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In the cache hierar- in the memory hierarchy, after having discussed the cache 
organization we move on to next level which is virtual memory. We will first try to 
compare virtual memory with the cache memory and try to see what are the similarities 
which we can carry on and where we need to make changes and do things differently.  
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So we will see essentially this as a problem of mapping virtual addresses to physical 
addresses so that is how the virtual memory organization is made that you start with 
virtual addresses and map them to physical addresses. This is done using what is called 
page table so we will describe what is the structure of page tables, how they operate and 
where they are located. One major problem which you will have to handle is due to the 
size of the page tables. 
 
So, coming back to this picture where three levels of memory are shown namely cache,  
primary memory or main memory and back up memory.  
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We have discussed the interface between CPU, cache and main, how CPU tries to access 
cache and which in turn may update itself from main memory. So, from instruction set 
architecture point of view, main memory is the one which is typically seen by the 
programmer and cache is placed in between main memory and processor in a transparent 
manner in the sense that programmer may not typically be aware of the existence of 
cache memory. So cache memory is only a device a magic device which is put there to 
speed up the whole operation. But when you are looking at instructions generally unless 
there is software driven prefetch you will not come to notice that there is a cache except 
for performance. 
 
On the other hand, back up memory or the virtual memory organization built around that 
is used to extend size of main memory and again it is done typically in a manner 
transparent to the user program. There is the system program which is involved but as far 
as user program or application program is concerned it may be totally unaware of the fact 
that there is back up memory which is on a disk. One may only get an impression of a 
large memory. 
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The objective of having virtual memory organization is not just to extend the size of the 
memory but that I will just notice. The main objective of course is to overcome the size 
limitation of the physical memory and it has to be done in a manner which is most 
convenient to the programmer, it is as transparent as possible. So, the programmer does 
not have to bother about moving the data or instruction between virtual memory or the 
disk and the main memory. 
 
The earlier technique which is more primitive is called overlays where a programmer 
would explicitly divide the program and data into portions and take care of bringing the 
right thing in the main memory at right time and also evicting the old contents and the 
new contents are to be brought in. But virtual memory tries to automate this process, tries 
to keep in the main memory what is required and keep out what is not required. 
  
Apart from this main objective another purpose virtual memory organization serves is to 
allow multiple programs to share same physical memory. Although there may be a single 
user in a personal typing type of environment but there are many processes which are 
serving the purpose of the same user. So you have multiple programs or multiple 
processes which are trying to share the same memory and to do it in a manner which 
provide protection from one another is also a task combined with the virtual memory 
organization.  
  
And thirdly it makes it possible to easily reposition or relocate a program in any area of 
the memory. It could be that, let us say there are two programs A and B on one particular 
day, A comes in first and gets loaded into earlier part of the memory and B comes later. 
But on another occasion, B has to be put in the earlier part of the memory and A later or 
maybe there is a different set of program so you need the flexibility of putting a program 
anywhere within the memory and that is problem of relocation. 
 



you call recall that If you try to go back to your assembly language programming there 
are some addresses which are absolute addresses whereas some which are relative. So, 
for example, in beq instruction you are always going to an instruction in relation to the 
current instruction. So no matter where the program is placed, if the offset in the beq is 
let us say 100 you are going 100 bytes ahead or hundred words ahead in that case. So this 
instruction is relocatable. But if you take a load instruction which takes contents of 
register and a constant it tries to go to a fixed address and if you position your data 
elsewhere then this will not..... if you shift your program as well as data somewhere else 
within the memory then this instruction will have problem. 
 
One device which is often put in assembly language is to have a base register apart from 
the register which are actually specifying addresses in some local context. So a base 
register could be set to the datum or the starting point of program plus data whatever the 
space is allocated and by varying that you can relocate the program. But virtual memory 
organization, as we will see, also makes the program flexible in terms of where it can be 
placed or the data where it can be placed. Our focus initially will be on the first aspect 
namely how do we take care of providing large size.     
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What actually is virtual memory?  
Virtual memory is simply an illusion of a memory which is much larger than the physical 
memory or the main memory. We have basically a large virtual address space which may 
be bigger than the memory physically present and it may not have any relation with how 
much memory is present. So you see that machines are bought with 256 MB memory, 
512 MB memory or different amounts of memory can be placed within the same 
processor but a larger physical.... I mean, the total physical space which is available is 
larger but often it will not be occupied for financial reasons. So you can imagine a larger 
virtual space where programmer can place the program and data without worrying about 
the fact that there is physically smaller amount of memory. 



