
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 29
Memory Hierarchy: Cache Organization

In the last lecture we discuss the basic principles of memory hierarchy and we noticed
that the underlying idea is that there is locality of reference and you can bring data or
instructions from lower level memory to a higher level memory and used it several times
so thereby you gain in terms of the speed of the high level memory and the effectives of
getting capacity of the lower level memory.

Today we will specifically focus our attention on cache memory which is the closest to
the processor and lies in between the main memory and the processor. So I briefly
mentioned about the mapping alternatives. We will elaborate further on those and then
we will start looking at the performance issue.

(Refer Slide Time: 00:01:44)

So how does the processor performance or the time to execute a program changes in light
of cache accesses, in light of memory hierarchy particularly cache and the main memory.
We will see the influence of choosing different memory organizations on the miss
penalty. It is the additional time one has to spend when a miss occurs. And we will look
at different alternative which exist at various stages: read stage, load stage and so on. So
these different alternatives have again different cost and performance implications.

(Refer Slide Time: 00:02:32)

So we are talking of typically three levels of memory. In many cases they are more. You
have cache which is closer to CPU; main memory and so main memory is the reference
point so there is a faster memory closer to CPU called cache and a slower memory but
giving large capacity which is beyond the main memory. Typically you have a vast
variation in terms of their access times (Refer Slide Time: 3:08).

For example, the CPU registers with the kind of technology require only a fraction of
nanosecond to access; so of the order of let us say 0.1 nanosecond; these are the figures
which change every year so we are looking at these as more as a ball path figure and I am
not talking of exact values. Cache which is made of SRAM or the Static RAM is of the
order of 1 nanosecond. Now this could be less or more. particularly if cache gets
integrated with processor which it does in most cases the value could be lower but there
are cache memories of the chip also then it could be even little higher.

The main memory which is basically DRAM or Dynamic RAM technology is typically
an order of magnitude slower as compared to cache and the backup memory or the
secondary memory which is built around hard disc drive this has much slower...... you
can see there are several orders of 5 or 6 orders of magnitude slower but here there are
two different kind of timings which are involved: One is time to reach a point where your
data exists; you are trying to access some particular information on a disk to reach that
point on the disk because it is a moving medium it may take of the order of a millisecond
or a couple of milliseconds. But once you reach a point the transfer takes place faster and
the rate of transfer could be of that order at some 10 megabytes per second on that order.

So any decision you take about organizing these levels one has to bear in mind that kind
of order of magnitude of difference between various levels of technologies which exists.

The first question we came across was how to map the addresses of the main memory on
the cache. So, given a data or instruction which resides in some particular address in the
main memory where should you place it in the cache and the simplest solution was to
take the memory address, modulo the cache size and you get the location where it gets
positioned in the cache; so there is a fixed position.

(Refer Slide Time: 00:05:35)

The other possibility was that allow anything to anything to be placed anywhere and there
is a cost implication of doing so although it gives you maximum flexibility. So typically
most often what you have is something which is in between the two which is called set
associative. So, given any address you have a range of locations in the cache where it can
possibly exist.

What it means is that a set of locations in the memory or set of addresses in the main
memory will compete for a small pool but it is not they are not mapped into a single one.
So let us say if sixteen locations in main memory compete for four locations in cache still
you have little flexibility and at least four of them can reside at any time. So, as you go
from direct map to fully associative (Refer Slide Time: 6:35) you get increased
flexibility. The degree of set degree of associativity and set associative case gives the size
of each set. More the degree typically you talk of 2 4 8 16 but generally not more than
that; more is the degree of associativity more is the flexibility and eventually it shows up
in performance.

(Refer Slide Time: 00:07:04)

I have redrawn the diagrams of hardware structure for these and I have tried to have
organization show for cache access with direct access mechanism (Refer Slide Time:
7:222) with one block size or larger block size and associative access. So let us look at it
one by one.

