattern.  see this becomes great 
because now patterns are typically very small; 7 characters, 15 characters, something like that 
while your text could be a million characters large. You don’t want to spend that much time 
every time you are searching for a text. But here today we are going to require that we will 
preprocess that text. We will work on the text initially and we will have created some data 
structure on that so that when a pattern comes, we can search for that pattern. All occurrences of 
that pattern we can spot in a very little Time proportional to the length of the pattern, no matter 
what pattern comes. In the previous KMP algorithm, it was the other way around. You processed 
the pattern. You did a preprocessing on the pattern so that no matter what text came, you could 
search on that text. But there you were taking Time proportional to the length of the text which is 
quite expensive. We will come to the notion of tries today.  
 
What is a trie? I will perhaps show you a picture and I will explain it through this picture. So trie 
is a data structure to maintain a set of strings. Let’s say I have a set ‘S’ of strings. S = (bear, bell, 
bid, bull, buy, sell, stock, stop). Now I am going to create a tree here. Now this is not a binary 
tree. In fact the number of number of children that particular node can have. It can be as large as 
the size of the alphabet. We are working with the English alphabet. Let’s all our strings are lower 
case characters. So the size of the alphabet is 26. Each node can have up to 26 children. Now the 
children of the node are ordered alphabetically. What does it mean? Each node is going to have a 
particular character in it and if I look at all the children of this particular node, then those are 
going to be ordered alphabetically. So b will proceed c if c were there and c would come after b 
and so on. I have just 2 b and s. so b comes to the left of s. this had 3 e, I and u. so they come one 
after the other in this order. So it’s an ordered tree.  



(Refer Slide Time 06:44) 
 

 
 

This is read left to. Now how is this organized? Suppose I have to start from here and I have to 
follow a path in this tree. Suppose I came this way “b e a r”. (Refer Slide Time: 07:05). Bear is 
one of the words here. Suppose I were to take some other path “s e l l”. Sell is another one. “s t o 
c k” – stock. This is another word here. So now you can build this thing. If I give you set of 
words can you build this trie. It’s straight forward.  What am I doing? At the very first level I am 
looking at the first characters of all my words and see what are the various occurrences. If you 
look at the first character I have just b’s and s’s. So there will be one node corresponding to b 
and one corresponding to s and within this b. then this b has only 5 words associated with it. 
What are the second character of these words. e i u. so that’s why e i u is the children of b and so 
on.  
 
The square here just reflects it’s a leaf node corresponds to a word. Suppose I had built such a 
trie, how much Time does it take to search for a word here? Suppose I give you a word. How 
much Time does it take? Suppose I said ‘bed’, how much Time does it take to search for bed 
here? First I come here. So this has two children.  How is this organized? How do you think what 
kind of data structure would I have to organize this? It’s a multi way search tree. It is in some 
sense but each node can have up to 26 children as a set. So one way of organizing it is each of 
the nodes has an array of size 26 sitting inside it. The first location of the array points to the node 
corresponding to a. second to the node corresponding to b. third to the node corresponding to c 
and so on. If you organize it in an array, you waste space. Each of the nodes has 2 to 3 children 
here. In that case, instead of an array you could keep a linked list.  
 
Ordered according in the alphabetical order in which case you know you will have two nodes 
here. the first nodes will be pointing to b and the second node will be pointing to s. you will say 
that this is b and this is s. now given this, how  much Time does it take to search? Suppose I had 
a link list at each nodes, why would this change the search Time? It is 26 Times the length of the 
word I am searching for. so I have a link list sitting here (Refer Slide Time: 10:38) and in each of 
the nodes of the link list, there is a particular character which says that if you are searching for 



