
Computer Architecture 
Prof. Anshul Kumar 

Department of Computer Science and Engineering 
Indian Institute of Technology, Delhi 

Lecture - 35 
Input/Output Subsystem: Interfaces and buses (Contd.) 

 
 
So far we have seen that the input/output subsystem consists of peripheral devices along 
with their controllers which are connected to rest of the system through buses. So, buses 
form typically the medium of communication between peripherals, processor and 
memory. Last time we saw that there are different types of buses and performance of the 
buses in terms of their throughput or bandwidth was an important issue. We will continue 
on that discussion, talk about performance, we will begin with the example which we 
covered in the end of the last lecture, we will repeat that and talk about issue of bus 
arbitration when there are multiple devices which need to communicate on the same bus. 
We will we will take specific example of how buses are organized in a modern PC 
system and we will also look at some standard buses as an example.  
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So, while talking of performance of the bus, we notice that there are several factors which 
can be exploited to increase the performance of the bus. So something which is very 
obvious is the width of the bus that means how many bits or bytes it can carry at any 
time. so there are buses on one extreme which are serial buses that means 1-bit of data is 
carried at any given time, then there are 8-bit buses 16-bit buses, 32-bit buses, 64 and 
even higher. So the rate at which data moves or the throughput is directly proportional to 
width of the bus which is very obvious. 
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Then different things on a bus maybe multiplexed. For example, typically address and 
data lines are multiplexed. That means at any given point of time either address is being 
communicated by the bus or data is being communicated. So if you can provide separate 
lines which means additional cost of the bus then there is an improvement in 
performance. 
  
We also looked at two different types of protocols: synchronous and asynchronous. 
Synchronous protocol implies that everything is controlled by clock. So all events occur 
at active edge of clock and all times are measured in terms of clock cycles whereas in 
asynchronous bus there is interlocked response to each other’s request from the device 
and the other party which could be memory or processor. So one event occurs which 
triggers another event that triggers another event and so on, so the events get chained or 
interlocked one after another. 
  
Now, because of the need to allow arbitrary amount of time from one event to other event 
these protocols tend to be slower. They are flexible in the sense that slow and fast devices 
can be mixed on the same bus but the throughput is comparatively lower as compared to 
synchronous bus where you do not have to sense signals going up or down, you need to 
wait for a fixed amount of time and assume that something would have happened. So the 
higher speed buses typically follow synchronous approach. 
  
In the last example, in the previous lecture, we were seeing the effect of the block size. If 
you are able to transfer larger blocks chunks of larger blocks then the overall throughput 
is faster, we will go through that once again. And finally if you can make use of the bus 
in the idle period, typically the bus is occupied when you are starting a transaction then it 
is unoccupied and then it is required again when you are closing it. So in between there is 
an unutilized period and we can use it to interleave transactions or initiate other 
transactions that is called a split transaction protocol so that is another device, another 



mechanism to improve the bus throughput. So let us get back to that example of block 
size and its effect on bus performance. 
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Just for your recollection here is the asynchronous handshaking protocol, one example 
we had seen and a synchronous protocol. So we are talking of a bus which is a 64-bit 
synchronous bus and frequency is 200 megahertz and we will see effect of varying the 
block size from 4 to 16. So now the protocol of the bus is as follows that it takes one 
clock cycle to send either data or address and we require two clock cycles between each 
bus operation. 
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These are characteristics of the bus (Refer Slide Time: 06:15) and memory which is being 
accessed is capable of sending first 4 words within 200 nanoseconds and then each 
additional word requires 20 nanoseconds. So it has a mechanism within it that you do not 
need to repeat the whole transaction, it can actually get additional words within 20 
nanoseconds. 
 
