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In this class we are going to talk about AVL trees. In the last class we have seen binary search 
tree data structure. One problem with the binary search tree if you recall is that the operations of 
insertion, deletion and search take time proportional to the height of the tree. Height of the tree 
can be very bad. We saw an example were the height of the tree could be as bad as order n or n-
1.  We want to some how create a tree which does not have too bad a height. That is what we are 
going to do today. We are going to look at this data structure called AVL trees. What is an AVL 
tree? AVL trees are also called height balanced trees. Ignore the white spots that are showed on 
the slide below and they should not have shown here.   
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This is the binary search tree and inside the nodes are the keys. Everything which is less than the 
root is to the left of the root and everything which is more than the root is to the right of it. The 
thing that is written next to each node is the height of a node. What we will call the height of a 
node? We have not defined this term yet. We will just say the height of a node is the height of 
the sub tree rooted at that node.  
 
For instance if I look at this node (78), all the things which is below it is the sub tree rooted at 
this node. What is the sub tree rooted at a node? It is just the set of descendents. I am looking at 
the tree which is on the right and in previous classes we have defined the height of such a tree as 
2 and not 3. Because we had said that 78 is at level zero and 50 is at level 1 and 48 is at level 2 
and so we called the height of the tree as 2. We will just modify, we will say that if it is the 
singleton node just one node then it is of height one instead of height zero as we have been 



calling it. So level numbers are beginning with 1. This sub tree 50 has height 2 and this sub tree 
78 has height 3 and this entire tree has height 4. We are going to call this as height of the tree for 
the purpose of the AVL tree.  
 
With every node I have put down the height of that node. What is the height of the node? It is 
just the height of the sub tree rooted at that node. All the leaves will have height 1, the parents of 
the leaves will have height 2 and so on. Such a tree is called AVL tree if it is height balanced. 
What is height balanced? If I look at any node and its children then the difference in their height 
is at most one. There might be no difference in their heights, as in the case with the 50th node. Its 
2 children have the same height. The node 78 has the difference, the left sub tree has more height 
than the right sub tree. The left sub tree has height 2 and the right sub tree has height 1. The node 
44 also has a difference of one. The right sub tree has height 3 and the left sub tree has height 2. 
But the difference is no more than a one. This is the AVL tree. This is what our definition of an 
AVL tree would be. It is true for every node of the tree. The binary search tree has 2 properties. 
It has to be a binary search tree and for every internal node of the tree, the heights of the children 
differ by at most one. Why have I said internal? For a leaf node it has no children. It does not 
make any difference to talk about the height of the tree. So for this node 17 the right sub tree has 
height one. The left sub tree is missing so we call it height zero. Now you understand why I had 
made this change. If the tree is absent then I will denote the height as zero. And the single node 
will become height one. That is why I have to shift the definition a little bit.  
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Let us see what is not an AVL tree? So recall that one of our binary tree which was very bad, 
which had a huge height was a tree like this. This is a binary search tree and I put some keys so 
that it looks like a binary search tree. This has height equal to n-1, if there were n nodes. Is this 
an AVL tree? No. Is the last node height balanced? Yes, since it is a leaf node it is height 
balanced. Is the next node height balanced? Yes, it is also height balanced. Is the node following 
the 2nd node height balanced? No because the right sub tree has height 2 and the left sub tree has 



height zero. Thus the height balanced property is violated here. It is also violated in the following 
nodes. Thus we will never have such kind of trees as AVL trees. 
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Since we said that we are not going to have such a kind of trees as AVL trees, let us try and 
figure out how bad the height of an AVL trees can be. Let say I have an AVL tree of n nodes, if 
its height can still be as bad as n-1 I have not gained anything. I would like to say that its height 
is no more than log n or something. We will figure that out and that is what we are going to 
prove in the next few minutes. The height of an AVL tree t which has n nodes in it is only order 
log n. Let see why this is true. I am not going to prove this claim directly, I am going to make a 
slightly different argument. Let us take an AVL tree of height h. Amongst all possible AVL trees 
of height h, let me see the one which has the smallest number of nodes. I defined this quantity n 
(h) as the minimum number of nodes in an AVL tree of height h. Let us figure out the quantity 
and then we will see how this implies the proposition.   
 