In this all these I have kept the cache sizes as same and you could see that the field sizes
in the address will vary accordingly. So now I am assuming a 4k words cache size and
main memory address we are assuming is a 32-bit byte address. So you have 4 Gigabytes
and here you have 4k word which means 16k bytes; we are talking of 16k byte cache
memory and in direct access case this gets addressed by a 12-bit field here; 12-bit field
will select one word and you can actually get 32 words of data from here. So the access
will require that you index into one row here, look at the tag; match the tag with the tag
field of this. So, different main memory addresses which can map to this cache address
this cache location (Refer Slide Time: 8:38) would differ in terms of tag and the word
which is sitting here will be identified by the tag value it is holding here. So you match
the tag and if tag matches then it is a hit; if tag does not match it is a miss. So, if hit
occurs you can read this otherwise you ignore this and do something else.

There is an additional bit which we call as valid bit which indicates whether something
has been placed here or not. Because initially you may have an empty cache and let us
say as the program begins initially you get lot of misses and the cache will get filled up;
after that after get it gets filled up, it will be a matter of replacement, you get new words
they replace the old word and so on. So you are not only matching the tag you only lo
you are also looking at the valid bit and if both conditions are met, only then you consider
it as a hit.

Now let us extend the size of the block.

(Refer Slide Time: 00:09:40)

In this diagram, effectively each block is a unit of transfer each sorry each word is a unit
of transfer, each word is also an accessible or addressable unit here. But now we talk of a
block which is let us say 4 words in this case or 16 bytes. So the same capacity of cache
would involve now 1k blocks because each block is 4 words. And you can imagine these
4 words of a block to be laid out horizontally. Logically they are forming part of one row
and they carry a single tag. so the mapping here is in terms of one block at a time and as
misses occur, as you need data or instructions you will typically get one block from the
memory with the hope that you are capturing some spatial locality. So, if you are
referring to this word it is likely that soon enough you will refer to this word and then this
word (Refer Slide Time: 11:00).

As we would see later, that in terms of transfer of data between memory and cache it is
more economical or better in performance to move some set of words, not a single word;
it is advantageous to transfer blocks of data. So, once you have a miss you might do little
more work and reap the advantages later on. So in this case the index field in the address
reduces to 10 bits and we will still have still have same 18-bit tags which need to be
matched. So, given an address we will find either its entire neighborhood that entire block
there or entire block absent. So 2 bits in the address could be used to select one word out
of these four words which you pick up from the cache.

Actually another name for the block is line, cache; you also talk of cache line which
means the same thing as block and why it is called a line is because logically you imagine
this as one row.

(Refer Slide Time: 00:12:44)

Now let us look at set associative organization something wrong with the diagram some
lines are not showing up now. So we are considering in particular 4-way set associative
organization. That means each block will have four possibilities; it can appear anywhere
within a set. So each horizontal line here forms what we call as a set and there are now
256 sets so again factor 1 by 4 so each sets get indexed by 8 bits. And you would notice
that to compensate for that the tag size has become larger. So it is now the identity of a
particular block in the set which is now 20 bits because the index has reduced so 2 bits go
to the tag. The reason for this..... another way of looking at this is that, now there are
actually more words which can actually get placed here; four times as many words which
can get placed here as compared to the previous situations. So I am assuming..... the size
have shrunk here now; this is one block which means 4 words or 128 bits and the whole
thing can be thought of as organization with the four blocks, there are four quadrants
here.

So, given an index you are selecting, you are accessing this entire row corresponding to a
set and within each a tag matching will be done in parallel. So you are you are reading
out tags matching with this tag field of the address and match may occur anywhere, any
of these matches and therefore we have an OR gate so there is also a valid bit which is
being looked at. So, if any of these show a match there is a hit, if none of them shows a
match it is a miss.

Now, depending upon where a match occurs we would need to pick up a word. But
before that what we are doing is, out of the blocks we are picking up the required word.
There is a multiplexer with a with 4 words coming in and 1 word going out (Refer Slide
Time: 15:14) each of these and these multiplexers are being controlled by this 2-bit field
which we consider as a block offset. So these multiplexers smaller ones are actually same
as what I showed here.

And then there is another round of selection done here. So these match signals will enable
one of these and that could be finally taken as a data. So you would notice that there is
replication of this matching hardware which is an extra thing; there are more bits which
you are spending on tags. So these are the overheads of increasing the degree of
associativity and the advantages as I mentioned earlier that you are likely to reduce the
miss rate. The reason being that, if degree of associativity is low there are more conflicts
and therefore some of the blocks which you may like to use later on may get thrown out.