this word and if this is its first character, then follow this pointer. If you are looking for a word 
beginning with ‘S’, you will have to run through the link list first to get to s and then follow the 
pointer. If s is not there you can stop away but if s is there in which case you will have to follow 
the pointer and repeat these things. So how much Time does it take in the worst case? You might 
have to traverse 26 nodes of the linked list into the length of the word.  
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Let’s look at the operation of find. How much Time does find take? I am using let’s say linked 
list of presentation on each other. So 26 is the alphabet size. I am using d to denote it. May be the 
alphabet was not 26 large. You may have a smaller alphabet or a larger alphabet and m is the size 
of the string of the word that I am searching for. So that’s the Time for find. can you see that this 
is also the Time for insert and for delete? When you know you are searching, you keep coming 
down and then you don’t find it any more. If you don’t find it any more, what you do is insert. 
You will create that letter, put it in the linked list, make a pointer down and may be you will have 
to create new nodes. You want me to show how you do this? 
 
Suppose we were trying to insert let me quickly do it. What do what do? I want to insert bed. 
What will I do? I will search for bed. I will come down here. ‘d’ found. Here I would have a 
node. I would have seen a ‘b’. So I come down here then I would search for a ‘e’. I come down 
here. Here I am searching for a ‘d’ in the linked list here. There is no ‘d’. So I create a node. 
Now it will be a square node because it’s the end of the word and this would have ‘d’ written in 
it. But if I had “b e d s”, then I would create one circular node and then a square node below. I 
might have to create such a longer change here. In any case total Time taken would be 
proportional to the length of the word. We will see later when one of the words is the prefix of 
the other. That’s what you worried about. (Refer Slide Time 12:32) 
 
So find, insert and delete all take the same Time order dm but one thing is bad with this data 
structure and that’s the space requirement of the data structure. How much space does it take? 26 
Times the number of nodes. How many nodes are in this tree that we have created? Total number 



of characters in the entire text which is the size of the text. That’s the worst case and it can be 
close to the worst case. I have let’s say 10 words. Let’s say I have 10 words, each beginning with 
a different character. The first word begins with the ‘a’ second with the b third with the c the 
fourth with the d and so and on and you can make a long chain below this depending upon what 
the size of the word is. There can be as many as many as total. Not total number of words which 
is exactly total size of the strings in it. by size I mean put all the characters together and their 
total size. Let’s call that double. So that’s the space required which is too large. So we got to do 
something about this one. Before that, let’s see applications. So this actually does our task what 
we started off with.   
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So suppose I give you a peace of text and we take all the words in the text and throw them into a 
trie. I make a trie out of all the words in the text. Now if I have to search for a particular word, I 
can search for the word in Time proportional to the length of the word. This is what we started 
off today. So I can do word matching. Find the first occurrence of word ‘x’ in the text. Why have 
I said first occurrence? It will be inserted only once. So one occurrence I can detect by doing 
that. We can also do all occurrences. We come to all of this in a second. Let me show you an 
example and you will see that we can actually even do all occurrences. So each of these 
operations of matching is done by tracing the path corresponding to that word in this trie. So let’s 
look at an example. This is a piece of the text.  
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So you have a bunch of words. “See” for instance appears twice. so I am looking at all  the 
distinct words that are there in this piece of text which is “see”, “bear”, “sell stock”, “buy stock”, 
“bull”, “bid” and “bell”. So these are all the words I threw them into a trie. This is the trie I get 
and as you can see, this leaf corresponds to “b e a r” (Refer Slide Time: 19:15) and bear occurs at 
position six that text that is so with this leaf I store 6.  
 
Let’s look at the bid. Bid is occurring at two places. Perhaps starting at 47 and starting at 58. So I 
will store both 47 and 58 here (Refer Slide Time: 19:42). This is what we call preprocessing the 
text. I took my initial text and did something, built this trie on it, stored this information in each 
of these leaves, so that now if you come with queries like where does this particular word appear, 
I can quickly tell you. How much Time do I need? It’s very little. It’s just proportional to the 
length of the word and I will be able to tell you all the places where this word is, by looking at 
this number down here. This doesn’t really solve the problem that we were talking of in the last 
class which was that I give you piece of text and I give you pattern and find where all the pattern 
appears in the text. Because my text need not be a collection of words. As I said you know my 
text could be let’s say, sequence of basis in a gene database. So I have just a long sequence of “A 
C T G” that kind of thing and I am searching for a particular sequence in there. so here we have a 
separate notion of words and if we are searching for words, that’s  okay. Suppose I was 
searching for “a r blank s e”, then I cannot search for patterns here. So if I have a pattern like 
that. So if I don’t know if I think of these blanks also as some special character of my alphabet, 
then I cannot really search for anything.  
 
