
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 7
Architecture Space

So far we have tried to understand instruction set architecture by taking a simple example
of MIPS architecture and that we have used to look at the basic principles of how things
work at a level close to the machine. We would now try to see what is beyond this simple
architecture which we have discussed. We will look at what is called architectural space
which means set of all architectures which are possible or which have been in existence.
So we will look at main key features which we have learnt about MIPS architecture and
see what variations are possible and towards the end we will look at some examples.

So first we will summarize the key points key characteristics of MIPS architecture at
instruction set level, look at all the variations which are typically found in other
machines, we will look at the these two terms RISC and CISC which stand for Reduced
Instruction Set Computer and Complex Instruction Set Computer and these two represent
to broadly different architectural styles and mention a few examples; I will elaborate on
these examples in the next lecture but today I will just mention some of these.

 (Refer Slide Time: 1:52)

So, when we are talking of this architecture versus other architecture what are the
features we are talking of; what are the main things which characterize instruction set
architecture.

(Refer Slide Time: 2:16)

These things are predominantly what is the set of basic operations so it has to be a set of
operations out of which you can build all the computation which you want to solve a
different problem. So these are the basic operations or primitive operations and this is
what could be different from one machine to another machine.

The second point is how storage structure is organized. Storage is in terms of registers
which are part of the processor and a main memory which is outside the processor. So
what is the number of registers; are there registers of different types or different sizes; is
there some purpose which is specific to some registers that means the registers are
general purpose registers or special purpose registers and what is the memory address
space, what is the range of addresses whether it is accessed by bytes or word or one could
mix it to.

Then; in an instruction how do you specify the operands, how do you specify their
addresses, how many of these you have; whether you have two of two operands, three
operands, less operands or more operands and so on.

And finally how do you represent instructions in terms of binary patterns; how the word
which contains an instruction is divided into fields and what is the meaning of each
different field. Now, in terms of these predominant features these main points how do we
characterize MIPS architecture which we have discussed so far. What we have discussed
is not complete MIPS architecture it is let us say the basic instructions but that still gives
you flavor of what this architecture is about and we should be able to characterize this in
terms of these features.

(Refer Slide Time: 4:20)

So first let us look at the primitive operations which we have studied. They are arithmetic
operations; we have talked primarily about add and subtract but there are also common
operation multiply and divide; logical operations AND OR, exclusive OR we have not
talked of these again in detail but a small set of these operations exist; relational
operation we have branch an equal branch an equal which does the comparison then we
have the slt operation which compares for less than and the other operations have to be
built using these so this is a small set of these operations available; then you have branch
and jump where flow of control is changed.

Typically you go through sequentially but at some point under some condition or
unconditionally you need to go to another point another instruction to actually represent
the logic of the computation or to do procedure linkage you need to call a procedure or
return from a procedure there are instructions for those; then there are instructions for
movement of data bringing data from memory to registers or registers to memory or
movement within the registers. So these are all the operations we have seen so far. There
are also operations which work on non-integers that is real numbers and so on those we
are going to see. But broadly this list actually indicates the class of instructions which we
have.

(Refer Slide Time: 6:13)

The storage structure is shown here. You have sixteen registers. as far as instructions are
concerned almost all instructions can use any register with equal ease so you have
register numbered from 0 to fifteen sorry 0 to 32 which requires a 5-bit field to access
them and wherever there is register field you can put any registers. So although we have
seen that there are cases where some register play a specific role so one exception is
register 0 which always have a value 0 you may use it as source, you may use it as
destination but its value does not change it is ensured to be so by the hardware and
register number 31 is used for return address by jl instruction. Apart from these there are
no other exceptions and any register could be used for any purpose.

Of course there are some conventions which are followed to ease the task of
programming particularly the procedure linkages but that is a matter of convention and
given the same hardware one could follow a different set of convention. There is nothing
hard and fast about that particular convention. Then apart from these registers there is one
special purpose registers which is called PC or the program counter keeps track of the
current instruction being executed so it always has the address of current instruction
which is under execution.

