
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 5
Instruction Set Architecture - 3

Today we are going to look at a very important programming language abstraction
namely function or procedure. This is very important in the sense that you can build
program in a hierarchical manner, in a top down or bottom up fashion and without this
constructing large program would be impossible. The set of instructions we have already
learnt is summarized here.

(Refer Slide Time: 01:17)

This includes arithmetic instructions and logical instructions which you see in the first
two rows when both the operands are registers or one is a register or one is in the form of
a constant, comparison and branch, unconditional jump, load store, load upper immediate
and jump with register containing the address. So we use this as a means to jump to an
arbitrary location and also as a mechanism to carry out multiway branch.

As you went along we also felt the need of some pseudo instructions and some of the
pseudo instructions we have defined are shown here. Move is something which is
frequently used, simply moving a data from one register to other register. Essentially a
copy of value is made; load address, load immediate which loads a constant into a
register and some variations of branch. These instructions are implemented by one or
more real instructions.

(Refer Slide Time: 02:23)

Some of these we have seen how they get expanded, some of these we will discuss in
tutorials.

 (Refer Slide Time: 02:39)

So today will talk about what actually is involved in procedural abstraction. To
implement a procedure what all we require, what activities or what function the
instruction has to support. We will illustrate all this with an example. I will continue with
that sorting example which we had dealt up in the last class and try to do in the form of
functions there. And finally we will find that they are registers which are although

general purpose but there are certain conventions which have to be followed in order to
develop a program smoothly.

(Refer Slide Time: 03:18)

So what actually we mean by procedural abstraction?
Essentially procedural abstraction means that there is a piece of code which you can write
once and use it one or more times thinking of that as a single statement. It could be an
arbitrary piece of code which does the computation which has a well-defined well-
identified meaning and this becomes your basic operation either a single operation or a
single statement which can be used with the same ease and convenience as you do for the
basic operations.

So here it shows an example that there is a main program, there are two procedures P and
Q and P is being called here, this computation is performed then there is a return which is
made. There is another point here where Q is being called and then there is a return.
Similarly P and Q are being called again and there is a return. So the number of times we
use could be arbitrary and to implement this we require several things. Several things
have to be kept in mind. First of all there is control linkage; you have to worry about flow
of control. That means from main program you should be able to call that means transfer
the control in such a manner that when the procedure ends the control returns back to the
point where you made a call. So there is a linkage which is required. It is not simply a
matter of using a jump statement a one way and the jump statement another way. You
need to know where you came from so that return can be appropriately made because call
may occur from several different points and return has to be made accordingly so that is a
key part here.

Secondly, every time you invoke a procedure it may work on different set of data. So
there is a set of parameters of procedures and when a procedure is called some data flows
into the procedure parameters are passed and when computation is over the result flow

back to the calling program so the parameter which carry values into it and those which
carry value back to the caller.

Apart from the parameters which are decided by the caller or the results which are
consumed by the caller there are also often local storage decorations which you may have
inside a procedural function. And if you call a function multiple times then it is
considered to be a fresh allocation of storage so how do we handle that; at the same time
a procedure may make an access to the data which is defined outside so there could be
global data, there could be local data so both needs to be accessible.

(Refer Slide Time: 6:21)

What I depict depicted in the previous picture was a very simple case where main
program and there is a function or procedure which is called but there could be nesting.
In the previous case P could have called Q and Q could be called by the main Q could
also be called by P and the matter gets complicated further if there is a recursion, there
could be a direct recursion and indirect recursion that means P could have called itself or
P calls Q and Q calls P so there could be direct or indirect recursion and all these issues
of control flow, data flow, organizing local and global storage become more complex
when you have to take into account the need for nesting and need for recursion.

(Refer Slide Time: 07:17)

So let us take the first thing first, how do you organize the flow of control. I am taking
here the same example of a very simple minded sorting program where we simply had
double loop and the main operation inside the loop was into comparison and interchange
so that comparison and interchange supposed to be defined as a function or a procedure
which I am calling as xchg exchange and now it is basically this exchange with some
other overhead which is enveloped in two nested loops.