So the reason I can search here is because there are well defined boundaries. My pattern has to 
begin with the boundary and end with the boundary. That’s why I can search. So now first we 
will address the issue of the large size that this trie has. Let’s try and reduce the size of the trie 
first. We will do the following. 
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We are going to look at all nodes of the trie which have degree only one and remove those nodes. 
By degree one I mean who have only one child and I am going to compress those nodes. So if 
this is my standard trie, see that there are whole lot of nodes here which have only one child. 
(Refer Slide Time: 23:30 to 23:40) this node for instance this node this node this node in fact this 
node as well as this node. This node also has only one child this has only one child. So I am 
going to compress that. By compress I mean I am going to take the child and collapse it in to the 
parent and if the resulting node also has only one child, I am again going to take the child and 
collapse it in to the parent and keep doing this. In my previous example, I had said I have trie in 
which there were a bunch of words, each of which begins with a different character. So I had 
created a long chain like this. Now if I compress them in to a single thing, then this entire thing 
becomes just one node. So I will just show that to you in a second. This is what my compressed 
trie would look like (Refer Slide Time: 24:39). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time 24:36) 
 

 
 
b and s are the same. ‘i d’ collapse in to one. Now a node doesn’t have one single character but a 
string as its labeled.  This e a r collapses here. l collapses there and so on. As you can see, the 
compressed trie is smaller than the standard trie. Why would this take less space now? What is 
the number of nodes in this thing now?  
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So this is a fact which will prove for yourself. It’s very simple. Suppose I have a tree which has 
“l” leafs in it and every node of the tree has at least two children. Every internal node of the tree 
has at least two children. Then the number of internal nodes cannot be more then l -1. a tree in 
which every node has at least two children, by that I mean except leaf node clearly. Leaf nodes 



don’t have any children. Every node has at least two children. It has at most l -1 internal nodes 
where ‘l’ is the number of leaves. If every node has at least two children, then the number of 
internal nodes is not too much. This is a very simple thing. You can prove it by induction. How 
are we going to use this? How many leaves are there in my trie? It’s the number of words. This 
says that the number of internal nodes is going to be (number of words – 1) at most. So the 
number of nodes in a compressed trie is order of s where s is the number of words. S was the set 
of string. So s is the number of words. This is the number of nodes in a compressed trie. This 
doesn’t solve our problem completely. Why because each node now has a longer label inside it. 
We will also have to store that label. We need space to store that label. From where do we get 
that space now?  
 
We are going to store labels not as labels but as numbers. Let’s see what I mean by that. Let’s 
look at this label “i d”.  This was the last two characters of the word “b I d”.  
 
(Refer Slide Time 27:27) 
 

 
 
So “bid” is the 6th word in my collection. I have kept all the words in some array in some arrays 
and id is the last two characters. So in the 6th word, ‘i d’ begins at position one and ends at 
position 2.  So each of these labels no matter how long they are, can be stored as three numbers.  
 