Given an AVL tree of height h, we want to find out what is the smallest number of nodes it has. 
Can it have only h nodes? Then we will be in trouble. We want to say it has many nodes, if you 
recall a binary search tree of height h can have only h+1 nodes like the example that I showed 
you. But a good tree which is like a complete binary tree of height h will have 2h nodes. What 
we would really like is that our AVL tree which was of height h has large number of nodes, not 
just h but more like 2h or something like that. That is what we are going to prove. 
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Let us understand the quantity. It is the minimum number of nodes in an AVL tree of height h. 
What is an AVL tree of height 1? It is just a singleton node and nothing else. It has only 1 node 
in it. If I have an AVL tree of height 2 then it has root and 1 node. But it can also be root and 2 
children. Why have I written n (2) = 2 and not 3 because I am counting the minimum. That is 
why n (2) =2, the minimum number of nodes will be just 2 in an AVL tree of height 2.  
 
Suppose if I have an AVL tree of height 3 or more, it will contain 1 root node. Suppose if I have 
an AVL tree of height h, it will contain 1 root node and an AVL tree of height h-1 on one side 
and an AVL tree of height h-2 on the other side. Why h-1 and h-2? It has height h so its children 
can have height only h-1 and not more than h-1. They can have a difference of at most one. If 
one of them is h-1 the other one can only be h-2 or h-1. One of the sub tree has height h-1 and 
the other sub tree has height h-1 or h-2. But what will we pick? We would like that the other sub 
tree should have height h-2. Why? Because of minimum number of nodes. A tree which has 
smaller height will also have smaller number of nodes, so we would like that the height of the 
other sub tree to be h-2.  
 
If n (h) was the number of nodes in the tree of height h, then what is the number of nodes n (h) 
equal to? It is the number of nodes in a tree of height h-1 the smallest possible, because the left 
sub tree which is of height h-1 can have as small as little number of nodes as possible and in the 
right sub tree which is of height h-2 also has little number of nodes as possible. The number of 
nodes in the left sub tree is n (h-1), the number of nodes in the right sub tree is n (h-2). There is 
one root node and the recurrence relationship would look like this (n (h) = 1+n (h-1) + n (h-2)). 
Once again we are seeing the recurrence relation. This is what we have to solve today. What are 
the base conditions? We know n (1) is 1 and n (2) is 2. With that you can figure out what n (3) 
would be? n (3) would be 1+1+2 which is 4 and so on. But we would like a close form 
expression to do this. So we will solve this recurrence.  
 



We are not going to be solving this recurrence exactly. We are going to do it approximately. First 
we use the fact that n (h-1) is only going to be larger than n (h-2). Because as the height of the 
tree grows the number of nodes cannot reduce, it will only be more. So n (h-1) is at least as large 
as n (h-2). Then this implies what we had written earlier that is n (h) = n (h-1) + n (h-2) +1. This 
quantity is at least as large as 2n (h-2). Strictly larger because I also dropped the one. I have 
replaced this n (h-1) by n (h-2) and this (2n (h-2)) is what I get. 
  
                   n (h) = n (h-1) + n (h-2) +1 > 2n (h-2) 
 