The memory, on the other hand, is an array of 2 raised power 32 bytes or 2 raised power
30 words and each word being 4 bytes and again these are numbered from 0 to….. if you
are taking these as words 0 4 8 and so on with steps of 4 it goes up to 2 raised to the
power 30 minus 4. So this is what we call as address space that means this is the range of
addresses which can be supplied but physically the whole space may not be filled. So, in
a particular system you may have, for example, 256 mega bytes of memory. It means that
rest of the space is empty and nothing is there. So the memory space, for example, how
much memory you require physically depends upon what type of configuration you want
to have, what is specified by the architecture is the maximum you can have.

(Refer Slide Time: 8:50)

The next issue is how you access the operands and this is called addressing mode. We
need to access operands which participate in for example arithmetic operations. We also
need to specify destination of the results of arithmetic or logical operations and we need
to specify targets for branch or jump instructions. So these things are specified by one or
more addressing modes which you see listed on the right column: immediate addressing
mode, register addressing mode, base or index, PC relative, pseudo direct and register
indirect. Let me elaborate each of these.

(Refer Slide Time: 9:50)

Immediate addressing mode is the one where a constant operand is put as part of the
instruction and we have seen this with the number of instruction; all the immediate
versions of arithmetic or logical instructions like add immediate. I mentioned there is no
subtract immediate, so we have AND immediate, OR immediate, slt immediate so all
these instructions can work with constant operands which are provided as part of the
instruction. In the case of MIPS these constants are 16-bits uniformly.

Next addressing mode is register addressing where one of the register fields which is a 5-
bit field can specify; again I have numbered 0 to 15 but we will take it as 0 to 31; a 5-bit
field can specify one of these registers. So the operand or the destination of the result is in
the specified register. Now, the first addressing mode which I mentioned the immediate
addressing mode is applicable to only operands not for the result.

So, going back to the previous one there are three different situations where we are
specifying an address either source operand or destination result or the jump target. The
first one (Refer Slide Time: 11:24) is applicable only for source of operand. This is
applicable for source as well as destination. The destination address is typically put in
this field and source is in one of these two. So, lot of instructions such as add, subtract,
multiply, divide, slt, beq, bne AND OR and so on they all refer to operand in the registers
and many of these also use registers as the destination.

(Refer Slide Time: 12:21)

Base addressing involves two things: a register specified by one of the fields in the
instruction and a constant which is another 16-bit field in the instruction. These two
values are added and the resulting address refers to some memory location. So, in
principle such an addressing mode could be used for source as well as destination for
variety of operations. For example, one could do addition and specify one of the operands
to be in memory. But in MIPS architecture we have seen that this mode is available only
for load store. We have load store instruction which make reference to memory but your

arithmetic instructions or logical instructions always assume operands to be in registers or
constants; this mode is not available for instructions like add or AND or OR. This is
available as source as well as destination; source in case of load and destination in case of
store.

Next we look at PC relative addressing which is in principle very much similar to base
addressing (Refer Slide Time: 13:41). The register here is an implicit register PC so we
do not have one of the register fields specifying a register here but we assume that PC is a
register to which we add this constant. Another difference in these two cases is that
whereas the constant in base addressing refers to a byte offset; the constant in PC relative
addressing refers to a word offset. So, strictly speaking this is actually multiplied by 4
and then added to this address. because if you are saying this constant is 100 basically we
mean an offset of 400 bytes; 100 words or 400 bytes so if this is a 32 byte address we
need to add this constant after multiplication by 4. So, in principle these are same but
there are subtle differences whereas this (Refer Slide Time: 14:48) refers to data in
memory and this refers to an instruction in memory so that is the difference.

(Refer Slide Time: 14:57)

Then we come to direct addressing. the meaning of direct addressing is that the
instruction specifies address of the source or destination or the target but here we do not
call it direct addressing we call it pseudo direct in the sense that the address field in the
instruction is not the complete address in itself it needs to borrow a few bits from
program counter; this is a mode which we have in jump or j instruction or jal that is jump
and link instruction.

As you would recall, in these two instructions there is a 26-bit constant field which
together with 4 bits taken from most significant end of PC form a 30-bit word address
and that suffixed with two zeros forms a 32-bit byte address which is used to access an

instruction; the next instruction is accessed by this address. Strictly speaking, the direct
address would mean that the entire address is coming from the instruction directly.