This is because each of these labels will be a substring of one of these words. Do you follow 
what I mean by sub-string of one of the words? Not necessarily a suffix or the prefix although in 
this example it looks like a suffix while it is not necessarily.  For instance “to” is not a suffix. I 
am not saying prefix or the suffix. I am saying it’s a sub string. It is a contiguous part of the 
string.  Now what is the space used by the trie? You will have to store these words somewhere. 
This is your input. This is stored somewhere. So we are just trying to figure out how much 
additional space we are taking for the data structure there. Then how much additional space are 
we taking? Now this space I am taking by this data structure is number of nodes. Number of 
nodes is two times number of words at most into three for three integers each because then there 



are some pointers. How does searching happen? Let’s look at that. Now how does insertion and 
deletion happen in a compressed type? 
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Suppose this is the trie I have. So the labels that I have put at a node, we can also think of that 
they are the labels on the parent edge of that node. It’s one and the same thing you understand 
what I mean? There is also a subtle reason why I am doing it this way and we will see why. I am 
searching for this string “b b a a b b”. I start searching. So conceptually it is the same as saying I 
see a ‘b’ here and come down. Then the first here is the a. this is a b. so I should go this way and 
I come down here (Refer Slide Time: 32:04 to 32:29). Now the third character I have is an ‘a’. 
So I am looking for an ‘a’. So the first character here is an ‘a’. The first character here is a ‘b’. 
 
 So I should come down to ‘b’ and then I start matching this with this the label here. We are not 
doing anything sophisticated. We should now get familiar with this.  We are searching for this 
pattern. We are moving down the tree. (Hindi) degree is the number of children. So we are 
inserting b b a a bb which means we first search for it. We search for it. We reach the middle of 
this edge. Till the middle of this edge, we have matched b b a a. (hindi) next character is b 
(hindi). Red node is the node I’ve inserted (hindi). This is how you will insert. Now how will 
you delete? We proceed, we find the node and we delete. Now something else has to be done. 
Suppose I have to delete b b a a b b. I will come here and I will delete this guy. Now I look at the 
parent. If the parent has only one child left now, collapse the child with the parent and you might 
have to do this multiple times. So it’s a very simple data structure. I am leaving out the 
implementation details. You will have to figure a few things out. Tries are very useful they are 
used in web search because you can imagine why. 
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Imagine you are going to Google. You type a word and it retrieves to you all the web pages that 
have that word. That part which helps you retrieve all the things is called the index of the search 
engine. So it is stored as the compressed trie typically. I am not saying that Google doesn’t this 
way. This is what generic search engine do and each leaf of the trie is associated with the word. 
(hindi).  That’s called the ‘occurrence list’. The trie is kept in an internal memory. The list can be 
very long. If you type a word like ‘computer’, you imagine the number of URLs pages that could 
contain that word. So this occurrence list will be huge. So that’s why it’s not kept in the main 
memory. It’s kept on disk.  
 
Now suppose you wrote ‘computer and music’, so now it will search for computer and it will 
search for music. It will get two occurrence lists. Now it has to take their intersection. So 
Boolean queries corresponds to set operation of this occurrence list. If it is ‘and’ it is union and if 
it is ‘or’, it is the intersection. Of course there are lots and lots of techniques that go into speed up 
the thing. You eliminate stop words and many other things. We will not go into that.  They are 
also used in internet routers. 
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Now you are all perhaps familiar that each computer on internet has an internet or an IP address 
which is a 32-bit number. So type google.com. You can use nslookup to find out the IP address. 
So a particular organization just uses the subset which are all related in a certain manner. For 
instance, all IIT Delhi address will look something like 10. Now how is routing done? In a router 
when packet comes in, it has an ip address written to it. It doesn’t say if this is the IP address, 
send it here. Router is a bunch of links coming in links and going out. So packets comes on one 
of the links and the router has to figure out which links to send it out to. There are 232 IP 
addresses.  
 