We also assume that bus transfer and reading of next data overlap. That means when one 
data which is fetched from memory is being transferred on the bus the memory is 
memory could be busy reading the next data. So now our requirement is to transfer 256 
words on the whole either in groups of 4 words or in groups of 16 words. 
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So here is the calculation for finding the latency that means how long it takes to transfer 
or the bandwidth that means the total rate at which data gets transferred. So we are 
considering two possibilities: the block size is either 4 words or 16 words which I am just 
denoting by n, the number of transfer the transaction required for 256 words is 256 by n. 
so when you are transferring 4 words at a time you require this to be done 64 times, when 
you are transferring 16 words at a time you require this to be done 16 times to make a 
total of 256 words. 
  
Now the cycles each transaction takes involves sending an address which takes 1 clock, 
then allowing memory to access the data which takes 40 clocks because 200 nanoseconds 
is the time given and 200 megahertz means 5 nanoseconds is the clock period so 40 clock 
periods, the data requires 2 clock cycles to be sent because memory is fetching 4 words at 
a time and the bus is 64 bit wide. Let us get back to this specification (Refer Slide Time: 
8:43) memory access is 4 words at a time; first time it takes 200 nanoseconds and next 
time it takes 20 nanoseconds and the bus is 2 word wide so it requires 2 cycles to send 
this data and then between one transfer of data and the next one the bus needs an idle 
time of 2 clock cycles. 



So now it is these figures which have been put here: 1 plus 40 plus this 2 into 2 which 
will take care of sending 4 words and if n is larger, then this part will be repeated (Refer 
Slide Time: 9:36). So in this case when the block size is 4 words only this happens only 
once, when the block size is 16 this happens 4 times so we are multiplying this part by n 
by 4 which is the block size in words, n is the block size in words. So it takes 45 words 
45 cycles here and in this cycle in this time we have sent 4 words. Here it takes 57 cycles 
and we have sent 16 words in that time. So the total number of cycles is this c (Refer 
Slide Time: 10:17) cycle per transaction multiplied by m which is the number of 
transactions to make up 256 words. 
 
So 45 multiplied by 64, product of these two numbers is the total number of cycles, 
product of these two numbers is the total number of cycles here. So now this is in terms 
of cycles. We can convert this into nanoseconds by multiplying it with 5 nanoseconds. So 
the total latency is this multiplied by 5 so many nanoseconds or 912 multiplied by 5 4560 
nanoseconds. This is the total time required to transfer 256 to read 256 words from the 
memory.    
 
We can also talk of transaction rate; how many transactions are being done per second. A 
transaction means different thing here (Refer Slide Time: 11:15); transaction here means 
sending 4 words, transaction here means sending 16 words. So number of transaction in 
million transactions per second is 1000 times m the number of transactions over the time 
it takes. So it is 4.44 million transactions per second and 3.51 million transactions per 
second here. 
 
The bandwidth is the total number of bytes being transferred per second. Bandwidth or 
throughput is, let us say, measured in megabytes per second. So we have 256 words 
multiplied by 4 which means which gives you bytes, so many bytes in time t gives you 
the throughput. So 71.1 megabytes per second is the throughput here and 224.6 is the 
megabytes per second is the throughput there. So there is a marked difference in terms of 
the throughput of these two buses. 
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The other thing we talked of was split transaction. So if you look along the time axis, 
suppose one transaction begins here, for example, sending the address and sending a 
request to memory that you want to read then memory take some time, so in between the 
device which had sent this request is not using the bus so bus could be released and made 
available to somebody else and when the memory signals that the data is ready or if it is 
synchronous you wait for right number of cycles and then you can come back on the bus 
and read the data. Now, in between you can allow another transaction to begin which 
might end later on. 
 
So now you have to properly link the beginnings and the ends. That means the device 
which send a request here should know exactly when it has to pick up the data as 
requested and similarly the one which requested here needs to pick up at appropriate 
time. But as it is very obvious, that utilization of the bus is much better here. 
  