The virtual address space and the physical address space, both are divided into sums of 
equal sizes as we had done with the cache; we had blocks so here we have what is called 
pages. So virtual memory as well as physical memory, both are divided into pages of 
equal size and the mapping takes place at the level of page. so now out of entire set of 
virtual pages which f- which constitute the virtual memory, some pages are placed in the 
physical memory, some are not so those you need immediately, you need currently are 
kept in the physical memory and this set could change. You require one such virtual 
space for each program. 
  
As you remember that I talked about multiple processes, multiple programs trying to 
share some memory so one could give them each separate virtual space of very large size. 
Now here we have talked of dividing both the spaces into areas of equal size. There is 
another possibility of doing it differently in the sense that you divide more on a logical 
plane. that is, for example, if you have functions, you could say that each function or may 
be group of functions or each data structure or group of data structures could be logically 
organized as what you may call as segment.  
 
So the whole program plus data is divided into a few segments which may not necessarily 
of same size and then you can talk of keeping some segments in the physical memory 
some out of it. The advantage of this is that you have what you have is a complete logical 
entity. so as long as long as you are executing a function you have the entire function in 
the memory or while you are working with one data structure the whole thing is there in 
the memory whereas page is something which is artificial. You are taking a program and 
chopping it off into equal parts which makes things convenient. So organizationally 
dividing into pages is very convenient and it is very efficient.  
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So how do you implement virtual memory? 



You implement basically by relying on hard disk drive which is firstly a non-volatile 
medium and secondly it has larger capacity at a lower cost. So we begin by assuming that 
all virtual pages are primarily placed in hard disk. In some area you can place them and 
keep some of them in the main memory and it is this subset which is in the main memory 
can be made to change overtime as the need arises. 
 
So now, for all this to happen, the instruction set architecture should support a larger disk 
space. So in MIPS architecture, we have discussed for example, there is an address space 
of 32 bits, addresses of 32 bits which means 4 gigabyte of space is there. So we can say 
that a programmer can always imagine a 4 gigabytes of virtual space and might work 
with smaller amount of memory may be a few megabytes.  
 
So who takes care of the risk?  
It is some hardware support which is there in the processor which the programmer may 
not directly see plus software which is basically the operating system software or the 
system software. So now for doing all this can we exactly like what we do for the cache? 
The answer is yes. There are similarities. The whole idea is basically the same that from 
lower level of hierarchy you keep some information at the higher level of hierarchy and 
change it as and when necessary. So, as far as that is concerned things are similar. But 
there are some important differences which need to be borne in mind while organizing 
the whole thing. 
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The main difference essentially comes from the fact that speeds are different. So when 
you talk of speed difference between cache and main memory we notice that it is only 
about an order of magnitude difference. Let me quickly project this figure (Refer Slide 
Time: 13:39). So the difference between these two is much smaller; difference between 
these two is very very large. So the techniques which worked here may not always work 



here in the same manner, we need to keep this fact in mind that HDD is much much 
slower than the main memory, several orders of magnitude. 
  
So now the response to a miss when you do not find things in the cache what do you do? 
You basically you expect that a few more cycles are required so you just hold the 
processor and do the needful and continue execution of the program. So this action has to 
be handled by the hardware, you cannot have a special software doing this because that 
will require many many cycles. So hardware can quickly get a block from main memory 
and serve a miss. We cannot afford to switch context because context switch means that 
instead of waiting, you do something else so that is not possible because that changeover 
may require large amount of time. 
  