It says take the IP address of the packet and find out the longest match. Your table would have 
the following. Anything that begins with a 10, send it here. Anything that begins with the 10.27, 
send it here, anything that begins with the 10.27.36, send it here. So now what is the router going 
to do? It’s going to find out the best possible match of these three. It will try to find out the 
longest match. So if the packet had 10.27.36, then it will go on the 36 route. But if it was 
10.27.34, it will take the 10.27 route. If it was 10.28, it will take the 10 route. This is the way 
routing tables are organized. So they are also tries I used to do this. Tries could be one way of 
doing it. So we will come back to pattern matching now. 
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We saw compressed tries are doing the job reasonably well provided there was the notion of 
words or delimiter and our pattern started and ended at the delimiter. But suppose you are as I 
gave you an example if you are searching in a biological data base there is no notion for the 
delimiter there. What do you do then? So this is something we said before. Instead of 
preprocessing the pattern, we are going to be preprocessing the text. Now what we are going to 
do is the notion of what’s called the suffix tree. We will take all suffixes of the text and organize 
them in to a tree and you will see what I am trying to say in a second. Let’s see piece of text x a b 
x a c (Refer Slide Time: 41:09).  
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How many suffixes does it have? There are 6 suffixes. I am not saying proper suffix. I am going 
to take them as my words. x a b x a c is a one word. a b x  c is another. b x c is another. x a c is 
the 4th. a c is the 5th and c is the 6th. There are 6 words and I am going to create a trie of these 
words, in particular a compressed trie and this is what the structure is.  
 
So let’s see why it’s a trie. Here if it were a ‘b’, I would go this way. If it were a ‘c’, I would go 
this way. If it were an ‘a’, I would go this way. If it were an ‘x’, I would go this way (Refer Slide 
Time: 42:06). (hindi) numbers are the starting position of that suffix. So this corresponds to x a b 
x a c. what is the starting position? It’s one. This corresponds to x a c. Its starting position is 4. 
This corresponds to a b x a c. The starting position is 2. The starting position for a c is 5 and so 
on and so 4th. So put all our suffixes in a trie. So it’s essentially a compressed trie for all the 
suffixes of the text. 
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So it seems it would be huge but why should it be huge? How many suffixes are there? There are 
as many as length of text. So we will have that many words. Recall that the size of the trie is just 
the number of words order number of words. So its order length of the text. (hindi) so this size of 
the trie is not too much. So suffix tree for us text x of size n from an alphabet of size d stores all 
the n suffixes of x in order n. d is typically small. So it doesn’t require too much space. 
(hindi)We will come to why we are doing suffixes. Can someone think of why suffixes? So I was 
searching for a b. what will happen if I am searching for a b? Suppose I start searching for a b. I 
will come at ‘a’ here and then I will come at ‘b’ here and I will stop in the middle but can I say 
something now? I did not find. That’s what you will be tempted to say.  If the pattern appears in 
the text then there is some suffix whose prefix is that pattern. That means that there is some word 
in the collection of words that I have thrown in whose prefix is that pattern which means that 
when I am searching for the pattern, that initial part of the word will match up and I will be able 
to do something with that. Many of you can see what I will be able to do. I will just look at the 
leaves of that sub tree and identify. We will come to all of that. That’s the remaining of this 
lecture. So let’s say I had this word “minimized”. 
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I don’t make the suffix tree for each word in the text. I make a suffix tree for the entire text. So if 
this is my entire text I make a suffix tree for it. There would be 8 suffixes. This would be the 
corresponding suffix tree I would get.  Once again I have collapsed my nodes.  You can all make 
this suffix tree and now we want to do a compact representation once again. 
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How much space do I require? So instead of storing labels, there are big labels here. We don’t 
want to store labels. So once again we can store by numbers. Once again each one of them is a 
sub string. So I just need to know what the start and the end position of the sub string is. I don’t 