Finally we have register indirect addressing which is in jr. jr is the jump on register. A
field in the instruction specifies the register and that register points to an instruction
where you need to jump. So there is only one instruction which uses this in MIPS. So
these are the addressing modes and you would notice that each mode is applicable to
specific instructions. As we will see later there are cases where specification of mode and
specification of instruction opcode can be done in a totally independent manner. That
means there are a set of modes; there could be 6 or 8 or 12 or 16 and each mode is
applicable with each instruction. So they are two completely orthogonal parts of the
specification but here that is not the case.

Finally the last feature we wanted to focus on was the encoding; the way instructions are
represented in the machine.

(Refer Slide Time: 17:28)

We have seen exactly three formats which were called as I - format J - format and R -
format. I - format has a provision of 16-bit constant, J - format has a provision of a 26-bit
constant and R - format has no constant but it has three address fields. So the most
common format the largest number of instructions actually follow R - format I have not
listed all of them. When I say add it means all arithmetic, logical and comparison
instructions they will fall here; J is very limited j and jal, I is also used by several
instructions so many of the instructions which are of R - format type they have their I
version not all but several of them.

(Refer Slide Time: 18:33)

In summary what do we say about the MIPS architecture and it is important to summarize
this because from here we will take this as a reference point and see what other things are
available. So firstly all instructions are of same size; all instructions are 4 bytes or one
word; there are very limited number of instruction formats we have just seen that there
are only three formats. There is a fair number of general purpose registers 32 in our case
with very small exception. The set of operations is fairly simple and the thing to be noted
here is that each instruction tries to do just one thing. What I mean is that an instruction
will either do an arithmetic operation or a logical operation or do comparison or do
memory access or it will do control flow branch or a jump; there is no instruction which
tries to do more than one of these things.

You would notice that in conditional branch instruction we had beq and bne there is some
comparison being made. But as we will realize later when we discuss their
implementation comparison for equality and inequality is much simpler hardware-wise as
compared to comparison for less than or less than equal or greater than and greater than
equal. So there is a case where some comparison is being done with branch but the
comparison in this case is very simple; we are not doing any arbitrary comparison and
branching within the same instruction. So deliberately each instruction performs one very
simple instruction.

There are limited addressing modes so with each instruction there is a fixed addressing
mode and each mode is applicable to specific instructions and there is no orthogonality.
Along with a wide number of registers we have provision for specifying three fields in
many of the instructions which perform arithmetic or logic operation. So source one
source two the two sources can be specified independently and so can be the destination.

(Refer Slide Time: 18:33)

Now what is the contrasting architecture where do things change; if we pick up another
processor where are the changes which are likely to happen?
The common feature that there is a program counter which runs sequentially through
instruction is the basic idea of stored program computer which you will find everywhere.
So the difference comes in some of these features which I had mentioned. So, firstly in
terms of operations there are processors which define very complex operation that has
single instruction. So, here are some examples.

You could have an instruction which does this (Refer Slide Time: 21:58): it takes a
variable in memory, increments it, compares it with some value and branches to some
target if the comparison succeeds. So you have memory access, arithmetic which is
incrementing comparison and branching all happening in single instruction. So it does
make a logical sense to have it and with that understanding there are processors which
provide such instructions. Or you could look at other operations which are commonly
encountered.

For example, it could be copying a block of data from one area in memory to another area
in the memory. So there are processors which have single instructions to do this and the
goal of including such instructions in your instruction set is to make the program compact
and shorter. You should be able to do the same computation with less number of
instructions. But the danger the negative side the flip side of this is that the instructions
may become slower you may not save time on the whole but on the contrary it may make
the machine slower either by slowing down the clock cycle; you know that each
processor works with certain clock when you say a 2 GHz Pentium that means the basic
time reference is a 2 GHz periodic signal and operations occur with let us say each
individual cycles of that clock.