[Conversation between student and Professor:] any question about these three
organizations ? 3? oh oh oh that is a typographic error. Actually all are..... yeah this is a
mistake (Refer Slide Time: 16:39); all are 20-bit; this is carried from some other diagram.
Yeah please correct this; these are all 20-bit tags uniformly.

Any other question? [Student: noise.............(16:57)] well, depend... now.... we are
assuming here that you are accessing one word although it is..... I am showing it as a byte
address memory but out of this you get one word out or you send one word in. Actually I
am showing the read operation; right operation would be similar. So the unit of transfer
between this memory system and the processor is one word. If the requirement is of a
byte or a or a half word then out of that you will pick up and if there are misalignments
again then multiple accesses get made. So, at the moment I am talking of reading and
writing a word with this memory; does that answer your question? Any other question?
Okay.

(Refer Slide Time: 00:18:01)

So basically just to summarize; we have memory main memory address divided into
effectively three parts: there is one part which we call as tags; one part is set index and
other part is some displacement within a block. So the tag gets compared to the tag stored
in the cache. Set index is used to select a set and this displacement which could again be
two parts: a word within a block and then byte within a word although I have shown it

has a single field; this selects an addressable unit; whatever is an addressable unit it could
be byte or it could be word it is selected with the help of these bits (Refer Slide Time:
18:36).

Now let us again look at the performance issue. We, in general, try to characterize the
performance of a hierarchy n level hierarchy in terms of the time once spent at each level
and also the total cost in terms of the capacity or the size at each level.

(Refer Slide Time: 00:18:49)

So it is a size which we said will influence the cost as well as the performance and
therefore by playing around with the capacity or the sizes you could achieve a suitable
combination of effective time and the total cost. Now let us simplify this and visualize
this into context of two levels.

(Refer Slide Time: 00:19:29)

Suppose you are talking of now, a simple case, two levels, m 1 and m 2; m 1 is cache, m
two is main memory. The access time is t 1 that means if you were to get data from cache
only if there was a hit then as we formulated earlier it is just tau 1 time we encounter. But
if we get the data at next level the time t 2 is tau 1 plus tau 2 because we would have
made an attempt at cache level failed and then made an access at the main memory level.

So the hit ratios or hit probabilities are h 1 and h 2 where h 2 is 1. we are assuming that
there is no further level beyond main memory so whatever you are looking for has to be
ultimately found at the last level which is main memory in this case so h 2 is 1. The miss
before level 1 m 1 is always 1 because there is no 0 level so before that its miss we have
to start from level 1 only and m 2 is simply 1 minus h 1.

Now, in terms of these we can express T effective as this was the formula: sigma mi hi t i
so m 1 h 1 t 1 plus m 2 h 2 t 2. Now, putting these values we get this as h 1 t 1 plus 1
minus h 1 t 2. If you replace t 1 t 2 by tau values what you will get is tau 1 plus 1 minus h
1 tau 2 so either way you can look up on this. So intuitively you could see this is very
straightforward that if there is a hit at the cache the time spent is t 1, if there is a miss the
time spent is t 2. Or one could argue this way that tau 1 is the time you in any case spend
whether there is a hit or miss. The additional time is spent if there is a miss and that
additional time is tau 2.

So in more common terms this is often written as average memory access time is the hit
time, the time is spent if there is a hit plus miss rate which is 1 minus h 1 into miss
penalty that is tau 2.

(Refer Slide Time: 00:21:41)

The term penalty is that this is the punishment you get if you are not able to find things in
the cache. So now our ultimate interest is in program execution time; that given a
program with which executes certain number of instructions how much time it takes and
that is what we had mentioned as the ultimate measure of performance. So this will be
instruction count into cycle time into........ typically we talk of only CPI but now we say
CPI plus the extra cycles which are called memory stall cycles because what happens is
that when there is a miss you hold back the CPU; similar to the data hazard you introduce
stalls. So you do nothing but waiting for a few cycles till data comes from main memory
and is supplied. So the cycle you spend in actually executing the instruction...... normally
if there is no miss plus the additional cycle you spend when there is a miss.