Now we have assumed that you can have many parties connected to a single bus. There 
could be processor, memory, I/O devices all could be in general sitting on a single bus so 
there are many conversations or many transactions between different pairs which can go 
on. 
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We have typically a concept of master and slave on the bus. Master is the one which 
initiates a transaction. it will initiate a request for read or write and slave is the one which 
will respond to this request. So typically let us say let us imagine three different 
situations; processor talking to memory. So processor wants to get a block of data 
containing instructions or wants to write a block of data to the memory. So in this 
memory conversation processor would be the master and memory would be the slave. 
  
Another scenario is that a disk drive wants to write into memory or read from memory. In 
this case the disk drive controller would be the master, memory would be the slave.  
 
There could be another scenario that processor wants to initiate a transfer; processor 
wants to instruct the disk drive that from track number so and so, set number so and so 
send 1000 bytes of data to memory so that is the initiation process and there processor 
would be the master and the peripheral controller would be slave. 
  
So among masters I have illustrated processors or peripherals and for slaves it is 
peripherals or memory. So peripherals could be slaves while talking to processor;  
would be master while talking to memory. And processors are always masters, memories 
are always slaves. 
 
Now with the possibility of multiple masters on a bus how do we coordinate among them, 
what happens if multiple masters have a need to transact on the bus simultaneously, so 
what is the discipline which has to be followed. It is an issue of getting access to the bus 
or getting control of the bus and using it and then releasing it. So, after bus has been 
released by one master, another master can use it. There has to be typically an 
arrangement of priorities. Somebody may have higher priority, somebody may have 
lower priority and this priority could be used to resolve the conflict; when multiple 
requests are there simultaneously one with higher priority needs to be given and these 



priorities would depend upon what is the urgency, so there may be some transactions 
which cannot wait which have to be done on an urgent basis. At the same time fairness is 
essential.  Whether a particular party as low priority or higher priority, it should 
eventually get its chance, so the usage should be reasonably distributed and everyone 
should get a chance. 
 
We will look at four different mechanisms called daisy chaining, centralized parallel 
arbitration, distributed arbitration and arbitration by collision detection. so which are used 
Different mechanisms are used in different buses and we will see how these work. 
 
(Refer Slide Time: 17:22) 
  

 
 
Here is a scenario showing the first approach called daisy chain for resolving the access 
issue to the bus. here we assume that there are multiple devices; I am using the term 
device here in a generic sense, one of these could be processor, so these are all potential 
masters who wants to access the bus, we are not showing the bus completely, bus will 
have data lines and address lines and so on we are not showing those, we are only 
showing a few signals which will define the discipline of transfer of control of bus from 
one master to other master. 
  
We assume that there is a block here called bus arbiter which will actually coordinate the 
whole thing. So the devices are arranged in decreasing order of priority. Highest priority 
is sitting closest to the arbiter and the one with lowest priority sits farthest away from the 
arbiter. There are bus request signals and bus release signals. So this is a There is a 
common signal on which every device can send a request and there is another signal on 
which a device which had the bus can indicate that it does not need the bus any longer. 
 
Then the interesting part here is that a bus grant signal which comes from the arbiter is 
chained through all devices in a manner which is called daisy chain. So grant signal goes 
to device 1 which is the highest priority device, it may use it or it may pass it on to the 



next one which may block it or pass it on to the next one and so on . So let us say a 
request comes from some device say device number 1, in response to that the arbiter will 
send a grant signal and device 1 does not need it so it will allow the signal to pass 
through to device 2; device 2 needs this so it will block it and all the devices further down 
will not see grant signal. It is a same signal which is trying to propagate through from one 
end to the other end and at some point it gets blocked. If there are multiple devices 
requesting for the bus, the one which is closest to the arbiter will block it first and the one 
which is downstream will not be able to see it. So that is how priorities are managed.  
 