So, trying to include more complex instructions in the set may have a negative impact on
the clock frequency. So, a fast clock is possible if you have simple instruction. In addition
to this or alternatively this can have impact on the number of clock cycles required for
each instruction. So, we are going to see in one of the subsequent lectures that
performance does depend on these two factors: the rate at which the clock ticks and the
number of clock cycles which are taken by instructions on the average. So it is a tradeoff
which one has to perform; you have to have instructions which are sufficient for doing
any computation but fortunately that universality comes at a very small cost. As you see
in the logic AND OR and NOT together can implement any logic. Similarly with very
small instruction you can actually express any computation. It is not a basic necessity to
have very complex instructions and any decision to include a complex instruction when
you are designing an architecture should be based upon what is its overall impact on the
performance; does it actually improve performance or does it make it worse.

One crucial factor is where the operands of instruction are located.

(Refer Slide Time: 25:32)

In MIPS we have seen that operands were instructions like add are always in registers. It
is faster to access operands which are in registers as compared to accessing data or so in a
time in memory. It takes much longer there and therefore instructions which work with
register work faster that is the philosophy behind restricting arithmetic operations to
register operands. But there are other architectures which do not necessarily stick to this
idea. there are architectures which are called RM architecture where one operand
typically comes from register one comes from memory or MM where both comes from
memory and there are those which actually deal with a mixture of these which will
support RR operations RM plus mm so all possibilities do exist.

RR refers to instructions where you have both operands in registers. this issue is also
linked somewhere to the previous one they are not independent so restricting the

operands to register is also from the philosophy that you want to separate out memory
access and arithmetic and do them with different instructions and the fact that registers
can be accessed fast is the second factor which is in favor of having RR type of
instructions.

(Refer Slide Time: 27:15)

The next question is about the number of operand fields. Well, when I say operand I
mean operand sources as well as destination for the results. So, according to this number
the machines or architectures get classified as 3 address, 2 address, 1 address or 0 address
so the architecture we have studied is basically a 3 address architecture because the main
computing instructions have three fields for specifying two operands and one destination.
This means we do an operation like this: r1 equal to r2 plus r3 and these three registers in
general could be different. You can choose for two or more of these to coincide but the
architecture allow all these three to be different.

Then you have 2 address machines where typically the result replaces one of the
operands. Commonly you will have r1 equal to r1 plus r2 that means it is basically r2
getting added to r1 that is how one could interpret. Then you have one address machines
where you specify one address and the other thing becomes implicit. So Acc stands for a
special register called accumulator. Many machines have a special register which is
always participating in such instructions as one of the source as well as destination of the
result. So the instruction needs to specify only x and Acc is assumed so therefore the
instruction becomes 1 address instruction.

Finally there have been some real examples of what we call as 0 address machine where
instruction does not specify any source or destination all are implicit, for example, the so-
called stack machines, where the operation is always performed on operand which are
lying on top of the stack and these operands are removed and the result of the operation
actually is put back on the stack. So instruction does not say anything you just say add

and implicitly pick up two values from stack perform the addition and put the result back.
A processor, an architecture may have actually a mixture of these instructions but when
we classify the machine as a whole we go by typically what the bulk of the arithmetic
instructions do.

In case of MIPS, for example, the arithmetic and logical instructions are basically 3
address instructions whereas if you look at simply a jump instruction that has need for
only one address. if you look at beq instruction that again is specifying three things two
operands being compared and one target address. The next point is about register
organization.

(Refer Slide Time: 30:44)

We have seen MIPS architecture which has thirty two registers which is a fair amount
fair number of registers. There are those which have few registers let us say eight
registers only so the number is very limited. There are also extreme cases where you have
a single register which is called accumulator and you cannot really hold much of data in
one register you only have the data which is currently participating in operation so
everything has to basically come from memory eventually and go back to memory.

You also have registerless machine the stack organization could be of this kind. Thus,
registerless means 0 registers, accumulator based machine which means one register,
there are also cases when you have more than one accumulator so two or four but not
very large, then machines which have not too many registers but each register has its own
special purpose, then MIPS like architectures, then there are those which have much
larger number of registers, for example, as many as two fifty six registers SUN SPARC is
an example of that but there these registers are divided into groups each forms what is
called a register window; at a time you can work with one window but you can switch
from one window to another window. We will see what is the purpose of this and how
this kind of switching is done.