On the other hand, when you are working with virtual memory you find something which 
you are looking for is not there in the main memory, you need to go to disk the time 
involved is very very large now, milliseconds, so you cannot keep CPU waiting for that 
long and you must switch the context. If you have several milliseconds of gap the 
processor may better do something else. So from one process or one task it switches to 
something else and the response to this miss can now be handled by software. Because 
we have time available so we can do it more conveniently by software. 
 
Apart from these differences which are coming because of different speeds the 
terminology is also different for more for historical reasons, things have come up 
differently. we are talking of pages instead of blocks, we are talking of we talk of page 
fault instead of miss and as you will see later there is a page table instead of a cache 
directory so that is a switch in terminology difference say some tens to hundreds of 
thousands then miss rate has to be accordingly very very small otherwise you have a very 
large figure at hand and you will lose tremendously in terms of performance. 
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Now this is..... miss rate is indeed small here, 1 because of large physical memory size as 
compared to small cache size. The miss rate which you see in context of cache is largely 
determined by how big the cache is, larger the cache smaller the miss rate. So basically it 
depends upon how much of space you are capturing in this level of memory, if this is 
large miss rate is lower whereas cache could be in terms kilobytes, main memory is in 
terms of megabytes so naturally in the first instant itself you have a much lower miss rate 
which is good. But apart from that we have to organize other things also which helps in 
keeping the miss rate as low as possible. 
  
So one is that page is to be kept much larger than what the block size is as we have seen. 
In cache we cannot increase the block size too much because it will increase the miss 
penalty and it will also reduce the number of blocks and therefore the localities you are 
capturing will be small so you cannot have two larger blocks, you have basically a few 
words four words, sixteen words utmost sixty four words but generally not larger than 
that. Here we need to have large page size firstly so that you can capture much larger 
locality.  
 
Secondly, when you are getting data from disk it does not make sense to just a few words 
because once you spend few milliseconds to reach a particular position in the disk you 
better transfer substantial amount of data so that the time to access is amortized over 
larger number of words. So, for both these reasons you have typically a page size which 
is 4 kilobytes to 16 kilobytes but the trend is to increase it even further to 32 or 64 
kilobytes. 
 
Secondly, the mapping in case of cache we have seen that there is direct mapping, 
associative mapping and set associative. The most common is set associative with degree 
of 2, 4, 8 or something. But here we need to do our utmost best that is we go for fully 
associative mapping. Although we do not use associative memory for that but we need 
complete flexibility in terms of mapping so that there is no miss because of the conflicts. 
How we do that we will see later.  
 
And among the choice of write back and write through we need to use write back, write 
through does not make sense because it does not make sense to write one word into disk 
so you are going to write always a page which means that you have write back. Write 
back choice also reduces the number of misses. The negative point of write back it caches 
that the time to write back is larger, time to write a word is smaller but the difference is 
that if you are writing a word in write through cache you are writing more often, if you 
are doing write back you are writing less often. So what suits here is a write back 
approach and you do not have any virtual memory with write through it is always write 
back. 
  
Then the last point is what replacement policy you use. This is also important because if 
you are throwing back throwing away a wrong piece of information then you are losing, 
you will have a miss later on. The ideal thing as for your replacement policy would be to 
be able to see in future. So, if you know what references are going to occur in near future 
it is that data or instruction which you need to retain. Unfortunately that is not realistic. 



What we can is we can only look at the past and then try to figure out what we are likely 
to use. So on that basis LRU has been experimentally found to be the most appropriate 
policy but it is not easy to implement. In concept it sounds similar that you pick up the 
one which has been least recently used but how do you implement. 
 
If you are tagging each block or in this case each page with time then this is something 
this is a quantity which is not bound, unbounded quantity so it is not practical to use time 
or the cycle number because you do not want to restrict programs to run for a limited 
time, you have people doing research who put their programs for execution for days 
together and then get the result. So that is not really workable.  
 