Therefore, the exact sequence of events which will go on is as follows:  
The device, one or more devices, they will send a request and request is sent by let us say 
raising this line bus request line to 1, 1 could have an opposite convention but just for the 
sake of explanation I am assuming that the request line is normally 0 and it will go to one 
indicating that some device is requesting. in response to this if the bus is free the arbiter 
will activate the grant signal and assuming that the device which needs the bus gets the 
signal it will then lower the request and then start using the bus. So it will use the bus for 
certain interval of time and then activate release signal. So I am assuming that release 
signal was also 0 initially and now it has become 1. When the bus arbiter sees that the bus 
has been released it will lower the grant signal and in response to that the device will also 
lower its release signal. So this is a complete transaction of getting acquiring the bus and 
releasing the bus. 
  
Now let us try to understand what will happen if there multiple devices which are 
requesting the bus. So at any point of time let us say bus was free and the bus arbiter 
notices that there is a request for the bus. Now you can imagine that imagine that both 
these signals ‘release and request’ are wired, or in the sense that each device may send its 
individual request but effectively what you see on the bus what you see on this line is or 
of all those. So a 1 here means that one or more devices are requesting for the bus; you do 
not know which one but all you know is that there is at least one device which is 
requesting for the bus.  
  
Bus arbiter does not worry about who is requesting and it simply activates the grant line 
indicating that yes among all of you which one whosoever has the highest priority can 
now use the bus. So naturally the device which is lower down in the chain will wait, the 
one which is higher up in the chain will get the bus. When the highest priority device 
completes this cycle (Refer Slide Time: 22:58) it will it would have lowered down its 
own request but this line will stay high because there is a lower priority device which is 
still persisting and eventually when the bus grant has been lowered down, release has 
been lowered down the bus arbiter will still see that there is a request and it will give the 
grant once again which will be now seen by a lower priority device.  
 
So eventually, if multiple devices had requested for the bus simultaneously or in 
overlapping manner then they will get the bus grant one by one; one device gets served 
and then when it is through, another device in the chain will get served, then next device 
will get served and so on.  
 



What would happen if a device is getting served and a higher priority device comes up 
with a request now?  
So, if a higher priority device comes it will find that grant signal is 1 and it might think 
that the grant has been made 1 for its own request but that could be a disastrous situation 
because the high priority device will hijack away the bus while low priority device was 
still using it. To avoid that we follow a rule that the device has to look at a transition on 
the grant signal, it should not just assume that a one level on the grant signal is sufficient 
to ensure that it has the bus granted, it has to see the grant signal going from 0 to 1. So 
now with this assumption if you have a high priority device coming in between when bus 
was already being used by a low priority device it will find grant signal 1 but it will not 
see a transition 0 to 1 on the bus on the bus grant and therefore the situation which I 
mentioned will get avoided. 
 
I have already mentioned; raising edge on the grant signal is significant and not the level. 
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There is another point here; one may question that why do we need release signal, why 
not we simply manage with a grant signal and a request signal. If you do not have a 
release signal then the bus arbiter will not have a clear indication of when the usage of 
bus is over because a device which is using the bus would have removed its request but 
since other request are still persisting you will not know this change so you need another 
signal to indicate that bus is being released so this is important. 
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Now this arrangement is very simple and inexpensive, the arbiter is very simple it does 
not have to worry about who has what priority, it simply looks at the request and release 
and activates grant or deactivates grant signal. The problem with this is that the speed 
could be limited here if the chain is very long. If the chain is longer, as we have seen in 
carry propagation, there is a delay, so we have to allow for the maximum delay before we 
can actually decide whether the signal has changed from 0 to 1 or 1 to 0. So, if the chain 
is long the operation will get slowed down.  
  
The other problem is that in this we have not ensured that a low priority device does not 
starve. What could happen is that suppose......... in this ..........we will just go back to the 
previous diagram, it could happen that high priority device can keep on shuttling the bus 
in between them and a low priority device can always keep waiting. Suppose device 1 
and 2, let us say 1, 2 and n (Refer Slide Time: 27:22) all had requested so 1 gets served 
then 2 gets its chance but before 2 finishes, 1 as another request. So as soon as 2 releases 
grant is given again, device 1 gets it and meanwhile request from 2 could come and so 
on.  
 