This becomes the simple thing to solve, n (h) is more than 2n (h-2). This is what I will solve. So 
n (h) is more than 2n (h-2) and now n (h-2) is more than two times 2n (h-4). This implies the 
entire thing n (h) is more than 4n (h-4). Which implies that the entire thing is more than 8n (h-6). 
You understand how this comes n (h-4) is more than 2n (h-6) and so on, which will eventually 

take us to something like 2i after i steps n (h-2i). Suppose I pick
2 1

h
i 


, I am going to assume 

that this quantity is an integer. Let us assume that h was even to begin with, so this is an integer 

and for this value I will get n (h) > 2 1 22 (2) 2
h h

n  in which I replaced
2 1

h
i 


. Recall n (2) was 2, 

so it becomes 22
h

. What does this say? We just argued that if your AVL tree has height h then it 

has at least 22
h

nodes. That is at least so many nodes. What is the maximum number of nodes it 
can have? Something like 12 2h hor  , one of those because it can be a complete binary tree.  
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Suppose I were to take logarithms, what would I get? I would get h < 2log n. So n (h) is actually 
less than n because I have an AVL tree whose height is h and it has n nodes. Suppose I had an 
AVL tree of height h and n nodes then it will also satisfy this relation (h < 2log n (h)). It will 
satisfy the relation because n is only going to be larger than n (h). What was n (h)? n (h) was the 
minimum possible number of nodes. Any AVL tree on n nodes has height at most 2log n from 
this argument.  
 
The h < 2log n (h) is what we argued after taking algorithms. Let me take a tree of height h and n 
nodes. So n is going to be larger than n (h) because n (h) is the minimum number of nodes that 
are possible in a tree of height h, n (h) is that quantity. This n is just a function, do not confuse 
this n with the number of nodes. You can replace this n with something else. n (h) is the 
minimum number of nodes in a tree of height h. What we argued was that h < 2log n (h). Take an 
AVL tree of height h and m nodes. Its height is h and it has m nodes in it. What does this 
implies? The m > n (h), this follows from our definition of n (h). We know that h < 2log n (h) 
which is then < 2log m. This implies h = O (log m).  
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The h is the height and m is the number of number of nodes. The height of an AVL tree on m 
nodes is less than two times log of the number of nodes. That is what being said here. We have 
shown that such a tree will have height no more than 2log n. The best possible tree could have 
height only log n if it were like a complete binary tree, very dense and every thing. But this has 
more height but not too much, just a factor of two more. Much better than having a height of an 
n. Let us try and solve this recurrence slightly better. This is more of an exercise also to show 
you how recurrences are solved. We did fairly crude analysis, we replaced n (h-1) with n (h-2) 
and then we did the steps and got the result. Let us try and get something better. It is just an 
exercise.  
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We will show how to get a sharper bound on the height of an AVL tree. The bound we obtained 
is 2log n. Let see if we can get something better than that. We are going to use induction and we 
are going to do a tighter analysis of the same thing. We are going to show that the minimum 
number of nodes in an AVL tree of height h which was n (h) is at least c times h that is hc where c 
will be some constant more than one. What did we show in the previous slide? The n (h) was at 

least 22
h

. What was the c?  It was 22
h

, there we showed a c of 2 . Let see if I can get a higher c 

that is a larger c more than 2 . What would be the way of doing such a thing? We will assume 
that n (h) is at least as large as hc .  
  
We are going to prove this by induction. We will figure out what c is later. We are proving a 
certain statement without actually knowing exactly what the statement is because I am not telling 
what c is. But you will see what the c has to be for the statement to be true. What is the base 
case? h=1, say n (h) is 1. This statement n (h) >= hc is true at h=1. We have said the number of 
nodes is going to be at least as large as. I assume that I made a mistake, let us come back this 
base case again. We will have to perhaps redefine the height of a tree. I think we should have 