And this factor memory stalls per instruction is a miss rate multiplied by miss penalty
multiplied by memory accesses per instruction. So now, memory access per instruction
would depend upon the kind of instruction you have and how often various instructions
are executed.

So, in our architecture, we have assumed that, each instruction is a one word instruction,
so one access is made to fetch an instruction to fetch that instruction and load and store
are instructions which make another access to memory. So now you can so memory
accesses are either 1 or 2 in different instructions and with appropriate weightage if you
find the average you will get 1.0 something as average number of memory access per
instruction. So miss rate and miss penalty are same thing. So when miss occurs this many
often (Refer Slide Time: 24:09) the miss occurs every time you incur so many extra
cycles and this miss rate has to be seen in conjunction with how many times you make
memory access per instruction. So this product gives you memory stalls or the extra cycle
you spend per instruction because of misses.

Any question about this? Is that clear?

So now in view of this if you were to improve performance from cache organization
point of view what is it you could do? So basically you could improve on any of these
factors. Actually in the second one, hit time is sort of subsumed in this; hit time is
actually subsumed in this. So if there is no miss we have assumed for example that you
can access memory in one cycle so that is actually taken into account while counting the
cycles of an instruction.

So, overall performance can be improved if you reduce one or more of these things. Or if
you do a change which reduces some, but increases something else, then you have to
ensure that advantage is more than the loss. So there are different techniques which will
either try to reduce miss penalty or reduce miss rate or reduce this product; in the process
there may be increasing one but on the whole reduces a product or they could also try to
reduce hit time. So we have to keep this at the back of our mind that when you are
comparing two or more alternative what does it do.

(Refer Slide Time: 00:25:44)

So the miss penalty is dependent upon how you transfer data between memory and cache
and we looked at three possibilities that is you have one word wide memory and one
word wide bus; other extreme was this one (Refer Slide Time: 26:27) that you have
memory as wide as the block and the bus is also equally wide.

(Refer Slide Time: 00:26:17)

So this is the fastest possibility but very expensive therefore there is alternative
arrangement which is interleaved memory. Well, it is not necessary that the width of the
memory here or the degree of interleaving should be same as the block size. Suppose
block size is 16 words even if you have 4-way interleaving or 4 word wide memory it
will still give us some advantage. So, larger the width here or larger the degree of
interleaving better it would be. So let us quantify this to some extent for some cases.

(Refer Slide Time: 27:07)

As an example, suppose you have one clock cycle which is required to send the address
to the memory 15 cycles are required for RAM to have access internal. That means after

address RAM take some time before it gives data so let us say that is 15 cycles. Now
these are CPU cycles; one memory transaction maybe different or the bus cycles maybe
different but here we assuming that bus also takes one cycle for sending data. Though the
two may not necessarily match, in this example, we are taking figures like this. Also, let
us assume that block size is 4 words. So, in the first organization where you had 1 word
wide memory and 1 word wide bus you will send address once and then go through four
transactions, 4 cycles every time spending 15 cycles for access and 1 cycle for
transferring data. So, total number of cycles or this penalty in these terms of number of
CPU cycles will be 65.

In case (b) this 4 factor reduces to 1. In one shot you will access 4 words, transfer all the
4 words and therefore you spend only 17 cycles.

In the last case, you will make only one access to the memory; all four modules or all 4
banks of memory would be ready with their words within 15 cycles but then you will take
4 cycles in the bus to send them to the cache so 1 plus 15 plus 4 gives you 20.

Now we can also imagine intermediate situation. Suppose in case (b) the memory and bus
were 2 words wide then what we will have here is a factor of 2, we get 2 words at a time
and we do it twice so this will be 33 which is somewhere in between the two. And if
degree of interleaving was 2 here then what you would do is this 15 plus in 15 cycles you
will get 2 words out, spend 2 cycles in sending those so 15 plus 2 17 and that 17 has to be
repeated twice. So 17 into 2 34 and 1 so it will be 35.

One thing I would like you to notice is that what you are achieving here is closer to this
rather than that and in the intermediate case also this is 35 and that is 33 so the difference
is not so much but the cost is much lower.