So bus could keep getting passed on between high priority devices and some devices at 
low priority could get stalled. So the solution to that could be as follows; that a device 
that has just used the bus can be should be disallowed to reacquire it until it sees the 
request line go low. The meaning of this is that if you have used the bus there may be 
other requests pending so request line will continue to be 1 till everyone down the line 
has serve has been served. The request line goes low only when no device is requesting. 
That means everyone who as requested some point of time is served. So if a device does 
not make a second request before everyone else who was in the queue has been served 
then this problem will go away.  
 



The second solution which I mentioned about arbitration is the centralized parallel 
arbitration. 
 
(Refer Slide Time: 28:50) 
   

 
  
Here we have, again many devices which can request and there is a central arbiter which 
can send grant. Now we assume that there is a separate request line for each device and a 
separate grant line for each device. So this is the request line for device 1 and a grant line 
(Refer Slide Time: 29:12), request line for 2 grant line for 2, request line for n grant line 
for n. Now the whole logic is contained in this arbiter. Arbiter is supposed to look at all 
the requests and issue them grants individually. Then the priorities of the devices could 
be hard coded into this arbiter or could be defined dynamically and this could in a fair 
manner assign the bus or give the grant signal to various devices turn by turn. 
 
So here the priority need not be defined by the position the way we did earlier; although 
in the picture I have shown that this is the highest priority and this is the lowest priority 
but the position where you are located is not necessarily the priority because there is no 
chaining here (Refer Slide Time: 30:13) so you can arbitrarily define priorities of various 
devices and the resolution of multiple request will take place here. So the kind of 
mechanism which is being followed in the previous case in somewhat a distributed 
manner would now get concentrated in a single arbiter. So arbiter here is more complex 
than what we assumed in the previous case.  
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We can distribute this task of arbitration among the devices themselves. So it is a more 
democratic kind of system where all the devices sort of negotiate among themselves or 
collectively decide who gets the bus. So you have you have several control lines on 
which devices can send their request and also put their identity on the on some specific 
lines. So each one can see who all are requesting at any given time and the identities are 
all available. So let us say device 2 sees that device 1 is requesting and device 5 is 
requesting and then if it understands that among these three among 1, 2 and 5 it is not the 
highest priority it would stay back and allow the one which is highest priority among all 
these to go through. So the priorities of various devices are understood by each other and 
in a in a honest manner all devices are supposed to look at what is going on the bus, what 
requests are there on the table and make a choice accordingly.  
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Then lastly we have arbitration by collision detection. Example of this is Ethernet where 
you have, similar to the previous case you have shared medium over which all devices 
are connected and here you notice that each device simply sees that if the bus is free, you 
try to initiate your transaction and if multiple devices happen to do so then there is a need 
to figure out that whether collision occurred or not. So what you do is you first check if 
the bus is free, then try to start and then check if what you sent did collide with 
something else or not. If no collision takes place that means what you see on the bus is 
what you wrote that means there is no collision and it means you have the access to the 
bus and you can continue. 
 
On the other hand, if you if you collide that means you try to write something but because 
somebody else also wrote something on the bus what you saw was a combination which 
is different from what you wrote, that is an indication of collision so you back of and try 
again after some time. To ensure that both devices which collided do not try again at the 
same time, this delay is modified randomly. One device may try after 5 microseconds and 
the other may try after 15 microseconds and therefore unlikely that they will clash again. 
For some reason there is a clash again you just repeat the process.  
  
So it is again very simple but obviously time gets lost in because of collision. If the 
density of the traffic, if the usage requirement for the bus is not very heavy the collision 
will not be too many and therefore it will work efficiently. 
 