1hc  or some thing. Suppose the claim is true for all h < k and lets try and prove it for h =k. We 
have to prove that n (k) >= kc . We will come back to this base case in a minute. So recall this n 
(k) = n (k-1) + n (k-2) + 1 was our recurrence relation. Our induction hypothesis says that n (k-1) 
is at least 1kc  , n (k-2) is at least 2kc  and I have ignored this plus one. Actually I can say that this 
is strictly larger.  
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I can show that n (k) is larger than kc if I can show this quantity ( 1 2k kc c  ) is larger than kc . 
This is what I have to show 1 2k kc c  is lager than kc . What should be the value of c so that this 
( 1 2k kc c  >= kc ) is true. I just cancel out the terms appropriately and I get 2 1 0c c   . If c 
satisfy this ( 2 1 0c c   ) then this ( 1 2k kc c  >= kc ) will also be true. Why because I just 
multiply both the side by 2kc  and I would get exactly that. If this ( 1 2k kc c  >= kc ) is true then n 
(k) which is larger than this ( 1 2k kc c  ) would also be larger than kc . I just have to pick c which 
will satisfy this ( 2 1 0c c   ). You all know how to figure out c which will satisfy this.   
 

We will just solve this quadratic equation 2 1 0c c    and this has roots
1 5 1 5

2 2
and

 
. 

This
1 5

2


 is negative, so anything in between 

1 5 1 5

2 2
and

 
would keep this 2 1c c  less 

than zero. But I want as large as c as possible, so I will take 
1 5

2


which is roughly 1.63. This 

quantity is also known as the golden ratio. Perhaps we will see this more often. This n (k) = n (k-
1) + n (k-2) + 1 is not a fibonacci relation. If you add one to both sides, so n (k) would be with 
the fibonacci number minus one. You can also do that. We get a bound of roughly 1.63 that is c 
as 1.63. What is the mistake we have made? One thing is base case have not worked out. I guess 
this hc was the wrong thing to pick. (Refer Slide Time: 26:28) It should not be hc but may be 1hc  . 
So induction hypothesis should be 1hc  .  
 
 
 
 



Let us take 1hc  , it will not make a difference. We take the 1hc  so precisely I am dividing out by c 
then the base would have also be satisfied. If h=1, you would have more than one which is the 
case. And sorry about the base case, for the other two also it will be okay. Because for h=2, n (2) 
is 2 and this would become 2 1c  which is c. The c is less than 2 because we just argued it is 1.63. 
So please make that correction, we really require that the induction hypothesis is h-1. It will not 
make any difference on this (n (k) >= kc ) how ever. If this (n (h) >= hc ) become h-1 then this (n 
(k) >= kc ) will become k-1. 
 
(Refer Slide Time: 27:05) 
 

 
 
(Refer Slide Time: 28:05)  
 

 
 



This ( 1 2k kc c   ) would continue as it is. This will become 2 3k kc c  . We have to prove this 
( 1 2k kc c  ) is greater than or equal to 1kc  , every where there will be a minus one. So that you 
will still get the same ( 2 1 0c c   ) quadratic in equality. The value of the c would still turn 
out to be the same. That is 11.63h for n (h) please make that small correction. Thus the AVL tree 
on n nodes has height atmost 1.63log n . We just do the same argument as before. I take a tree of 

height h and n nodes. We have just seen that 1( ) 1.63hn h  , this is the tree with smallest possible 

number of nodes. So n is going to be only larger than this that is 1( ) 1.63hn n h   .  
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Let us take log on both sides, we get 1.63log n =h-1. I am just using the definition of log. I am 

taking 1.63log n , so I will get h-1. This implies h= 1.63log n +1. We are able to prove this kind of a 

sharper bound. This equation also works for n=2, so that was our base case. Let us continue. I 
have shown you the 2 ways of solving this same recurrence. One was the much simpler way, 
actually both are very simple. The 2nd technique is also used quite often. You make a guess on 
what you think the right value should be. Then essentially you verify that. We said that suppose 
the right value is some hc and then you figure out what your c should be. You can get something 

better, earlier we had 2 that is 1.414 and we could update to 1.63 by using this kind of a 

technique.  
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Let us look at the structure of an AVL tree in detail. Once again I have an AVL tree on n nodes. 
Let me take the leaf of this tree which is closest to the root, which means whose level number is 
the smallest among all the leaves. Suppose this leaf is at level k. We can show that the height of 
the tree is at most 2k-1. This requires the proof and let us do that. I have an AVL tree which has 
n nodes in it, although the number of nodes in the tree is not going to be particularly important. 
This is some tree, I took that leaf of the tree which is closest to the root. Suppose the red dot is 
the leaf which is closest to the root. We said that it is at level k. So the other leaves could be at 
this level or could be below.  
 
