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Welcome to data structures and algorithms. We are going to learn about some basic 
terminologies regarding data structures and the notations that you would be following in 
the rest of this course. We will begin with some simple definitions. An algorithm is an 
outline of the steps that a program or any computational procedure has to take. A 
program on the other hand is an implementation of an algorithm and it could be in any 
programming language. Data structure is the way we need to organize the data, so that it 
can be used effectively by the program. 
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Hope you are all familiar with certain data structures, an array or a list. In this course you 
will be seeing a lot of data structures and you will see how to use them in various 
algorithms. We will take a particular problem, try to solve it and in the process develop 
data structures. The best way of organizing the data, associated with that problem. What 
is an algorithmic problem? An algorithmic problem is essentially, that you have a certain 
specifications of an input and specify what the output should be like. Here is one 
specification. A sorted, non decreasing sequence of natural numbers of non-zero, finite 
length. For example: 

 1,20,908,909,100000,1000000000 
 3. 

This is a completely specified input. Above are the two examples of input, which meets 
the specification and I have not given any output specification. 
 



What is an instance? A sorted, non-decreasing sequence of natural numbers of non-zero, 
finite length forms an instance. Those two examples are the instances of the input. You 
can have any possible number of instances that may take sequence of sorted, non-
decreasing numbers as input.  
 
(Refer Slide Time: 2:29) 
 

 
 
An algorithm is essentially, describing the actions that one should take on the input 
instance to get the specified output. Also there can be infinitely many input instances and 
algorithms for solving certain problem. Each one of you could do it in a different way. 
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That brings the notion of good algorithm. There are so many different algorithms for 
solving a certain problem. What is a good algorithm? Good algorithm is an efficient 
algorithm. What is efficient? Efficient is something, which has small running time and 
takes less memory. These will be the two measures of efficiency we will be working 
with. There could also be other measures of efficiency.  
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But these are the only two things we will be considering in this course. We would be 
spending more time on analyzing the running time of an algorithm and we will also spend 
some time on analyzing the space. We would be interested in the efficiency of 
algorithms, as a function of input size.  
 
Clearly you can imagine that, if I have a small input and my algorithm or a program 
running on that input will take less amount of time. If the input becomes 10 times larger, 
then the time taken by the program may also increase. It may become 10, 20 or 100 
times. It is this behavior of increase in the running time, with the increase in the size of 
input would be of our interest.  
Let us see the slide. 
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How does one measure the running time of an algorithm? Let us look at the experimental 
study. You have a certain algorithm and you have to implement the algorithm, which 
means you have to write a program in a certain programming language.  
 
You run the program with varying data sets in which some are smaller, some are of larger 
data sets, some would be of some kinds and some would be of different kinds of varying 
composition. Then you clock the time the program takes and clock does not mean that 
you should sit down near stopwatch. Perhaps you can use the system utility like System. 
Current Time Millis (), to clock the time that program takes and then from that you try to 
figure out, how good your algorithms is. That is what one would call as the experimental 
study of the algorithm. 
 
This has certain limitations, let us see them in detail. First you have to implement the 
algorithm in which we will be able to determine how good your algorithm is. 
Implementing it is a huge overhead, where you have to spend considerable amount of 
time. Experiments can be done only on a limited set of inputs. You can run your 
experiment on a small set of instances and that might not really indicate the time that 
your algorithm is taking for other inputs, which you have not considered in your 
experiment.  
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If you have two algorithms and you have to decide, which one is better. You have to use 
exactly the same platforms to do the comparison. Platform means both the hardware and 
software environment. Because as you can imagine, different machines would make a 
difference, in fact even the users who are working on that system at that particular point 
would make a difference on the running time of an algorithm. It becomes very messy, if 
you have to do it this way. Hence same hardware and software environments should be 
used. 
 
What we are going to do in the part of this course? In this very first lecture, we have to 
develop the general methodology, which will help us to analyze running time of 
algorithms. We are going to do it as follows: First we are going to develop a high level 
description of an algorithm. The way of describing an algorithm and we are going to use 
this description to figure out the running time and not to implement it to any system.  
 