We have seen some addressing modes. There are instances of many additional addressing
modes which machines have and moreover the orthogonality between addressing modes
and opcodes is also seen in many cases.

 (Refer Slide Time: 32:37)

We talked about pseudo direct. For example, there are architectures which have direct
addressing mode, the entire address come from the instruction. So, of course instruction
size becomes crucial here. If your address is 32 bits and you want to direct address
instruction the instruction size has to be more than 32.

Indirect address we have seen in case of jr instruction that is specifically called register
indirect. That means the address which you are interested in is kept in a register. There
are also machines which support address is being kept in other memory locations so that
is simply called indirect and meaning that you are making access to memory first from
where you are picking up address and then making another access. Of course it is
complicated but there are examples of that.

I talked about base addressing where we have a register that can be called the base
register and there is a constant offset which is added to that. In principle it is similar
to….. I mentioned PC relative but there is another addressing mode which is similar to
this called indexing mode. It is just a matter of the interpretation here. The idea once
again is that a constant coming from instruction is added to contents of a register to get
the address but the interpretation or the perspective is little different. In base addressing
we are saying that the register contains the data value the base and there is an offset over
that whereas in indexing mode interpretation is that constant is the base and register index
is over that. So, for example, there are processors where you would expect that the
starting address of the array is provided by the constant so constant field has to be large
enough for that and a register contains the index into array. So if you are accessing ai the

starting address or the address of a zero is the constant part and i is in a register whereas
the way we try to access an array……… in our case was that the starting address of the
array was in a register which we call a base register and the offset corresponding to a
constant index was in the constant field. But in our case if both are large then this does
not work we have to actually do address calculation separately.

Many times you perform a sequential access to data in the memory either in increasing
order of address or decreasing order. So, when you have a register which is providing the
address it may be natural to automatically increment or decrement the address. This could
be done by more which is called auto increment or auto decrement. What it means is that
every time you make an access it is understood that the address has to be made ready for
the next access either by incrementing or decrementing depending upon which way you
are moving. With this there comes a variation of whether it is pre-decrement or post
decrement or pre-increment or post increment that means whether you do incrementing or
decrementing before making a memory access or after making a memory access, so, that
variation also has to be catered for and many architecture will provide for that.

Then we have stack addressing which actually could be considered as a special case of
auto increment and auto decrement. You are using a register to make memory access and
also with every access you are incrementing or decrementing so there are processors
which provide a stack based addressing with auto increment and auto decrement.

Now, one thing which must be noticed here is that when you provide something which is
complex if you try to take care of all generalities it becomes really very complex. for
example, with increment and decrement there would be an issue of whether you want to
have increment or decrement of 1 when you are accessing a sequence of bytes or
sequence of textual data characters for example or increment or decrement by 2 when you
are accessing half words or 4 when you are accessing full words or 8 when you are
accessing double words let us say for floating point numbers. So, if you try to provide all
this generality and an option within the addressing mode that any of these could be
specified then it becomes very complex.

In stack, for example, we have seen that it is not just increment or decrement we require
with stack pointer sometime we were incrementing by 164 or decrementing by 164
depending upon how much allocation or deallocation we make on the stack. So specific
provisions for common cases are helpful but complete generalization may be difficult at
times.

(Refer Slide Time: 38:44)

Now, after having looked at all these variations we come to the concept of RISC and
CISC; RISC and CISC. RISC stands for Reduced Instruction Set Computer and CISC
Stands for Complex Instruction Set Computer. RISC is a term which was coined in early
80s by Hennessy and Patterson in contrast to the most popular machines of the day which
existed at that time and they were called CISC because they had very complex instruction
set and the argument in favor of RISC was that it this approaches one which can lead to
better performance.

So the main features what we have seen in MIPS is that there is a uniformity of
instruction in terms of sizes and a limited number of formats, simple set of operations and
addressing modes and register based architecture with three address instructions.