In this class for AVL tree we work with level starting with one. It does not make a big 
difference, let us say we start with level one. We are going to prove that the height of this tree is 
at most 2k-1. So the height of this tree is 2 1k  that is what we will prove. Let see why. I will 
draw this picture again. This is the leaf which I have colored red is at level k and it is the one 
which is the closest to the root. From the node which is next to k, there will be some sub tree 
hanging out. From the next node also there will be some sub tree hanging out and so on.  
 
The first node is my root at level 1. Let us look at this node which is at level k-1. What is the 
height of this node at level k-1? It has one child and this child has height one. The heights are in 
blue. This means this sub tree at level k-1 can have height at most 2. We want to get as larger 
height as possible for this tree. Whenever we say at most 2 will just take the largest value. This 
can have height 2, if this has height 2 then what is the height of this node? This sub tree will have 
height 3. If this sub tree has height 3, what is the largest height that the next sub tree can have? It 
can have 4. What is the height of this node? It is 5.  
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What is the maximum height this sub tree can have? It is 6 and this node would be 7, 9 and so 
on. What will be the height of the root? In general given that this was k, just figure it out, it 
should be 2k-1. If it was just till the node 3 then it is basically k=2 height=3. If k=2 then the 
height =3, if k=3 then the height was 5. If k was 4 then height was 7 and so on. For arbitrary k 
this is 2k-1. It is a very simple argument which means that this entire tree can be no taller than 
2k-1, if the closest leaf was at level k. This is the property of AVL tree and not a property of any 
arbitrary binary tree.  
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In an arbitrary binary tree you might have leaves at any level.  But the height of the tree could be 
as bad as you wanted. Here is a leaf at level 1, (hindi). (Refer Slide Time: 36:30) But for an AVL 
tree if there is a leaf at level k then the height of the tree can not be more than 2k. So in any AVL 
tree basically all our leaves will be in the shaded part of the above slide. This band whose width 
is as large as this roughly and both of them was k so I am ignoring that. I will just come back to 
this in a minute. We just argued that if the closest leaf is at the level k then the height of the tree 
is no more than 2k-1. (Refer Slide Time: 37:35)That is the largest possible height the tree can 
have. 
 
Let us make another claim. If the closest leaf is at level k then all nodes at level 1 through k-2 
have 2 children. Every node on these 1st k-2 levels should have 2 children. Why have I said k-2 
and not k-1? Let us prove this by contradiction. What do we want to do contradict? Let us take 
some node at level k-2 which has only 1 child. The picture is given in the below slide. I have a 
node u at level k-2, it has only 1 child which is at level k-1. I have shown a node at level k-2 but 
the same argument would apply to any node at 1 through k-2. So v is at level k-1, it cannot be a 
leaf because our closest leaf was at level k. 
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So it has to have another child. I have shown only 1 but it can also have 2 children. But this u has 
only 1 child. So sub tree rooted at v has height at least 2 because this should have 1 child, it 
cannot be a leaf. It has height at least 2 while the right sub tree here has height zero because there 
is nothing there. So we have a height imbalance at this node u. The height balance property is 
violated at u. Every node on these levels 1 through k-2 should have 2 children. At level k-1 how 
ever there can be nodes with only 1 child.  
 