You might think of, may be maintaining an order which was most recently used, keep it 
number call it number 1 which was next recently used call it number 2 and so on then you 
shuffle the order as accesses take place. Again the problem may be that you may have to 
make changes in the various..... suppose you are maintaining order of various pages or 
various cache blocks and you change the order of one so the others have to be shuffled or 
you have to use more sophisticate data structures to do that which requires that to make 
one access to one level of memory you to do this housekeeping of LRU you may have to 
make many accesses and the purpose may get lost trying to do this LRU nicely. So, doing 
it in hardware is in fact more difficult and doing it in software somewhat is easy but still 
we do not want to lose efficiency. in hardware that means what I mean is when you are 
handling cache you may you may not worry about doing something which is close to 
LRU, you may take a more approximate policy but in case of virtual memory you try to 
be as close to LRU as possible.      
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So now with this background let us try to look at this picture which shows virtual 
memory on one side and physical memory on the other side. Each is divided into pages, 
each page of virtual memory each virtual page is either mapped to physical memory or to 



a disk. In fact strictly speaking each page must have its residence in on disk; some of 
them will also have residence on the physical memory. So you need a mechanism which 
defines what goes where; given a page where we place it in the physical memory and 
once we have placed it how do we find it later on. This process is called translation of the 
address  
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Imagine that you have virtual address; I am showing 32 bits in this case, this could be 
divided into page offset and virtual page number. So suppose page size is 4 kilobytes 
which mean a 12-bit number will specify byte within a page, rest of the address is the 
page number. We have this 20 bits specifying page number and 12 bits specifying 
address within a page. Suppose we have physical memory present which is 2 raised to the 
power 30 bytes so let us say this is 4 gigabytes and this is 1 gigabyte (Refer Slide Time: 
25:24) now physical memory can physical memory address can be similarly divided into 
page number and offset so the problem now remains is to translate virtual page number 
into physical page number so it is a translation process we need to figure out how it has to 
happen. 
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This is the mechanism using page table. So page table is basically a lookup table where 
you keep one entry for every virtual page. So, given the virtual page number you look at 
appropriate entry here and this will tell you where this page is located in the physical 
memory or effectively it will give you physical page number. There is a bit apart from 
this physical page number which is a valid bit and has similar purpose as we have seen in 
cache, it will tell that whether this particular virtual page is present in physical memory or 
it is not present. So, if it is not present in the physical memory we need to know address 
of this page in the disk because we have to get it from the disk. So either we get physical 
page number here or we get the disk address or pointed to area where disk address would 
be stored and the location of this table could be obtained from a register which is called 
page table register. So it is a very simple lookup process.  
 
Now compare it with cache, how we were doing. In cache we did not in direct map cache  
we looked at the index bits and directly went to cache where we simply make a check 
whether it is present or not. We compared with the tag bits. But here now we are before 
we access the higher level of memory which is the physical memory in this case we are 
going through this table to reach the position whereas in case of cache we directly 
reached the cache memory through that index but that is the direct memory access where 
the locations are fixed. In terms of its effect this is same as fully associative cache where 
in case of cache we were required to make comparison with all the tags present for 
various blocks. But in this case we are not making any comparison. Here you have one 
entry per virtual page. In cache it is one entry per cache block. So the number of entries 
in cache directory is equal to the number of blocks in higher level memory. Here it is the 
number of entry equal to number of entries in the number of pages in the low level 
memory so that is the difference you should notice.  
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This picture shows the mapping process with looking at the virtual page number. taking it 
Taking it out of the virtual address we are indexing into this table and this table (Refer 
Slide Time: 28:57) is telling, it is allowing us to either go to physical memory or to disk 
as the case is. So, if you have a hit it is fine you make an access, if you have a miss then 
this is called page fault and page fault result in context switch. So first of all the current 
process which had made this request is suspended. you initiate a request to the disk to do 
the transfer, meanwhile the disk is ready several milliseconds are going to elapse and you 
can execute thousands and thousands of instructions so control is transferred to another 
process which is waiting for execution. 
 