A methodology would help us to take into account of all possible input instances and also 
it will allow us to evaluate the efficiency of the algorithm in a way that it is independent 
of the platform we are using.  
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Pseudo-code is the high level description of an algorithm and this is how we would be 
specifying all our algorithms for the purpose of this course. 
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Here is an example of pseudo code and you might have seen this in earlier courses also. 
What is this algorithm doing? This algorithm takes an array A, which stores an integer in 
it and it is trying to find the maximum element in this array. Algorithm array Max (A, n) 
The above mentioned example is not a program, because the syntax is wrong. But it is a 
pseudo code which is a mixture of natural language and some high-level programming 
concepts. 



I am going to use a for loop, do loop, if-then-else statement and a while loop. But I will 
not bother about whether there should be a semicolon or a colon, because they are 
required for the compiler. But for our understanding, what the program is doing is clear. 
In the beginning it keeps track of the maximum variable in a variable called current max 
which is initialized to the first element of the array. Current Max  A [0] Then it is 
going to run through the remaining element of the array, compare them with the current 
maximum element. If the current maximum element is less than the current element, then 
it would update the current max. A[i] becomes the new max and then when the loop 
terminates we would just return current max. 
        If current Max < A[i] then current Max  A[i] 
        return current Max 
It is a very simple algorithm but just with this pseudo-code, you are able to understand 
what it is doing. This will not run on any computer since it is the pseudo-code, but it 
conveys the idea or the concepts.  
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Thus pseudo-code is more structured than usual prose, but it is less formal than a 
programming language. How pseudo-code will look like? We will use standard numeric 
and boolean expressions in it.  
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Instead of the assignment operator which is ‘=’ in java, I will use  and instead of the 
equality operator, an equality relationship in java which is ‘= =’ the same in C, I will just 
use ‘=’. I will declare methods with the algorithmic name and the parameter it takes. 
Algorithm name (param 1, param2) 
 
I will use all kinds of programming construct like if …then statement, if …then… [else] 
statement, while … do, repeat …until, for … do and to index array I will say A[i], A [i, 
j]. It should be clear in what it is doing. 
 
I will use return when the procedure terminates and return value will tell about the value 
returned by the particular procedure or a function. returns: return value When I have to 
call a method, I will specify that with the name of the method and the argument and the 
object used. calls: object method (args) 
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Object specifies the type of the value returned by the particular method. You will see 
more of this, when we come across more pseudo-code. How do we analyze algorithms? 
First we identify what are the primitive operations in our pseudo-code. What is a 
primitive operation? It is a low level operation. Example is a data movement in which I 
do an assignment from one to another, I do a control statement which is a branch (if… 
then …else) subroutine call or return. I do arithmetic operations or logical operations and 
these are called as a primitive operation. 

 Data movement (assign) 
 Control (branch, subroutine call, return) 
 Arithmetic an logical operations (e.g. addition, comparison) 

In my pseudo code, I just inspect the pseudo code and count the number of primitive 
operations that are executed by an algorithm. Let us see an example of sorting. The input 
is some sequence of numbers and output is a permutation of the sequence which is in non 
decreasing order. What are the requirements for the output? It should be in non-
decreasing order and it should be the permutation of the input.  
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Any set of numbers which are in non-decreasing order does not make an output. 
Algorithm should sort the numbers that were given to it and not just produce the 
sequence of numbers as an increasing order. Clearly the running time depends upon, 
number of elements (n) and often it depends upon how sorted these numbers are. If they 
are already in sorted order then the algorithm will not take a long time. It also depends 
upon the particular algorithm we use. The running time would depend upon all these 
things. The first sorting technique we use is the one that you have used very often. 
Let us say when you are playing game of cards.  
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What is the strategy you follow, when you are picking up a set of cards that have been 
dealt out to you? You like to keep them in a sorted order in your hand. You start with the 
empty hand and you pick up the first card, then you take the next card and insert it at the 
appropriate place. 
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Suppose if I have some five cards in your hand already, let us say 2, 7, 9, jack and queen. 
Then I am getting 8, so I am going to put it between 7 and 9. That is the right place it has 
to be placed in. I am inserting it at the appropriate place and that is why this technique is 
called insertion sort. I keep on doing this, till I have picked up all the cards and inserted 
in the appropriate place. 
 