 
 
 
 



This is level k, of course the tree extends. The dot on the left side is the level at which the closest 
leaf is situated. At level k-1, I can have a node with only 1 child and that child is the one which is 
in the middle. And provided it would not have any more descendants. It need not have 
descendants because it can be a leaf. This is completely okay but if it had more descendants then 
we would again have a problem in height balance property. This is okay which means that the 
node in the level in k-1 can have only 1 child. But everything which is in the 1st place should 
have at least 2 children. We said every node at level k-2 should have 2 children which means 
levels 1 through k-1 are full. It means they have as many nodes as possible on that level in a 
binary tree. This is after all a binary tree. So they are full.   
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What does that mean? That means the tree has at least 12k nodes. We also argued recall that the 
height of the tree is at most 2k-1. If the height of the tree is 2k-1 then it has at most 2 12 k nodes. 
This implies the number of nodes in the tree which was n is between 12k and 2 12 k . Since we 
have been using h for the height, let us substitute h for 2k-1. Let us see how this equation would 

look like. This ( 2 12 k ) becomes 2h and this ( 12k ) becomes
( 1)

22
h

. This is the same thing I am 
showing you again. What is this saying? If you have an AVL tree of height h then it has at least 

22
h

which we had shown earlier. Now we are showing 
( 1)

22
h

just roughly the same 

thing 2h nodes, all though we have proved the sharper bound. I am coming back to the older 
bound. The point is it has an exponential number of nodes, it has number of nodes which is some 
constant hc an exponential. Because that gives the logarithmic height property. This is actually a 
third way of proving that the height of the tree is only log n. You can also use this as a proof. 
This did not require solving a recurrence relation. The other 2 methods we saw while solving the 
recurrence relation. But the sharpest bound we have seen so far is hc that is1.63h . 
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Let us summarize what we have seen as the structure of an AVL tree is concerned. If the height 

of an AVL tree is h then the closest leaf can be at level
1

2

h 
. I have just changed things around, 

when I said when the closest was at k then the height was 2k-1. If the height is h, suppose I give 
you an AVL tree on n nodes of height h then the leaf which is closest to the root is actually pretty 

far from the root. It is atleast half the height away, it is at least 
1

2

h 
away. It does not require a 

proof, I am just rewording what I have said earlier. We also saw that on the first 
1

2

h 
levels the 

AVL tree is a complete binary tree.  
 



This is what an AVL tree looks like essentially. For the first half levels it is complete, very dense 
and then it starts thinning out. So it turn the tree around with the root at the bottom so initially it 
is dense and then it thins to the full height. But the fact that it is very dense for the first edge by 2 

levels means it has a lot of nodes. It is a complete binary tree so it has 22
edge

nodes straight away. 
That means that the height can not be too large, if I had n nodes the height can not be more than 
2log n. Once again I have said that if number of nodes in the AVL tree is at least just this fact, 

since it is a complete binary tree on 
1

2

h 
levels it has at least 

( 1)

22
h

and at most 2h nodes because 

that is the height of the tree.  
 
This is the useful structural fact to keep in mind about AVL trees. Although we will not use it for 
any of our algorithms. But it just gives you some intuition of what the tree is and why is that this 
tree has only a logarithmic depth. We have looked at this height balance property, we said if this 
height balance property is there then it is nice the height of the tree is only algorithmic. We want 
to say that all our operations are only logarithmic because we still want to say that you can do a 
search, insert and delete in log n times. Search is easy there is no problem with search because 
after all it is a binary search tree. Forget the height balance property, it is just a binary search tree 
so you just do search as you do in a binary search tree. How much time will you take? 
Proportional to the height, order h. Height is log n so you will take only log n time. That is the 
best you can do in some sense.  
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Suppose you were to try an insert. When you are going to do an insert what can go wrong. Recall 
for the tree to be height balanced, if the difference in the heights of its children is at most a one. 
When I insert a node it can change the height of some nodes and as a consequence the height 
balanced property might get violated. The first step of insertion would be the same as we did in 
the case of a binary search tree.  