Now what happens at the assembly level, rest of it is same the only change is here.
Earlier what I have done here was that although I have not shown in the same screen but
this comparison and exchange was basically a set of instructions some seven eight
instructions which were placed here. Now we do not place instructions here we put a call
instruction or which is called jal jump and link jal stands for jump and link and I am
treating xchg as a label. So somewhere there is an instruction with this xchg as a label
attached (Refer Slide Time: 8:43) and the effect of jal instruction is to transfer the control
much in the same way as jump instruction does but it does one more additional thing it
saves the current address of instruction into a special register; well, it is special in terms
of functionality but it is one of those thirty two registers which we symbolically denote
by ra which stands for return address. So the effect of this is that dollar ra or the return
address register gets the value of PC plus 4. So PC is pertaining to this instruction, ra will
now contain address of the instruction which is following. This is the point where you
have to return after completing the procedure. So this address would be ready in ra
register and when you are done with the procedure you can use that address and link
back. So rest of it is not changed and here you can see how call actually has been
established.

 (Refer Slide Time: 9:55)

Now let us see what happens at the other end. What I call as main step earlier I have
encapsulated in the form of a function. We are not returning any values so our return
value is void there is no parameter being passed, it is simply looking at global values and
doing something with it. So I have just added a return statement here. And in terms of
MIPS language this is the same piece of code I have put this as a label (Refer Slide Time:
10:29) and at the end I say jr dollar ra to same jr instruction which takes contents of a
register and uses that as the destination or target address.

Since jl had stored return address in this register you can simply do jr and get back. These
are the two instructions which actually provide control flow and linkage of caller and the
callee.

(Refer Slide Time: 11:08)

Now let us look at the question of passing parameters. We have seen how control is let.
Now we see how to take care of data. Now, in this case what I have done is from the
previous picture the only change is that I am making p and r as arguments, the
parameters. So the function need not look at the values which were with the main but it is
explicitly passed on p and r the two pointers.

Now the way it is done, the simplest method is what is shown here is use some specific
registers which are designated for passing parameters. So the values which have to go
into the procedure are loaded into these specific registers. In this case you can see dollar
a0 and dollar a1 these are the two registers which are part of a set of register from where I
can convey the parameters. So all I have done is I have changed the register which I was
using here which I was using arbitrarily but now I am just making sure that p is passed in
a0 and r is passed in a1 and rest of it rest of the program is being accordingly modified.
So there is no extra statement it is just that I am careful about which registers I have to
use for this purpose and typically I will avoid using them for something else.

 (Refer Slide Time: 12:54)

What happens if you have large number of parameters?
The convention is that if you have up to four parameters there are four registers
designated for it which are labeled as a0, a1, a2, a3 and actually that will cover lots of
common cases. Similarly, the values being returned or the output from the procedure or
function is through two registers v0 and v1 so once again this would suffice for many
common cases.

What happens when the number of values going in or coming out is more than 4 and 2
respectively?
In such a case we have to resort to memory. So any additional parameters which you
have you can place them in specific memory locations and the function is expected to
load them from there, work with them and the results can be partly returned through
registers if they are more they can be returned to memory locations. That is a simple
extension of what we have seen through registers.

(Refer Slide Time: 14:05)

The next issue was that of defining local storage. Suppose within the procedure, within
the function, there is an array declaration or there are structures which are defined so
what do you do; you can organize each of these functions or procedures with its own
storage area that is the data area and the area where its code is kept.

So, for example, if you look at this picture this (Refer Slide Time: 14:39) is the main, this
green one is the data area, this is the code area; then there is P green is the data area code
area for Q data and code. I will just place them one after another in contiguous location.
It is not necessary that data has to be before code but any convention you can follow. All
that I am trying to say here is that each of these functions or procedures has its data and
code together.

Another alternative could be that you have an overall data area where you keep data of
each function or procedure and then there is overall code area where you have code part
of each function or procedure. Any of the convention can be followed and of course a
compiler would follow always a specific convention and produce the code accordingly.
So it will process all the procedures, they look at their code part, look at their data part
and do the storage assignment accordingly.

(Refer Slide Time: 15:49)

Now let us move to the case of nested calls that means a function can call another
function. I am showing here an example where this is the main (Refer Slide Time: 16:07)
at some point you are calling function P. this is P and there is some computation here
somewhere you are calling Q and this is Q so this is the return point of Q, this is the
return point of P how will they appear in assembly you have jal P for this call so that will
bring the control here and at some point you say jal Q the control gets transferred here
(Refer Slide Time: 16:45) here you expect that jr dollar ra brings you back here go further
you expect that jr dollar ra brings you back here that is how you want the control to be
linked.