Let us see the pseudo-code for insertion sort. I will give an array of integers as input and 
output is a permutation of the original numbers, such that it is sorted. The output is also 
going to be in the same array. 
      A [1]  A [2]   _ A[n] 
This is the input, output specification. I am going to have 2 variables or indices i and j. 
The array is going to be sorted from a [1] through a [j-1]. The element should be inserted 
at the thj  Location, which is the right place to insert. Clearly j has to vary from 2-n.  
   For j 2 to n do 
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I am going to look at thj  element and I put that in key. Key  A[j] I have to insert A [j] 
or the key in to the sorted sequence which is A [1] through A [j-1]. i.e. A [1_j-1] I am 
going to use the index i to do this. What is index i going to do? Index i is going to run 
down from j-1 down to 1. We have to decrease index i, which we are doing in the 
while… do loop.  
 
It starts with the value j-1. I have to insert 7 and i am going to move 9 to 7th  location, 
because 9 is greater than 7. Then I compare 7 with 8 and 8 is still greater than 7, so I will 
move it right. Then I compare 7 with 6. As 6 is smaller than 7, I would put 7 in the 
appropriate place.  
 
I run through this loop, till I find an element which is less than a key. Key is the element 
which I am trying to insert. This loop will continue while the element, which I consider is 
more than key and this loop will terminate, when I see an element which is less than key 
or the loop will terminate when I reach i=0. While i >0 and A[i] > key do A [i+1]  A[i] 
That means I have moved everything to the right and I should insert the element at the 
very first place and I am just shifting the element one step to the right. Do A [i+1]  A[i] 
 
Note that I have to insert 7 at the right place, so I shift 9 right to 1 step. 9th  location 
becomes empty, then I shift 8 to 1 step, so this 8th  location becomes empty and now I put 
7 there. i + 1 is the index, which would be the empty location eventually and i put the key 
there. A [i+1]  key All of you can implement it. May be you would have implemented 
it in a slightly different way, that would give you a different program, but the algorithm is 
essentially the same. You are going to find the right place for the element and insert it. 
Let us analyze this algorithm. 
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I have put down the algorithm on the left. There is a small mistake in the last line of the 
slide, where there should be a left arrow. Please make a correction on that. 
    A [i+1]   A key 
Let us count. 
   Key  A[j] 
   I  j-1 
These are all my primitive operations. I am comparing i with 0 and I am comparing A[i] 
with key, also I take and, so there are three primitive operations. 
 while i >0 and A[i] > key 
  
 Each of the operation takes a certain amount of time, depending upon the computer 
system you have. 1C , 2C , 3C , 4C , 5C , 6C  just represent the amount of time taken for these 

operations and they can be in any units. I am counting the number of times, each of these 
operations is executed in this entire program. 
 
Why this operation is done n times? I start by assigning j =2 then assign 3, 4,5,6,7 and go 
up to n. Then when I increment it once and check that there is one more, so I have 
counted it as n times. There might be small errors in n and n + 1, but that is not very 
important. Roughly n times we need to do this operation.  
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How about this operation? Key  A[j] I am going to do exactly n-1 times once for 2, 
once for3, once for 4 up to n. That is why this operation is being done up to n-1 times. 
Just leave the comment statement. Again the operation will be done exactly n-1 times. 
 
We have to look at how many times I come to this statement. While I >0 and A[i] > key 

jt - Counts the number of times I have to shift an element to the right, when I am 

inserting the thj  card in to my hand. In the previous example when I am inserting 7, I had 

to shift 2 elements 8 and 9.  jt  is going to count that quantity and that is the number of 

times I am going to reach A[i] part of my while loop. While I >0 and A[i] >key  
 
I will be checking this condition for many times. For one iteration or for the thj  iteration 

of this for loop, I am going to reach this condition for jt  times. The total number of times 

I am saying that condition is the sum of jt  as j goes from 2 to n. 