How did we insert in a binary search tree? First you find the position. How do you find the 
position? You will just search for that element that you are trying to insert, that will tell you 
where the position is and just put the node there. And then you start marching up back to the 
route by following the parent pointers. As you march up you keep updating the heights of the 
various nodes you encountered because these are the only nodes whose heights could have 
changed and no one else. We will look at this again in more detail perhaps in the next class. I am 
just giving you the flavor of what needs to be done when we are doing an insertion. These are the 
nodes whose heights are going to change.  

So we are going to the first place where the height change appears, where the height imbalance 
happens. We are going to only start from the node where we inserted and move up the tree 
towards the root. Basically we keep going parent, parent till we hit the root. On this path that we 
follow, we find the first node which has the height imbalance property. Suppose that node is 
called z and its grandchild is called x. Let me skip this part and y is the node in the middle. So I 
think it is best if I show you the picture and that will give you an idea.  

(Refer Slide Time: 51:13)   

 

Suppose the 1st one was my tree, forget this empty node which is the last node for now. This was 
my tree originally. If this was my original tree, then is that an AVL tree? Height balance is 
satisfied in the node 50 because 48 is one and this 62 is one. The last node is not there, forget this 
type of node. This 78 is also height balanced because this 50 is 2 and this 88 is 1. This is also 
height balanced because this is 1 and this is 0. (Refer Slide Time: 49:46) This is height balanced 
because this is 2 and this is 3 initially. (Refer Slide Time: 49:47- 49:52) But now suppose I went 
and inserted a node 54 which came in here. The 54 would come here, I go right, left and then 
right here and left here. (Refer Slide Time: 49:56- 50:03) Now the height balance property is 
violated. What I am going to do? I am just going up the tree towards the root. Is the height 
balance property violated here? (Refer Slide Time: 50:16) No it is not.  

 



This is one this is zero. Is it violated here? (Refer Slide Time: 50:21) No, 1, 2. This is height 2, 
this is height 1. (Refer Slide Time: 50:27- 50:30) It is not violated here. Is it violated here? Yes 
because this is now 3 and this is 1, so these numbers are the new heights. (Refer Slide Time: 
50:31- 50: 37) This is 3. (Refer Slide Time: 50:40) So this 78 is the first node at which the height 
balance property is violated. We call this node 78 as z, its child will be y and its grand child will 
be x. We wonder which child of this node will be y. The child on the path that we have taken.  

(Refer Slide Time: 51:20) 

 

And now we need to do something to this tree to make it height balanced again. This is not 
height balanced tree. All the things we said about log n will go out of the window if you leave 
the tree like this. What are we going to do? We are going to do a kind of rotation operation and 
this 2nd picture in the above slide will become my new tree. In some sense what I have done is, I 
have moved 62 up and moved this 78 down and this 50 was here. It looks a bit mysterious. That 
is what we are going to do in the next class. Understand how this rotation operation is done. So 
as you can see now the height balance property is not violated at any node. It is not clearly in the 
node 50, its not here in 62 and also in 78. Both of them (50 and 78) have height 2. The 62 is at 
height 3 and this 17 is at height 2, so it is not violated. This is still a binary search tree with the 
same keys as before, we will not change the keys. 

There are other ways also but you want an automated way of doing it, you do not have to draw 
the picture and then figure out what rotation have to be done. You will be able to do this 
program. This is what we are going to do in the next class. Look at insertion and look at how to 
do these rotations so that the height balance property is retained even after insertion. So we will 
look at both insertion and deletion in the next class. So in todays class we looked at AVL trees. 
We saw how AVL trees are defined and actually we proved a bound of 1.63log n as the height of 

an AVL tree. We spent a lot of time figuring out how to solve that recurrence relation. We saw 2 
ways solving that recurrence relation. We also looked at some structural property of the tree 
which also proved a similar bound and the height of the tree. With that we will end today’s class.    