[Conversation between student and Professor: (34:08)]........yeah, yes, it could get 
starved. If the request keep on coming from high priority devices and priorities are fixed 
and we do not follow a rule of the kind I mentioned earlier then starvation could occur. 
So you could either have somewhat restricted rules so that repeated request actually gets 
held back or you could also talk of modifying the priorities dynamically, the priorities 
could rotate. 



For example, a device which let us say use the bus kind of goes back to the queue end of 
the queue and stand in the queue again that could be the lowest priority and therefore the 
priority could dynamically modify.  
 
Now, we talked of different types of buses and one scenario which I had shown was 
where we had three types of buses. 
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I am showing it again here. You have a processor memory bus, typically a proprietary 
bus connected to processor memory and through an adapter you have a backplane bus 
hooked to it. So backplane bus is the one where I/O bus directly or indirectly and 
processor memory, directly or indirectly all connected. The multiple I/O buses could be 
there connected through different adapters to the backplane bus. So for example, one I/O 
bus could take care of disk drives, CD ROM and so on; the other could take care of 
maybe printers, scanners and so on. 
  
Typically the I/O buses are standard, processor memory buses are proprietary, backplane 
buses could be either of these two. More often they are also more and more becoming 
standard, the speeds obviously are highest at processor memory bus level and lowest at 
I/O bus level, the PM buses will tend to be synchronous, I/O buses would tend to be 
asynchronous but there are examples of both lines. Backplane buses are also now 
generally synchronous. This is a this is a kind of oversimplified situation. If you look at a 
real system thing may be somewhat different. 
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I am showing an example of a typical Pentium 4 type of architecture where you have...... 
basically this is the processor and you have two controllers or two hubs, instead of 
adapters we have these devices, actually these two forms what is commonly called a chip 
set. You have a chip set around which a motherboard is built, you have a processor and 
you have a chip set which interface most of the other things and these actually 
characterize a particular motherboard. So there two complex chips here: this is called 
MCH or GMCH (Refer Slide Time: 37:37), MCH stands for Memory Control Hub or 
GMCH Graphics Memory Control Hub, ICH is I/O Control Hub. So this is on this side it 
connects to memory modules, on this side it connects to the display modules; it could be 
CRT monitor or LCD monitor or it could be simply a video out and this connects to 
variety of peripherals including a PCI bus here (Refer Slide Time: 38:10) which is a 
which is a backplane bus and there are several I/O buses; for example, this ATA for disk 
drive, USB for variety of devices and so on LAN. 
 
In user terms sometimes some people call this as a north bridge (Refer Slide Time: 38:29) 
and this as south bridge just because of the way they are typically placed in the diagram. 
So you would notice in some cases that frequencies are also given. this is a bus which is 
connecting the hub here and the processor and it would typically run at 533 or 800 
megahertz, this is called the front side bus and this is designed to connect to memory 
modules which will run at 333 megahertz or 400 megahertz or 533 megahertz. I think rest 
of these.... this is USB, SATA, ATA, these are these are basically disk drive interfaces, 
this is audio interface, this is S I/O which is another kind of serial I/O, PCI, PCI express it 
is again another derivative of PCI and this is LAN. 
 
So now in which way is this different from the diagram we had drawn earlier. 
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Here we have, what you would have noticed is that we have hubs rather than adapters. 
We talked of adapters trying to connect two different types of buses but hubs are 
somewhat more complex, we are connecting multiple buses.  
 
High speed devices like graphic display are connecting directly to memory hub and not to 
the I/O hub. this is a Here we had an impression that (Refer Slide Time: 40:24) all the I/O 
devices are connecting are coming through I/O bus to the backplane bus and then to the 
memory processor bus. But here, particularly, these display devices are not connected to 
I/O control hub, they are connected to the memory hub, the reason for this is that the 
transfer demand the bandwidth demand here is extremely high; as compared to all these 
this is the highest.  
 