So now the question is where is the page table stored. What we have said is before you go 
to the physical memory you have to go through page table, you have to make an access 
but where is that located. And the answer came we worked out if we understand how big 
that table is or what is the space requirement .   
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Let us take some typical example. Suppose virtual address is 32 bits, page size is 4 
kilobytes and each page table entry is 4 bytes. Now what I indicated was that page table 
entry as a valid bit and physical page number. Actually apart from this it may have other 
information, it may have information about memory protection in context of multiple 
processes. So let us imagine that you have 4 bytes of information per entry, you put all 
these together the number of page number of page table entries which are equal to 
number of pages is 2 raised to the power 32 virtual memory size divided by page size or 2 
raised to the power 20. So 1 million pages are there in the virtual memory and size of the 
table could be obtained by multiplying this 1 million by size of each entry and you get 4 
megabytes.  
  
Now there are hundreds and thousands of processes each one has to worry about and we 
have decided to allocate same amount of virtual space to each of these. Then where are 
we going to put this much of information. Having a direct separate memory for this is 
ruled out so your attention goes to main memory. But main memory is also in terms of 
megabytes few hundreds of megabytes at its best. So, trying to stuff it with several 
hundreds of page table will simply leave no space for other useful things. So what do we 
do? 
There are various ways you can handle it. Some of these are listed here, common ones 
that you realize bound on the page table size, exploit that or exploit the sparseness that 
means the whole page table may not be really active, you can use multiple level or you 
can use techniques like paging the page table and so on. So let us look at these one by 
one.  
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So, although we are saying that you give 4GB space 4GB of virtual space to each 
program but it may not need that. Suppose it needs only a few hundreds of megabytes or 
may be few tens of megabytes then we should actually cater for only that so we can have 
a register which keeps track of the bound and once you reduce the memory virtual 
memory size the page table size also reduces. So allocate only as much space as 
necessary and allow it to expand or grow in one direction if need of a program changes 
dynamically. But this is not really does not really match with the requirement. 
 



Typically the programs are organized to grow in two directions: one growing area is stack 
which grows or shrinks as calls are made to functions. On the other hand, there is also 
what is called heap which grows and shrinks as memory is randomly allocated and 
deallocated through through the pointers. So typically these are organized to grow in two 
opposite directions. Suppose you keep some space stack grows in stack grows in one 
direction, heap grows in another direction so that you can allow them to grow 
independently. So it is not difficult to accommodate this by, thinking of this as two 
virtual memory segments and have two page tables or you can think of two parts of a 
page table which can be made to grow independently so this can take care of both stack 
and heap. But this is not sufficient. It does not still reduce the memory requirement 
substantially. 
 
One thing we are not able to do here is that we are not able to handle sparcity of the table 
because in the table we are keeping one entry for every virtual page whereas the pages 
actually present in the physical memory are much fewer so why not we just keep track of 
those. If you have a mechanism to just keep track of only those entries of page table for 
which we have current requirement then it will be much better. 
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One possibility is to go back to cache like approach that is actually to have associative 
memory where the number of entries would correspond to number of entries actually 
there in the physical memory so that will be much smaller. But even then having 
associative memory of that size is impractical. So alternative is to use hashing technique. 
Given a virtual page number, you apply suitable hashing function, you go to an you get 
an index which takes you into either a smaller table or takes you or gives you directly the 
physical page number. This is what is called inverted page table because you will have 
entries corresponding to I mean it is becoming something like cache situation where you 
will keep entries organized as per the entries which are there in the physical memory. 
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A more common technique is to use either two level page table or paging the page table 
as I will see little later. So what we are doing here is that we organize the virtual space in 
terms of segments and segments are divided into pages. So now it is different from 
segments which I mentioned earlier which correspond to the logical boundaries or 
function in data structure. So let us imagine that we have segments of equal size. It is just 
that entire virtual memory is divided into some larger chunks which are again divided 
into smaller chunks which are called pages. So we can have one page table for each 
segment then you have flexibility of not having to keep all the page tables in the main 
memory, you can keep a few page table which are relevant in the main memory and 
therefore reduce your space requirement. The segment table will keep track of where the 
page tables are, which of them are in main memory which are there in the disk so this 
organization will try to just track information which is active and which are required.  
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So conceptually this is how it is organized. You have a number of page table, page table 
0 1 2 3 4, page table i, page table n minus 1 these are much smaller page tables. 
Effectively if you put all these together they will form your good old single monolithic 
page table. But now we have divided and all of them need not reside in the main memory. 
The starting addresses of these page tables is pointed out by another table which we are 
calling segment table. So first you make an access to segment table. Now imagine that 
virtual addresses divided into three parts: segment number, page number within a 
segment and byte number within a page. So using the segment number you pick up one 
entry in the segment table this will tell you where the page table is. 
 