But now what will happen?
When first call occurs the address of the instruction here which is after this jal gets stored
in ra. But when you reach this point and issue another jal instruction then the old address
which was there in ra gets replaced by the address of the instruction following this. So
there is no way you can return to the main. And here this call will occur correctly, this
return will occur correctly but after this point again when you say return the program will
get back to this point so it might get into an endless loop here and the solution is very
simple that is you must take the precaution that the return address which was made
available here should be saved somewhere and before you do jr it should be restored.

Now, this procedure (Refer Slide Time: 18:03) would have some local storage to that you
can add one more location where it preserves its return address. So now in between many
calls can occur, Q can call something else and so on but as long as P takes care of where
it has to return the job would be done you will not make a mistake. So Q can take care of
saving its own so what you could do is the first thing when you enter the procedure you
save the contents of ra into some memory location and just before call the last thing you
do before returning sorry not before call just before return the last thing you do is from

that memory location load into ra. Once you have done that in between ra is free, you can
make any calls, you may or may not make a call and there could be any nesting of calls.

 (Refer Slide Time: 19:17)

Here is an example. What I have done is that in that sorting case, sorting problem, the
inner loop has been redefined as another function. We will recall that it was trying to find
a minimum and put it at the right place a minimum of certain number of elements. So it
was being passed as it is being passed as two parameters p which is the pointer to place
where minimum value has to be kept and r is the pointer to the area in array from where
you need to start scanning. So r is made p plus 1 and then you make a call. So, what min
will do is it will go through that loop, scan up the array from r onwards and bring the
minimum value back to location pointed by p. So, rest is same and now we are left with a
single loop here. There is single loop call to min, min has that inner loop basically, it
performs that exchange condition conditional exchange compare and exchange, update r
and keep repeating. This is as it is (Refer Slide Time: 20:42) this I have not changed, this
is the inner most activity which you do, compare and exchange. Let us see now how these
will be done, each of these.

(Refer Slide Time: 20:53)

So the main body we have simply jal to min as a replacement for this and we are making
sure that the two parameters…… there is a mistake here…. there two parameters p and r
so I am making sure that the two parameters are in a0 and a1 so that both caller and the
callee understand where the values are to be looked at and this (Refer Slide Time: 21:27)
is the call to min procedure.

(Refer Slide Time: 21:36)

This is the same min procedure and this is how we have implementation. I have added
these two instructions here (Refer Slide Time: 21:44) apart from that it is a simple loop.
This is the same loop, makes a call to exchange, updates r, compares and goes back. So

this is a simple loop here that basically forms the body of this function; all I have done is
I have actually padded up with save and load here. So here I am saving ra value into this
location and I am loading it to this location.

Now please notice here that I have used this load and store somewhat like a pseudo
instruction. I am not worrying about whether this address call ra save is a small constant
or large constant or how it is to be handled. I am just leaving it as it is. The assembler will
translate this into possibly two instructions or two or more instructions which will
prepare the address into a register and then with the suitable offset it will use sw lw
instruction. So again elaboration of this we will see separately. But all that we need to
understand here is that ra is getting saved somewhere and from the same location ra is
being restored.

(Refer Slide Time: 23:13)

Now let us move a step further and go for what is called recursive call which means a
procedure directly or indirectly that calls itself. There is a cycle which is formed and we
have basically changed this loop which was inside min into recursive calls. It is not
necessarily just its not necessarily improving the program but just for illustration I have
rewritten as a recursive call here. So, if r is less than equal to q instead of saying jump to
exchange I am saying make a call to this function and meanwhile the value of parameter
has changed, r has changed so you will keep on calling this and return when you find that
this is false; when r exceeds final value then you start return and when r is unchanged so
you will keep on returning keep on finding that it is false and all chain of return will
happen.

Are you able to follow this program?

Now let us see its translation in MIPS. I took care of saving this and restoring this. Earlier
I was making this comparison and looping back. So instead of looping back I am making

a call to min again. Now the parameters I am maintaining in a0 and a1 so I do not need to
do anything else I simply make a call and I am hoping that the control will repeatedly
enter this and appropriately exit.