(Refer Slide Time: 00:29:58)

Here I assume that you physically have two or four or more different memory banks
where addresses are interlinked. But in DRAM in Dynamic RAM what happens is that
internally it has a structure which gives you similar effect that is called page mode in a
Dynamic RAM. In a DRAM the storage cells are organized actually as a two dimensional
structure in row and columns and it is organizes that the address has got two parts row
address and column address so you give the row address an entire row is accessed and
kept in a buffer from that buffer you can pick out things faster so time to access one word
out of the row which has been kept accessed and kept in a buffer is much smaller. So
effectively what you do is you can think of this as a page which we have accessed and if
you are referring to a block of data which lies within this page, you can make faster
access.

So first word takes longer but subsequent words come out faster. So reading multiple bits
from a row can be done very fast. It can either be done sequentially that is you give you
do not give even column address repeatedly, you give one column address and then
consecutive bits can be read out or you can also randomly read bits out of this page or the
row by giving only column address, row address is given only once.

(Refer Slide Time: 00:31:45)

Now this is what we have discussed is the basic operation, within this there are lots of
variation which are possible and they have their own implications on performance. so we
will talk of variety of va varieties of ways in which you can do read that means initiate
data of initiate data transfer between memory and cache, load means how the data gets
filled up in the cache, fetch means when you initiate a transfer, replacement means when
a new block comes how do you choose which block to go away and what happens when
there is a write hit or a write miss so that we have not dealt with and there are
possibilities there also. So let us look at each of these one by one.

(Refer Slide Time: 00:32:46)

In reading, one variation is that, when you are making an access to the cache, at the same
time you might initiate an access to main memory in anticipation. So if cache shows you
a hit then you can abort that, if it shows a miss then you can continue so you would gain
initial one or two cycle which are required for cache hit so that is called sequential or
concurrent read.

Secondly, when you have the data brought to the cache, one approach could be at first
you fill up the entire block in the cache and then out of that block you give one word to
the CPU for which it had halted so CPU gets stalled for one word. Suppose you are doing
load word but because of miss you are getting the entire word the entire block from the
main memory. So if these two are sequentialized, that is, first you fill up the cache and
then transfer data to processor then it takes longer. What you can do is that as the
required word out of the block is getting filled into the cache you can also transfer that to
the processor so there is kind of forwarding path that can be created so that the data
straight comes from the memory to processor. That is with or without forwarding.

[Conversation between student and Professor: 34:23].... it could be typically one cycle
two cycles and ideal would be one cycle read, one cycle write but it could be more,
multiple cycles and then again things vary whether when you have multiple level of
cache so typically first level of cache you will like to have synchronized with the
processor but subsequent levels may not necessarily be.

Now the question is also of how do you load different words which form a block into the
cache. Suppose you are talking of a four word block 0 1 2 3 then the most simple thought
would be to bring these into the cache in that order.

(Refer Slide Time: 00:35:00)

But one might say that if the miss occurred for word number 1 within that block then why
not start with this. So particularly when you are forwarding the data to CPU it may be
advantageous to fill up 1 2 3 in that order. You might just leave the words before it
unfilled and the valid bits would have to be now one per word and not one per block. So
you can keep those words invalid and these are valid. if you require those then you can
fill up or alternatively you could start in a Round Robin fashion, start with 1, go to 2, go
to 3 and then fill up, come back and fill up 0; so in a wraparound fashion you can load all
of them but start at the one which you need most immediately.

(Refer Slide Time: 00:36:12)

Fetching means when do you start the transfer. Typically what you do is called demand
fetching that only when you encounter a miss then you fetch the data so that is demand
fetching. But you can again anticipate things and do it before time; ahead of time you can
fetch and this could be this prefetch which means getting the information ahead of time in
anticipation this could be initiated by the hardware or by software so there could be
hardware prefetching or software prefetching.

One simple mechanism used for hardware prefetch is that when you are getting one block
get another block just the once which is following it hoping that you are going to have
sequential references or it could be software driven where a programmer may be able to
guess more clearly what is required ahead of time. So one has to have special instruction
which will create which will actually cause a miss an artificial miss and then force
hardware to get a block ahead of time.