       
2

n

jj
t

  

     while I >0 and A[i] > key 
     do A[i+1]  A[i] 
 
Every time I see (A[i] >key) condition I also come to A[i], because the last time I see the 
statement I would exit out of this condition. That is why this is jt -1 where j going from 2 

to n. 

       12
( )

n

jj
t   

A [i+1]  A key. This statement here is not a part of the while loop rather it is a part of 
the for loop as it is done exactly n-1 times as the other statement. If you knew about the 
constants then the total time taken by the procedure can be computed. You do not know 



what jt  is. jt  is quantity which depends upon your instance and not problem. Problem is 

in the sorting. The instance is a set or a sequence of numbers that have given to you. Thus 

jt  depends upon the instance. 

 
Let us see the difference that jt  makes. If the input was already sorted, then jt  is always 

1( jt =1). I just have to compare the element with the last element and if it is larger than 

the last element, I would not have to do anything. jt  is always a 1 if the input is already in 

increasing order.  
 
What happens when the input is in decreasing order? If the input is in decreasing order, 
then the number that I am trying to insert is going to be smaller than all the numbers that 
I have sorted in my array. What am I going to do? I am going to compare with the 
1st element, 2nd element, 3rd element, 4th element and all the way up to the1st element. 
When I am trying to insert the thj  element, I am going to end up in comparing with all 

the other j elements in the array. In that case when jt  is equal to j, note that the quantity 

becomes its summation of j, where j goes from 2 to n. It is of the kind 2n and the running 
time of this algorithm would be some constant time 2n plus some other constant times n 
minus some other constant. 

   1 2 3 7 4 5 6 2 3 5 6 7
2

( ) ( ) ( )
n

j
j

n c c c c t c c c c c c c c


             

 
Thus the behavior of this running time is more like 2n . We will come to this point later, 
when we talk about asymptotic analysis but this is what I meant by 2( )f n . On the other 

hand in the best case when jt =1, the sum is just n or n-1 and in that case the total time is 

n times some constant plus n-1 times some constant minus some constant which is 
roughly n times some constant. Hence this is called as linear time algorithm. 
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On an average what would you expect? In the best case you have to compare only against 
one element and in the worst case you have to compare about j elements. In the average 

case it would compare against half of those elements. Thus it will compare with
2

j
 , even 

when the summation of 
2

j
 where j goes from 2 to n, this will be roughly by 

2

4

n
and it 

behaves like 2n . This is what I mean by the best, worst and average case. I take the size of 
input, suppose if I am interested in sorting n numbers and I look at all possible instances 
of these n numbers. 
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It may be infinitely many, again it is not clear about how to do that. What is worst case? 
The worst case is defined as the maximum possible time that your algorithm would take 
for any instance of that size. In the slide 27:08, all the instances are of the same size. The 
best case would be the smallest time that your algorithm takes and the average would be 
the average of all infinite bars. That was for the input for 1size of size n, that would give 
the values, from that we can compute worst case, best case and the average case. If I 
would consider inputs of all sizes then I can create a plot for each inputs size and I could 
figure out the worst case, best case and an average case. Then I would get such a 
monotonically increasing plots. It is clear that as the size of the input increases, the time 



taken by your algorithm will increase. Thus when the input size becomes larger, it will 
not take lesser time.  
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Which of this is the easiest to work with? Worst case is the one we will use the most. For 
the purpose of this course this is the only measure we will be working with. Why is the 
worst case used often? First it provides an upper bound and it tells you how long your 
algorithm is going to take in the worst case.  
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For some algorithms worst case occurs fairly often. For many instances the time taken by 
the algorithm is close to the worst case. Average case essentially becomes as bad as the 
worst case. In the previous example that we saw, the average case and the worst case 
were 2n . There were differences in the constant but it was roughly the same. The average 
case might be very difficult to compute, because you should look at all possible instances 
and then take some kind of an average. Or you have to say like, when my input instance 
is drawn from a certain distribution and the expected time my algorithm will take is 
typically a much harder quantity to work and to compute with.  
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The worst case is the measure of interest in which we will be working with. Asymptotic 
analysis is the kind of thing that we have been doing so far as n and 2n and the goal of 
this is to analyze the running time while getting rid of superficial details.  
 