Now what will happen if I do this; where do you see the problem?
Yes, every time I am saving ra value into same fixed memory location. So, first time the
value which gets stored is a value corresponding to call which came from outside;
subsequent calls are getting generated inside. So, subsequent returns are to this point. As
you see here there is a call (Refer Slide Time: 25:51) and the return takes place here so
every time now return will take place here because the original entry point from outside
has been lost. So the solution of this is that I should not lose any value which is saved and
in natural structure natural data structure where this value can be saved is a stack which is
a last in first out structure because the order in which calls occur and the order in which
returns take place are in a last in first out manner and therefore as I enter into function
from wherever call is occurring the return address gets pushed in a stack and just before
returning I pop the latest one from the stack and use it for jr instruction.

Therefore, irrespective of how calls are occurring; whether it is nesting of calls to
different procedures or there is a recursion to the same procedure directly or indirectly
you can simply keep on pushing the return addresses into a stack. As soon as you enter a
function push the return address into stack and just before exiting take it off from the
stack and return.

Now the question is how do you do this?
There are no direct instructions in MIPS which available for pushing and popping.

(Refer Slide Time: 27:25)

The stack is created basically by using special register called stack pointer. So, once
again it is one of the thirty two registers which is used to implement a stack.

 (Refer Slide Time: 27:38)

Pictorially let us say this is a stack and conceptually you can make stack grow towards
reducing addresses or increasing addresses. I am imagining that let us say address 0 of
memory is at the top and maximum address is at the bottom so somewhere I define
bottom of the stack and start building stack towards lower addresses towards 0 and this
register sp will always point to top of the stack (Refer Slide Time: 28:12). So, for push
what I need is to decrement the stack pointer to create space for putting in data and then
store the value you want to put in the stack.

Hence, add immediate sp, sp minus 4 then store word ra at sp. Now one more thing I like
to notice, this is just a side observation here that, in add immediate also the constants can
be positive or negative and actually it is because of this reason that probably I had listed
subtract immediate as an instruction but actually there is no subtract immediate
instruction; you add immediate with a negative constant which is nothing but subtraction.
So, here you are subtracting 4 from stack pointer and pop is just the opposite so you pick
up value from the stack as pointed by the stack pointer, put it in the desired register and
update the stack pointer increase it by 4 so that the value is no longer considered to be the
part of the stack. These are the instructions which you would use to save and restore the
values of return address.

 (Refer Slide Time: 29:42)

So this has taken care of the control flow in a recursive environment. We are ensuring
that information about return does not get lost, what about data? When you are passing
parameters in a recursive call….. in the previous example (Refer Slide Time: 30:13) the
situation was simple that after the call when I return back I do not need those values. So
basically every time a call is made the fresh values are passed on and I do not have to
worry about what happens to our value. But you could have a situation where there is
some code after recursive call also. You passed on values p and r but you are still
working with them you need to do more operations. So, in that case you cannot afford to
lose old values and the solution again is to use a stack.

Therefore, the parameters could be passed through registers if situation is simple but if
you need parameters to be available even after the nested calls whole parameters you
need to keep them in the stack so you can save the parameters you can pass the
parameters through stack. Also, recall that I mentioned that if number of parameters is
more than 4 you use memory locations. Now that question also gets answered as to which
memory locations. So additional parameters you can simply push in the stack. So before
you call you load the parameter in the stack and when you are inside the function you can
take it off the stack. Stack is also used for allocating the local data.

Therefore, now imagine that you have a recursive call to a function which has its own
local data. So, it means for every occurrence, for every instance of the function a new
array has to be declared. Suppose there is a local array so with every new call a new array
has to be declared and they cannot be all located at a fixed address. Once again the
natural place for them is stack. So, on the top of the stack when you enter a function you
can create you can earmark space which corresponds to a local data so you can create
local arrays or all local structures at the top of the stack and before you exit you can clean
up that area so it is no longer required.

(Refer Slide Time: 32:38)

One more problem one has to pay attention to when talking of procedure is when you are
writing a program you assume availability of certain number of registers and you may
freely use them but when a call occurs the control is getting transferred to a function
which will again require registers for its own computation and when the control comes
back to the main the main program will continue with the computation which was done
partially. So some intermediate results may be available in the registers and if you are not
careful you may conflict. Imagine a situation that the main program is written by one
person one programmer and the function is written by another programmer. So either
they write in sequence; once ‘a’ finishes he tells that I have used these registers you go
and use other registers or they could be a fixed vision. So there is a convention which can
be followed which ease the task and if necessary you save the registers.