What are the implications of these choices on hardware implementation and performance,
we will see in detail later on. But these ideas were propagated basically targeting for
achieving high performance at comparatively lower cost. So basically with an
architecture called RISC there were RISC 1, RISC 2 and so on they were
designed……… you see Berkley by Patterson and contemporarily by Hennessy an
architecture called MIPS was designed and what we are studying is the MIPS
architecture.

MIPS became a company later on when; they were the company which took up this
architecture and there were various versions of MIPS processors and they are in general
purpose computing application, also in some video games and so on. On the other hand,
the basic ideas of RISC architectures developed by Berkley found their place in SPARC
architecture which was taken up by SUN.

In fact beginning with 80s all the new architectural developments the new architecture
which was designed were of RISC type and of course the CISC architectures do continue
today and the one which is most popularly used is the Intel X 86 architecture which is of
a CISC kind but because of historical and commercial reasons it is thriving. Let me
mention a few examples.

(Refer Slide Time: 41:32)

We will go into details of these in the next lecture but let me just mention. So, SUN’s
SPARC architecture has its roots in RISC architecture of Berkley; HP’s PA RISC PA
stands for precision architecture that is the name of this architecture from Hewlett
Packard; Motorola developed what it called power PC and DEC which was actually a
leading CISC machine manufacturer in 80s came up with alpha architecture. So all these
are RISC architecture and it is not only that modern architectures are RISC but the
example of this architecture goes back to 60s actually. CDC 6600 was available in around
64 or 1964; the term RISC was not coined then but many features we talked of today
actually could be found in this machine which was a very high performance machine of
that time.

The classical example of CISC architecture is VAX which is from this company DEC
which stood for Digital Equipment Corporation. So VAX had its history in terms of most
popular minicomputer called PDP level and this had very complex set of instructions; the
instruction size could vary from 1 byte to 54 bytes so you could see the extent of non-
uniformity here and hardware which has to interpret instruction in such a wide range is
actually very complex.

(Refer Slide Time: 42:59)

The objective of this machine was to have very compact code because at that time some
crucial components of the program were often developed in assembly language.
Particularly in system program operating system many critical parts of the OS typically
used to be written in assembly. Of course now almost entire operating systems are written
in high level language and considerations are different. So the idea was to make assembly
language powerful and easy to use but at the same time what happened was that
compilers found it difficult to use the entire set of……. if you have several hundreds of
instructions to generate optimal program generate good code trying to make best use of
all the instructions was difficult for compiler. On the other hand, with simple instruction
set compilers are now able to generate very efficient code and unless we are talking of a
small toy program compilers can produce machine code which is much more efficient by
handwritten code when it comes to code programs of substantial size.

The other classical examples of CISC machines are the 680x0 series from Motorola. So,
it is starting with 68000 and 68 10 20 40 60 and so on. Intel’s 80x86 has very long history
and one can see that some of the features were there in 4-bit version the first
microprocessor 4004 then 8-bit processors came, then 16-bit processors, now 32-bit but
some features got carried over and in no place the architecture has been freshly
redesigned. So carrying old baggage is being carried on which makes the architecture
somewhat clumsy and hard to understand and discuss. But this compatibility of code that
means you take up code which is used to run 80386 twenty years back and you can
possibly still run on modern Pentium so, that compatibility has helped this commercially
and more money means you can pump in more investment and technology and have high
performance. So these are very high performing processors today not necessarily because
there is an elegant architecture or a beautiful architecture but because the technology has
been so perfected that you can make things run fast.

(Refer Slide Time: 46:45)

Let us close by summarizing a few things. We have seen that instruction set complexity is
one of the main issues and this influences the performance by impacting the clock
frequency and the cycles you require for each instruction execution. We are going to
elaborate on this later on on how this actually effect when we go into details of the design
and some good design principles which we have seen so far are that: simplicity requires
that you have regularity and uniformity, smaller is faster; so, if you are accessing a
smaller structure working on smaller operands it always is faster. So although uniformity
is most desirable but you need to make a compromise and make a few exceptions and
good not to make too many exceptions then it pays off to make a common case fast. So
something which is done let us say 90 percent of the time if you can focus your attention
on that and make that fast as compared to that remaining 10 percent then the efforts
would be well spent. I will stop at that.

	Prof. Anshul Kumar
	Lecture - 7