So now the open question here is how much ahead can you initiate a prefetch by
software. If you do it too much ahead you might do a superfluous work because it maybe
that you are thinking that in your program flow you will go a certain way but if you are
doing too much ahead may be there is a branch point in between and you may go
elsewhere and you may not use what you anticipated. So there could be wasteful transfer
and you may basically load the memory processor bus.

Our question is how often you do it; do you do it always or do you do it sometime; again
it is a matter of tradeoff and judgment.

Replacement issue comes when a new block has to be brought and an older one has to be
thrown off. In a direct map cache there is no choice, a new block comes and it has to go
to a fixed place so it is trivial. But when there is some degree of associativity, you need to
find out which, suppose it is a 4-way associative then which of the four you need to
replace so that is decided by what is called replacement policy.

(Refer Slide Time: 00:38:58)

And the most commonly used policy is LRU or Least Recently Used so you need to keep
track of which of the four blocks was most recently used which was least recently used
and the one which is least recently used is the one which is replaced.

Alternative strategies are Least Frequently Used. Instead of counting when was it used
last you keep track of how often it was used from the time it was brought. Or you could
use a simply FIFO approach one which is brought in earliest gets thrown out or you may
do it randomly of course which is that means you do not think just but arbitrarily replace
something. All these are some kind of heuristics. What has been found in fact is LRU is
most suitable.

 (Refer Slide Time: 00:40:00)

Now, this is very important and this has very profound influence on the performance.
There two kinds of write policies which are followed. We have so far focused our
discussion more in terms of read that is you are trying to get data. What happens when
you are trying to write. You can follow two approaches: one is called write back, the
other is called write through.

In write back what you do is you keep on writing in the cache and in write through you
directly write in the main memory. Now, first let us assume that there is write hit. These
choices come when you have write hit or a write miss in both cases. First let us examine
write hit case. Write hit means that the address where you want to write that block is
present in the cache. In a write back case you will update that, you will write into cache
you will not write into main memory and as a consequence main memory is not up to
date.

When do you up up to date when do you update the main memory?
It is when this block which you had modified is about to be thrown away. Before this gets
thrown away you must make sure that main memory is updated. So, to do it judiciously
what you need to do is, with each block you need to maintain a bit which is called a clean
bit or a dirty bit. So you may get some block only for reading and you may keep it clean,
but moment you write you call it dirty and when at the time of replacement if the block
which is being replaced dirty then you update the main memory otherwise you do not
have to take that trouble.

In write through what you will do is you will actually write in both; you will write in
cache, in parallel you will also initiate write in main memory. In case of write miss write
back arrangement would require that first you get the block from main memory into the
cache serve the miss first and then write in cache only; whereas in write through you have
a choice of getting the block or not getting the block. Those two difference are called

write through with write allocate and write thorough without write allocate. That means,
now imagine that there is a write miss which means that the block where you are trying to
write is not there in the cache, so one possibility is that first you get the data from the
memory into the cache and since it is write through you write there in the cache as well as
in the main memory. The other possibility is that if the data is not there in the cache it
does not matter, you simply go and write in the main memory.

Now the problem with this is that you will save the time although you will save the time
of getting data from the cache but you are likely to encounter more misses; whereas in
case of write back you will definitely bring a block and then you can simply keep on
writing in cache because writing into main memory would be more time consuming.

In any case what is typically done is that you do not write into main memory directly
actually, you write into buffers. So, if you are following write back policy, the buffer will
accommodate one or more blocks because you are writing one block at a time whereas in
write through you are writing one word at a time and therefore the buffer would allocate
buffer would accommodate a couple of words. So what CPU does is that it will write
either a block or the word as the case is into the buffer which may typically be possible
within a single cycle and then data could get transferred from this buffer to the main
memory in its own due course. This could cause problems.

For example, suppose you are writing something which is still sitting in the buffer and
very soon you require to read it. So now data is sitting in the buffer it does not reach main
memory and you want to read, so from where do you read; you have to have a
mechanism which will either let you wait till it is returned, till the buffer gets cleared or it
should be possible to look at the buffer; figure out if the data you wanted to read is
waiting somewhere in the buffer and read from the buffer itself so those complications
arise. The moment you think of any such architectural improvement which tries to
improve the performance you have to often look at these complications or side effects
which arise and have to make sure that the meaning of the program does not go wrong.
the processor should do the job correctly so all those checks have to be made.