If you recall, the first lecture on I/O, we looked at a variety of peripherals and tried to get 
a feel of the speeds or the throughput requirement of various devices and we noticed that 
the display as the highest throughput requirement and therefore this connects directly 
here. Then we talked of a processor memory bus here, but actually speaking although it 
did not show up in this diagram there are two buses: One is called front side bus and 
other is called backside bus. Front side bus is the one which connects the main memory 
through the memory control hub and there is also a backside bus which connects L2 
cache which is a faster bus that is not accessible outside the motherboard, it is within the 
processor because L2 cache here is on the chip itself.  
  
There are numerous varieties which are possible when it comes down to real system; 
although conceptually we have seen two three different possibilities there are lots of 
variations which are possible.  
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I have been mentioning the term standard bus. what Actually why we need standards and 
what these standards are?  
Standardization is required so that subsystem from different manufacturers could talk to 
each other. If that is not the if that were not the case, if there were no standard buses we 
would expect the entire system to be built by one manufacturer so that compatibility is 
ensured. But once you define a standard, it is a common interface, so one company can 
build the processor, one can build memory, one can build different I/O peripherals so you 
can get one each single company may not necessarily specialize in all the areas and 
therefore it is a better situation that you can allow multiple parties to build different 
things in which they are good at. 
 
Now, but as technology develops, these speeds change and various requirements change. 
On the other hand, when you say something as been standardized, you are freezing all the 
specifications. So these are two contradictory requirements. On one hand you want things 
to improve. For example, when you saying that you have defined a bus with 200 
megahertz so you are freezing everything at that; you are saying that if I make one device 
it should be compatible with 200 megahertz, you make, you also make it compatible to 
200 megahertz and we have sort of agreed and frozen it at that. 
  
But suppose I make my devices better and I would like to run at 300 megahertz you also 
want to run at maybe 350 megahertz, so, by standardizing you are sort of freezing and 
arresting the growth whereas the technology will like to and commercial pressure will 
like to push it in the other direction. So what you need to do is you need to keep on 
revising and refining your standards. You have standard which is version 1 then you get 
version 2 which is where some of the things get redefined, all the performance specs go 
up and this process has to be a continuous process. 
 



Therefore, you have to have formal mechanisms of defining these standards and typically 
these are done by either groups of industries which are formed, industries and other 
bodies could also be there, so you have consortiums formed which take the responsibility 
of collectively defining standards or you have professional bodies such as IEEE or ICU 
and so on, ITU, they have again representation from various organizations and they 
define the standard in a manner which are acceptable to larger community. 
  
Sometimes what happens is that a proprietary interface or proprietary mechanism which 
becomes very popular gets adapted as a standard. so others see benefit in following what 
a popular person is doing. 
  
Now, what exactly is standard?  
Standard, as far as buses are concerned, is defined at various levels: at physical level, at 
electrical level and at the logical level. At physical level you need to define exactly the 
shape, size, dimension of the connectors or the cables; at electrical level you need to 
define the voltage and current levels, the impedances; and at logical level you need to 
define the meaning of each signal and the sequence in which signals change and the 
events take place. So a bus standard is a complex definition spanning from physical level 
to the logical level. 
 
Let us look at a few examples of various kinds of buses. 
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So, in PC domain, in early stages we used to have ISA bus which is which stands for 
Industry Standard Architecture. So, that later on got extended to EISA or Extended ISA 
bus, then further down the line......now, ISA and EISA were trying to connect everything 
but then later it was felt that processor memory could be connected through a faster link 
and peripherals need to be connected on a slower link. So VLB or VESA local bus; 
VESA stands for Video Electronics Standards Association; a local bus is defined and ISA 