Let us say you are writing the calling program, you have done partial computation some
results are in the registers you need to make a call and come back and continue. So the
values which you need to preserve you have to take care that you save them. So, whether
caller should save or callee should save; again a convention helps in this area and this
question this conflict will not be there otherwise you would write programs, two people
will write a program there will be a conflict one would destroy the value of the other and
the fingers will point at each other.

(Refer Slide Time: 34:34)

So the convention which is followed here in MIPS is given here as registers s0 s1 s2 etc
these are called saved temporary registers. The caller can assume that it is safe to leave
values in these registers and everyone has to ensure that values of these are preserved
across calls. So, if some partial result are left in s registers you can be safe if everyone is
working, everyone is complying with the convention then you can assume that values
will be returned and if callee feels the necessity of using registers it will be made in a
transparent manner; it will save the values before using, save the callers’ value which
were left in these registers before using make use and then restore those values.

So, as far as caller is concerned the caller will stick to that assumption that values in these
is not disturbed; if it is disturbed it is done in a manner that you do not come to know of.
Similarly, registers t0 to t9 are called simply temporary registers where values are not
expected to be preserved. So callee has no responsibility of leaving these untampered and
on the other hand if caller requires these values to be saved if it needs more value than
this eight to be saved across calls it can put in these but then there is no guarantee. So, if
there were values in this caller is expected to save them somewhere safely then make a
call and when you come back recover these values. So these are not preserved across
calls and they are saved by caller if necessary.

So these conventions define who has what responsibility in terms of tampering with the
values or touching the values and saving in case if it is required.

(Refer Slide Time: 37:00)

So now all put together we have been talking of lots of register names and there is some
convention, in some cases there is hardware constraint so here is the summary of all the
registers which we have talked about. So, starting with 0 this is ensured by hardware that
the value is constant 0 in this. this is one thing you missed out here (Refer Slide Time:
37:33) dollar 80 is register number 1 it was assembler temporary which is used for
expanding pseudo instructions.

When expanding pseudo instructions it requires a temporary calculation for example
preparation of address or storing the comparison result then assembler uses dollar 80 at or
register 1 and the programmer is expected not to use that because if you use it and at the
same time you are also using some pseudo instruction you can run into problems.

Then the next two are for parameter passing; this v0 and v1 are basically number 2 and 3
and they are used for returning values; a0 to a3 are passing values into the procedures
they are numbered 4 to 7. Then we have t0 to t7 these are temporaries; s0 to s7 are saved
temporaries; for some reason t8 t9 are not contiguous to these then there is a gap there are
some registers which are used by kernel again, they are reserved and then we have global
pointers.

Therefore, if you have global data which is shared by many functions, many procedures
then that could be in some contiguous area and a register gp could be made to point to
that and with suitable offset to that register you can access various components of that
data; sp is the stack pointer which I talked of; ra is the return address and fp is frame
pointer for which I will describe its use shortly so these are the names which you can
conveniently; use internally they are dollar 0, dollar 2, dollar 4 etc and that is the usage
so hardware-wise it is ensured that register 0 has certain value and jal instruction assumes
that value is to be reported in ra; the others are by convention. So the fact that we are

using these for parameter passing is only a matter of convention the hardware does not
know this.

Similarly, the convention about these about t’s and s is again a convention and hardware
does not understand this. Stack pointer is again the convention we are using for this
particular register for pointing to stack; anyone can be used once again it is a convention.
With ra there is a role of the hardware in the sense that when you execute jal instruction
the return address is put in this particular register. The return instruction the jr is a general
instruction; it is not specifically for return and we have seen other usages of it. Finally I
like to show you what is called an activation record or a frame.

(Refer Slide Time: 40:52)

We have talked about putting so many things in the start. Once you come to recursive
calls then basically everything the solutions for everything I mentioned was stack. So all
this information in the stack is organized in a particular manner which is again a
convention and different systems follow different convention. So what is typically
followed is shown here.

Every time a function or procedure is called you create an activation record on top of the
stack and when you return you clear that of. So, as nested calls occur you build these
activation records in the stack or the frame in the stack and typically the stack pointer will
point to top of the activation record and other pointer which I mentioned other register fp
is called frame pointer which points to the beginning; it could point to the first location
here or may be the last location of the previous activation record again the convention
could slightly vary.

Therefore, I have tried to put almost everything which I discussed earlier. the arguments
which are being passed on would given part of this record the return address which is to
be saved is saved here, any s registers you need to save they get saved here, local data is

allocated here so this whole thing is the frame. So a function basically works with this,
this is what you see as local data area and apart from this it may make reference to some
global data and that will be accessible through gp pointer. So, through gp, fp and sp
access is made to all the data within a function.