[Conversation between student and Professor: 45:24] Yeah, writing into main
memory means that what was there in the main memory will get replaced by something
new. Was that you were asking? Yeah, actually, well, if you if you think why would you
write in memory, I mean, whatever you have attempted to write in the memory let us say
that is getting written in the cache. But if there was no subsequent use of that it was
useless, you would read that and print or do something so the last thing has to be reading
of what you have written. if there is a if the last let us say last statement is an assignment
to some variable and that variable has not been read subsequently then it does not matter
whether you update this in the cache update this in the main memory or not. So, updation
of main memory should actually be forced by reads eventually.

If you have read and taken action then it does not matter if it goes to main memory or not,
you are terminating the program anyway.

[Conversation between student and Professor: 46:58] yeah, yeah, yeah, see, the
reason for transferring blocks is that it is more efficient. so your question is that suppose
in one block only one word was modified yes what you are saying is right; technically it
is possible, what you can, this dirty flag has to be then with every word and not with the
block. So if you are able to if you are or if you are willing to maintain one bit with every
word which is indicating whether it is dirty or not then you can take the trouble of writing
only those many words. But the experience with locality says that typically you would
have dirtied many words; it will be more often the case that in a block it is not it is less
likely that only one word is dirty, you would have dirtied many more words. So
statistically it turns out that it will be better to maintain the set block level only; although
there could be situations where this is overdone.

Any other question?
Finally, let me talk of couple of variations in the overall cache organization as such. You
could think of either a cache being there just for instructions or a cache being there for
just the data or separate cache for instruction and data which is called basically split
cache.

(Refer Slide Time: 48:53)

Unified cache means that the cache is for instruction as well as data. The pros and cons of
split and unified cache are not very difficult to see. Split cache allows specializing of
each part because data may have some behavior, cache may have some behaviors or
some policy may suit instruction cache, a different set of policies may suit data cache and
you can choose these two separately if you have to separate caches; in unified you have
to have a common policy.

Split cache is also noted here but it also gives you parallelism. If you have unified cache
then there could be..... in a pipelined implementation there would be the source cache.
Two separate caches means that you can be simultaneously accessing data and

instruction. On the other hand, a unified cache will allow best use of the capacity.
Suppose you can afford let us say 16k bytes on the whole; if you were to split you may
have to make a decision, 8 byte 8 kilo bytes for this, 8 kilo bytes for that and at some
point of time in the program execution your requirement maybe more for data less for
instruction and at some other point more requirement for one and the other. So if you are
not splitting then you are using entire 16 kilo bytes and the instruction data will share
these as and when to the extent necessary.

So, unified cache utilizes a capacity better. But in case of split you may find that some
time you are short of cache words and instruction, some time you are short in data, some
time you are surplus in one and sometimes you are surplus in another. So that is the
variation from one point of view. Typically in multi-level caches the first level is
invariably split cache and second level is most often a unified cache. Then you can talk of
on-chip cache or off-chip cache; cache which is integrated with the processor on the same
chip, once you integrate then you are constrained by the chip area of the processor and
there may be constraint on the size but there are advantages of speed.

On-chip cache is typically fast but small, off-chip cache can be larger but relatively
slower. And in many systems you often have multi-level cache so you can have one level,
two level, three level and in more levels you have more expensive it becomes but it gives
you...... since there are orders of magnitude difference you can position multiple caches
which are differing slightly in the performance and on the whole you are filling up the
spectrum nicely.

(Refer Slide Time: 00:52:09)

So I will close with the summary. We began with looking at the structure of how we map
the addresses from main memory to cache; we looked at direct mapping, associative
mapping and something in between which is set associative mapping. We looked at the
expression for performance both for memory, access time on the average and the total

number of cycles or total time spent for executing a program. We looked at the
relationship on the miss penalty depending upon the DRAM organization and we also
noticed that page more in DRAMs serves similar purposes as interleaving. We looked at
some variety of policies for reading, loading, fetching, replacement and writing and
looked at different possibilities from the point of view of overall organization.

Thank you.

	Prof. Anshul Kumar