or EISA could get linked to this. Then subsequently PCI bus was defined stands for 
Peripheral Component Interconnect bus, it is a backplane bus and this also has several 
has seen several revisions, I will come to this in a moment and AGP stands for 
Accelerated Graphics Port on which the display devices get connected. 
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So here is a comparison of some of these buses which I just mentioned. ISA bus was 
earlier 8-bit, later on became 16-bit; EISA is 32 bits; VLB and PCI are also 32 bits, but 
later versions of PCI are 64 bits and AGP is a 32-bit bus. The frequency for ISA and 
EISA it is 8.3 megahertz, VLB and PCI 33 megahertz, later versions of PCI 66, AGP has 
gone from 66 to double of that and quadruple of that and one AGP 8x (48:25) is also they 
are looking. So, depending upon the frequency and the width the throughput is given in 
megabytes per second. So here 1 megabyte is meant to represent 2 raised to the power 20 
and not 10 raised to the power 6 that is why you will see some discrepancy but 
approximately you can get this figure by combining this and this (Refer Slide 
Time:48:55). 
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Now a PCI, let us spend a couple of minutes on PCI bus which is invariably there in all 
the PC systems now. The basic PCI was 33 megahertz synchronous bus, width was 32 
bits and accordingly peak transfer rate is 133 megabytes per second, so this is the peak 
transfer rate. That means if the bus is continuously transferring data it could transfer at 
that rate but actually because of protocol delays and idle time, the transfer rate would be 
much less. The address which flows on this is 32 bits which can address 4 gigabytes of 
memory, in terms of voltage it could have 3.3 volt or 5 volt there are two variations that 
are possible.  
 
Then later development on PCI lead to PCI version 2.2 which is 64-bit wide 66 
megahertz and therefore the overall performance is roughly four times both these factor 
get doubled (Refer Slide Time: 50:02) then there is a PCI - X version also which is 
having a data rate of 133 megahertz so bandwidth is twice that and it has a 266 version 
266 megahertz and bandwidth is more than 2 gigabytes per second. 
  
There are other variations like mini PCI or compact PCI and there is also serial version 
PCI express. It is a serial bus which follows signaling like PCI. We are not going into 
details of what signals are there, that itself will take several hours if we have to go 
through that in detail but that is just a serial version. Serial buses are typically cheaper 
because they have to carry very few wires and therefore the cables are cheaper, the 
connectors are cheaper and on the whole, cost is lower. But obviously if you are sending 
one bit at a time the total data rate gets reduced. So here is the comparison of some of I/O 
buses.  
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You have serial port on which sometime you connect external modems, parallel port on 
which you typically connect printer, this is some extended parallel port, USB on which I 
have connected this flash memory device, you can connect devices like cameras, printers, 
scanners and so on. Then there are other high performance serial serial ports like Fire 
Wire fiber channel. You can see that there is a wide range in terms of throughput rate 
starting from a fraction of megabytes per second going all the way upto something like 
400 megabytes per second. Then these are some of the I/O buses to which disk drives, 
CD ROM drives, DVDs they connect. 
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IDE is a very old one, ultra IDE, SCSI which stands for Small Computer System 
Interface, it has again, you can see how the standards have evolved from SCSI -1 to 2 to 3 
they are ultra, wide, fast you know all these are prefixes, they keep on getting added and 
the standards improve. So, starting with the 5 megabytes per second all the way upto 160 
megabytes per second, there are various steps in between. So this is not all, these are only 
some of the standard buses which we have seen. I will close at point. 
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In summary, what we have seen today is we had seen the factors which influence 
performance of a bus. In particular, in detail we saw how variation of block size would 
change the performance, we saw it quantitatively. We looked at different methods of 
arbitration of bus when there are multiple masters trying to get hold of the bus and the 
requirement there is that it should be a mechanism which can support priorities but at the 
same time it should not lead to starvation there should be a fairness. 
  
We looked at the organization of buses within PCs and we very briefly looked at some 
examples of the buses at the backplane level and at I/O level. Within I/O we saw series of 
buses which are for hard disk drive or CD ROM drive or DVDs and we have seen that as 
time progresses the buses have to be refined and redefined, the standards have to keep on 
changing to keep pace with the technology. Thank you. 
  
 
 