We would like to say that an algorithm, which has the running time of some constant 
times 2n squared is the same as an algorithm which has a running time of some other 
constant times 2n ,because this constant is typically something which would be dependent 
upon the hardware that your using.  
      23n = 2n  
 
In the previous example 1c , 2c  and 3c  would depend upon the computer system, the 

hardware, the compiler and many factors. We are not interested to distinguish between 
such algorithms. Both of these algorithms, one which has the running time of 23n and 
another with running time 2n have a quadratic behavior. When the input size doubles the 
running time of both of the algorithm increases four fold.  
 



That is the thing which is of interest to us. We are interested in capturing how the running 
time of algorithm increases, with the size of the input in the limit. This is the crucial point 
here and the asymptotic analysis clearly explains about how the running time of this 
algorithm increases with increase in input size within the limit. 
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Let us see about the “big-oh” O-notation. If I have functions ( )f n , g (n) and n represents 
the input size. f (n)  measures the time taken by that algorithm. f (n) and g (n) are non-
negative functions and also non-decreasing, because as the input size increases, the 
running time taken by the algorithm would also increase. Both of these are non-
decreasing functions of n and we say that f (n) is O (g (n)), if there exist constants c 
and 0n , such that f (n)   c times of g (n)  0n . 

  f (n) =O(g(n) 
  f (n)   c g(n) for n   0n  

 
What does it mean? I have drawn two functions. The function in red is f (n) and g (n) is 
some other function. The function in green is some constant times of g (n). As you can 
see beyond the point 0n , c (g (n)) is always larger than that of f (n). This is the way it 

continues even beyond. Then we would say that f (n) is O (g (n) or f (n) is order (g (n)). 
  
   f (n) = O (g(n))  
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Few examples would clarify this and we will see those examples. The function f (n) 
=2n+6 and g (n) =n. If you look at these two functions 2n+6 is always larger than n and 
you might be wondering why this 2n+6 is a non-linear function. That is because the scale 
here is an exponential scale. The scale increases by 2 on y-axis and similarly on x-axis. 
The red colored line is n and the blue line is 2n and the above next line is 4n. As you can 
see beyond the dotted line f (n) is less than 4 times of n. Hence the constant c is 4 and 0n  

would be this point of crossing beyond which 4n becomes larger than 2n+6. 
 
At what point does 4n becomes larger than 2n+6. It is three. So 0n  becomes three. Then 

we say that f (n) which is 2n+6 is O (n).  
     2n+6 = O (n) 
 
Let us look at another example. The function in red is g (n) which is n and any constant 
time g (n) which is as same scale as in the previous slide. Any constant time g (n) will be 
just the same straight line displaced by suitable amount. The green line will be 4 times n 
and it depends upon the intercept, but you’re 2n would be like the line which is blue in 
color. So there is no constant c such that 2n < c (n).  
 
Can you find out a constant c so that 2n < c (n) for n more than 0n . We cannot find it.  

Any constant that you choose, I can pick a larger n such that this is violated and so it is 
not the case that 2n is O (n).  
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How does one figure out these things? This is the very simple rule. Suppose this is my 
function 50 n log n, I just drop all constants and the lower order terms. Forget the 
constant 50 and I get n log n. This function 50 n log n is O (n log n). In the function 7n-3, 
I drop the constant and lower order terms, I get 7n-3 as O (n). 
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I have some complicated function like 8 2n  log n+ 5 2n  +n in which I just drop all lower 
order terms. This is the fastest growing term because this has 2n  as well as log n in it. I 
just drop 2n , n term and also I drop my constant and get 2n log n. This function is O 
( 2n log n). In the limit this quantity (8 2n  log n+5 2n +n) will be less than some constant 



times this quantity (O ( 2n  log n)). You can figure out what should be the value of c 
and 0n , for that to happen. 