even need three integers now. I just need two because they are all part of one single text. So this 
is for instance what would happen. m I n I m i z e - m i n i m i z e starts at position 2 and ends at 
position 7. So I can store it very efficiently.  Now this is the key thing which we are using in 
pattern matching. 
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So if I have two suffixes “x a b” “ x a c” and they have the same prefix “x a”, their 
corresponding paths are the same at the beginning and it’s just the concatenation of the edge 
labels of the mutual parts. So x a b x a c x a b x a c, its common part is “x a” and it comes here 
(48:53). This is going to be crucial in a short while because now if I was searching for x a, I 
would end up here (Refer Slide Time: 49:12). So I have to actually report all occurrences and 
this will help me do that. So what do I have to do report all occurrences basically I have to look 
at its children. Look at the leaves in the sub tree and that will give me the position. We will come 
to all of that. This was the problem that some one had pointed out very briefly in the beginning. 
If one word in my trie is contained in another word, what happens? Suppose my text is x a b x a, 
now what is going to happen? I have one suffix which is x a and another suffix which is x a b x 
a. this suffix x a is a prefix of the other suffix. So in my trie, what is going to happen? You know 
one of the words is going to end up at some internal node. You don’t see a big problem with 
this? Let me quickly show you what I am trying to say.  
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Let’s call it “x a” and “b x a”. There are 2 suffixes “x a” and “ x a b x a”. We are ignoring the 
other suffixes. (hindi) what is special about dollar? There is nothing special about dollar. It just is 
a character which is not part of an original alphabet. (hindi) so now how does one build a suffix 
tree?  
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We start with one initial - one suffix. Let’s say this is the entire text. So that basically is one edge 
and then we keep breaking this edge.  So we will search for the next suffix. (hindi). starting at the 
root, find the longest path from the root whose label matches a prefix of si through n. at some 
point if no matches are possible and if this point is at the node, then we denote this by a ‘w’. If it 



is in the middle of an edge, we insert a new node and then call this node ‘w’ and we create an 
edge running from the root to the suffix that we create. So we can take an example quickly. One 
suffix is ‘ x a b x a c’. (hindi) 
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So this will take time proportional to the length of the text. If the length of my text was n then it 
takes time order summation n2. It is a bit more but we will see what we can do about this one. 
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This is the key idea that we are exploiting in pattern matching. So given a pattern ‘p’ and has text 
t, our aim is to find all occurrences of pattern p in the text. So the idea of algorithm is that every 



occurrences of p in t is a prefix of a suffix of t. (hindi) thus an occurrence of p can be obtained as 
concatenation of the labels of edges of the path beginning at the root. So how do we do pattern 
matching? We build a suffix tree for the text, match the characters of the pattern along the path 
beginning at the root until the pattern is exhausted. 
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If the pattern is exhausted completely, that means that we have found a match. If no more 
matches are possible, then that means that pattern does not exist. So 2 in this case, p does not 
appear anywhere in the text. In case 1, p is the prefix of a suffix of a certain suffix which is 
obtained by extending the path and till we reach a leaf. Each extension gives a suffix. All the 
leaves we can reach from there will tell us the occurrences of the pattern. Each extension 
provides af occurrence of the p in t. what are the extensions? They are basically all the leaves 
below that. (hindi) let’s quickly see an example. 
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This corresponds to this suffix. This corresponds to this suffix this corresponds to this suffix 
(Refer Slide Time: 58:08). The number that you write here is the starting position of this pattern 
of this suffix. So we write a 7 here. We saw only an order n2 algorithm for constructing the suffix 
tree.  
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It can actually be done in order n time but that’s a fairly complicated algorithm. We will not be 
doing it in this class. So that gives us the total complexity of pattern matching. 
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So preprocessing which means building the suffix tree. We said it can be done in order n times 
proportional to the size of the text although we saw only an n2 algorithm today. And for 
searching I’ve said size of the pattern plus ‘k’- number of occurrences of the pattern in this.  
 
This is completely essential. If a pattern is only 3 characters long but occurs one thousand times 
in the text and you have to say all the times it appear then clearly you are going to take time 
proportional to 1000. So this is clearly a requirement and why is this coming up? This is because 
we have to report all the leaves of this node. 
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If there are k leaves we have to go and report all the k leaves. Have many internal nodes are there 
in this sub-tree? There are (k – 1) nodes. What is the size of the entire sub-tree? It’s of order k.  
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That gives us the total complexity of pattern matching. Let me go the last side. The total space 
we require is the proportional to the size of pattern to store the pattern. So with this I end today’s 
lectures. So we looked at a faster, faster in the sense now we decide to preprocess the text and to 
search for the pattern we just need time proportional to the length of the pattern.  