Now the question would be why we are having two pointer sp and f?
One might imagine that suppose you have a pointer either here or either to the bottom or
to the top everything could be referenced in terms of some suitable offset from this point
or that point. But there is a difficulty in that particularly when the size of this changes
dynamically. If within the function you are doing any dynamic storage allocation; we
have not seen at assembly level how you do that but suppose the program is sophisticated
and dynamically allocation gets done (Refer Slide Time: 43:42) so this moves up. Now
this can no longer act as a reference point for accessing the data because we want the
offset to be constant. Typically the way you like to access is load word, some constant
offset and may be register in the bracket is sp.

So with respect to this pointer the offsets for these are constants. But with respect to this
point offsets may not be constant. We need a pointer to this top to keep track of how far
the stack is filled up so that is required in any case. But another pointer here so that all
these can be accessed with the constant offset is required.

Let us summarize let us close at this point. We have seen some of the basic ideas of how
we create procedural abstraction in assembly language.

(Refer Slide Time: 44:48)

First issue was that of arranging procedure call and return; then we saw how parameters
are passed; we talked of complications which arise because of nesting of calls and also
recursion. The solution was to follow lot of conventions and also to use stack for all
storage allocation. With that we have seen the basic idea.

I would in the next class take an illustration and show how a complex recursive
procedure can be programmed where you need to do activation record creation. I will
stop at that.

If you have any questions I would answer.
(Student: can you explain frame pointer…….45:43) yeah, frame pointer; the basic idea
here is that we have all the data allocated on the stack. If the data was of a size which is
fixed when you are writing the program then every piece of data can be accessed with
constant offset with respect to the top of the stack. But if the situation is different that
means let us say there is some data structure may be you have prepared….. there is a
local link list for example where the size may grow or shrink as the function proceeds so
all that allocation of the link records will be on top of the stack. Therefore the top of the
stack will keep changing.

So, stack pointer can no longer be used with constant offsets to access for example these
arguments or the return value or these registers. So we have a pointer to the bottom and
with respect to that the offsets of all this part is constant. of course the access to the
dynamic part will be changing and it will not be accessed in same manner so for that we
would need more complex methods but at least the part which is unchanged whose
location or seat is unchanged during the life of the function we can simply access by
constant offset to the frame pointer.

There was some question over there?
(Student: stack pointer initially you said we push and pop…….47:35) yeah (student: you
said that it could not calculate all the necessary ones pop will be done only once) yes,
actually in aggregate terms the pushes and the pops have to match. You might push
different things in PC; for example, you may push arguments, then you may push return
address, then you push registers so several instructions may use and stack pointer may be
made to grow in many steps. Now, when you need these things you can use them and you
may clear of activation record in one go or again you may do it in parts. All you have to
ensure that the space which was allocated should be equal to the space which gets
deallocated eventually. So these have to be matched. In fact this could be one very very
common source of error if your pushes and pops match, there could be serious problems
in the program.

(Student: How much memory is allocated to the stack pointer………48:50) how much
memory is allocated to the stack pointer?
The memory allocated to the stack pointer……. the stack pointer is just one register so
your question should be how much memory is allocated for the stack? There is often no
fixed memory may be allocated; you may start at let us say one end of the memory and
allow this to go in one direction. Sometimes……………….

(Refer Slide Time: 50:45)

Often you may have in your entire memory you may have….. this is a very typical case
that you have two areas two data areas which grow in opposite direction: one is called
heap and the other is called stack. So, for example if this is stack (Refer Slide Time:
51:02) it grows in this direction, grows and shrinks, other could be heap which grows and
shrinks. So heap would be used for random allocations, for malloc and so on and this
stack is used for automatic allocations when calls and returns happen.

You could actually what you could do is you may make a fixed partition and say that
above this is the area for heap and below this is the area for stack but that may constrain;
sometime you need more stack area less heap area sometimes you need more heap area
less stack area. So a count policy is to not have this line and let them grow freely so that
total space is available as long as they do not clash into each other your program works
successfully. So if it does then you run out of memory. I hope I have answered this
question of how much space you allocate. You may often not allocate a fixed space and
leave it to grow or shrink dynamically, thank you.

	Prof. Anshul Kumar
	Lecture - 5