 
This is a common error. The function 50 n log n is also O ( 5n ). Whether it is yes or no. It 
is yes, because this quantity (50 n log n) in fact is   50 times 5n always, for all n and that 
is just a constant so this is O( 5n ). But when we use the O-notation we try and provide as 
strong amount as possible instead of saying this statement is true we will rather call this 
as O (n log n)). We will see more of this in subsequent slides. 
 
How are we going to use the O-notation? We are going to express the number of 
primitive operations that are executed during run of the program as a function of the input 
size. We are going to use O-notation for that. If I have an algorithm which takes the 
number of primitive operations as O (n) and some other algorithm for which the number 
of primitive operations is O ( 2n ). Then clearly the first algorithm is better than the 
second. Why because as the input size doubles then the running time of the algorithm is 
also going to double, while the running time of O ( 2n ) algorithm will increase four fold. 
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Similarly our algorithm which has the running time of O (log n) is better than the one 
which has running time of O (n). Thus we have a hierarchy of functions in the order of 
log n, n, 2n , 3n , 2n . 
 
There is a word of caution here. You might have an algorithm whose running time is 
1,000,000 n, because you may be doing some other operations. I cannot see how you 
would create such an algorithm, but you might have an algorithm of this running time. 
1,000,000n is O (n), because this is   some constant time n and you might have some 
other algorithm with the running time of 2 2n . 



Hence from what I said before, you would say that 1,000,000 n algorithm is better than 
2 2n . The one with the linear running time which is O (n) running time is better than O 
( 2n ). It is true but in the limit and the limit is achieved very late when n is really large. 
For small instances this 2 2n  might actually take less amount of time than your 1,000,000 
n. You have to be careful about the constants also.  
 
We will do some examples of asymptotic analysis. I have a pseudo code and I have an 
array of n numbers sitting in an array called x and I have to output an array A, in which 
the element A[i] is the average of the numbers X [0] through X[i]. One way of doing it is, 
I basically have a for loop in which I compute each element of the array A. To compute 
A [10], I just have to sum up X [0] through X [10], which I am doing here. 
   For j  0 to I do 
   A  a + X[j] 
   A[i]  a/ (i+1) 
To compute A [10], i is taking the value 10 and I am running the index j from 0-10. I am 
summing up the value of X from X [0] - X [10] in this accumulator a and then I am 
eventually dividing the value of this accumulator with 11, because it is from X [0] to X 
[10]. That gives me the number I should have in A [10]. I am going to repeat this for 
11,12,13,14 and for all the elements. 
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It is an algorithm and let us compute the running time. This is one step. It is executed for 
i number of times and initially i take a value from 0,1,2,3 and all the way up to n-1. This 
entire thing is done n times. This gives you the total running time of roughly 2n . 
    a  a+ X[j]  
This one step is getting executed 2n times and this is the dominant thing. How many 
times the steps given below are executed? 
 A[i]  a/ (j+1) 



 a  0 These steps are executed for n times.  a  a + X[j] But the step mentioned above 
is getting executed roughly for some constant 2n  times. Thus the running time of the 
algorithm is O ( 2n ). It is a very simple problem but you can have a better solution.  
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What is a better solution? We will have a variable S in which we would keep 
accumulating the X[i]. Initially S=0. When I compute A[i], which I already have in S, X 
[0] through X [i-1] because they used that at the last step. That is the problem here. 
    a  a +X[j] 
 