Let us imagine that page table you are looking for is in the physical memory. So this will 
give you the starting address of that page table. Within this page table you can take this 
page number and index into it (Refer Slide Time: 38:27). This will now tell you the 
physical address or physical page number of the entry you are looking at you are looking 
for and therefore by making this two-step access you can make you can reach the 
required point in the physical memory without necessarily having to have this whole 
thing in the physical memory. 
 
Now it could be that the page table you are looking for is not in the physical memory so a 
page fault will occur at this point and first you will bring this page table into physical 
memory then make an access to the page table and then make access to the main 
memory. The starting address of the segment table could be in a register. As you can see 
here there are two points, two places where you may encounter page fault. You may 
encounter page fault when accessing a page table itself; secondly, you may access you 
may have the page table but you may not have the page so page fault can be encountered 
at any of those two levels. 
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Lastly, we can think of keeping the page table itself in the virtual memory. Instead of 
imagining page table to be in the physical memory and worrying about two levels or 
other techniques suppose you place the page table itself in virtual memory then 
automatically some part of it will be kept in physical memory, some will not be rest will 
not be. so it is only you will bring only that part of the page table as it is needed, as you 
make accesses few entries will be there rest will not be there.  
  
Now how do you locate this page table?  
As you have seen that to access any memory location you need to go through page table. 
If page table itself in virtual memory you need some way to find out where it is in the 
physical memory. Because if you are keeping page table in the virtual memory how do 
we get it, so it is a kind of vicious cycle. What is done is that we can keep user page 
tables in system’s virtual space. You have many user processes, you have a system 
process. So system is also assigned a virtual space. Let us keep user page table in system 
virtual space and we can also ensure that system space table or at least some part of it is 
always there in the physical memory so you can start by that, find out where your page 
table is or you are not worried about having the entire page table in the main memory, 
you want to find that part of the page table where you are making reference. So the 
address of entry you are looking for is given by the starting address of the page table plus 
the offset within the table. 
  
Let us get back to this. 
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How are you making an access to a particular entry in the page table? 
You need the starting address of the table and you need this offset which is given by 
virtual page number. So if let us say page number if 10 that means you want tenth entry 
so in terms of bytes it may be 10 into 4. So you take this address plus four times this 
number that gives an address; this is the address of...... normally imagine if page table 
was in the physical memory, you will take this address and go to physical memory 
directly, read the page table entry and proceed further.  
 
But now what we are saying is that this address which you have it is an address of one 
page table entry this itself is a virtual address. So first we will have to get a physical 
counterpart by going through system’s page table because this is in system virtual space 
so we go through system page table which for the moment you have to imagine is in the 
main memory so you access that, get the physical address of the page table entry hoping 
that it is present in the main memory you make an access there, find out whether page 
you are requiring ultimately is present or not and then make an access so you need to go 
through these two-step process. 
 
The first step is accessing the system’s page table which hopefully is in the physical 
memory, then accessing user’s page table which the relevant part hopefully may be in the 
physical memory otherwise there will be a page fault, once you got that then you make 
access to physical memory. So it is basically not two, totally three steps are involved to 
read anything from virtual memory. 
 
I will elaborate these little further pictorially so you will have a clear idea and then we 
will also go to performance issues next time. 
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So let me summarize at this point. We started by virtual memory and cache organization 
and noticed similarities, also noticed the differences. Differences are important otherwise 
things will not work with the efficiency we want. The key mechanism here is the page 
table which is used to translate virtual addresses to physical addresses. Page tables are 
tend to be very large which poses a problem and there are many techniques to counter 
that. These techniques basically exploit the limited size, the sparse sparseness, locality 
and so on and ultimately the relevant part of page table has to be in the physical memory; 
there is no separate memory kept for this. I will stop at this point, thank you.   
  
 
 