Every time we are computing X. First we are computing X [0] + X [1], then we are 
computing X [0] + X [1] +X [2] and goes on. It is a kind of repeating computations. Why 
should we do that? We will have a single variable which will keep track of the sum of the 
prefixes. S at this point (s s+x[i]), when I am in the thi run of this loop has some of X 
[0] through X [i-1] and then some X[i] in it. To compute thi element, I just need to divide 
this sum by i +1. 
   S  S +X[i]  
   A[i]  S/ (i+1) 
I keep this accumulator(S) around with me. When I finish the thi iteration of this loop, I 
have an S, the sum X [0] through X[i]. I can reuse it for the next step.  
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How much time does this take? In each run of this loop I am just doing two primitive 
operations that makes an order n times, because this loop is executed n times. I have been 
using this freely linear and quadratic, but the slide given below just tells you the other 
terms I might be using. 
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Linear is when an algorithm has an asymptotic running time of O (n), then we call it as a 
linear algorithm. If it has asymptotic running time of 2n , we called it as a quadratic and 
logarithmic if it is log n. It is polynomial if it is kn for some constant k.  
 



Algorithm is called exponential if it has running time of na , where a is some number 
more than 1. Till now I have introduced only the big-oh notation, we also have the big-
omega notation and big-theta notation. The “big-Omega” notation provides a lower 
bound. The function f (n) is omega of g (n),  
  
  f (n) = (g(n))  
 
If constant time g (n) is always less than f(n), earlier that was more than f(n) but now it is  
less than f(n) in the limit, beyond a certain 0n  as the picture given below illustrates.  

 c g (n)   f (n) for n  0n  

f (n) is more than c (g(n)) beyond the point 0n . That case we will say that f (n) is omega 

of g (n). 
f (n) =  (g (n)) 
 
(Refer Slide Time: 47:51) 
 

 
 

In   notation f (n) is  (g (n), if there exist constant 1C  and  2C  such that f (n) is 

sandwiched between 1C g (n) and 2C g (n). Beyond a certain point, f (n) lies between 1 

constant time g (n) and another constant time of g (n). Then f (n) is   (g (n)) where f (n) 
grows like g (n) in the limit. Another way of thinking of it is, f (n) is  (g (n)).  If f (n) is 
O (g (n)) and it also  (g (n). There are two more related asymptotic notations, one is 
called “Little-oh” notation and the other is called “Little-omega” notation. They are the 
non-tight analogs of Big-oh and Big-omega. It is best to understand this through the 
analogy of real numbers.  
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When f (n) is O (g (n)) and the function f is less than or equal to g or f (n) is less than c (g 
(n). The analogy with the real numbers is when the number is less than or equal to 
another number.  is for   and   is for =.  (g (n) is function and f=g are real numbers.  
 
If these are real numbers, you can talk of equality but you cannot talk of equality for a 
function unless they are equal. Little-oh corresponds to strictly less than g and Little-
omega corresponds to strictly more. We are not going to use these, infact we will use 
Big-oh. You should be very clear with that part.  
 
The formal definition for Little-oh is that, for every constant c there should exist some 0n  

such that f (n) is < c (g(n) for n > 0n . f (n)   c (g(n)) for n   0n  How it is different from 

Big- oh? In that case I said, there exist c and 0n  such that this is true. Here we will say for 

every c there should exist an 0n .  
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The slide which is below defines the difference between the functions. I have an 
algorithm whose running times are like 400n, 20n log n, 2 2n ,  4n  and 2n . Also I have 
listed out, the largest problem size that you can solve in 1 second or 1 minute or 1 hour. 
The largest problem size that you can solve is roughly 2500.  
 
Let us say if you have 20n log n as running time then the problem size would be like 
4096. Why did you see that 4096 is larger than 2500, although 20n log n is the worst 
running time than 400n, because of the constant. You can see the differences happening. 
If it is 2 2n then the problem size is 707 and when it is 2n  the problem size is 19.  
 
See the behavior as the time increases. An hour is 3600seconds and there is a huge 
increase in the size of the problem you solve, if it is linear time algorithm. Still there is a 
large increase, when it is n log n algorithm and not so large increase when it is an 

2n algorithm and almost no increase when it is 2n algorithm. If you have an algorithm 
whose running time is something like 2n , you cannot solve for problem of more than size 
100. It will take millions of years to solve it.  
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This is the behavior we are interested in our course. Hence we consider asymptotic 
analysis for this. 


