
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 24
Pipelined Processor Design Basic Idea

We will start design approach to the processor called pipelined design and that is the approach
followed in most modern processors. The idea of pipeline here is similar to an assembly line
where you have series of operations to be performed and there is a set sequence of jobs which
flow through various stages of various stations. So imagine that you have a simple task of let us
say doing bottling so there may be many steps involved cleaning the bottle, filling the material,
gapping it, putting the label and sealing and so on. So it is not that the entire assembly line
resources are dedicated for one bottle and then you move to the next bottle and so on. So as the
one bottle goes through one stage to the other stage to the next stage the other bottle which
follow after it on a conveyor belt or in a similar mechanism. So we will talk of something similar
here where sequence of instructions will flow through a series of stages of datapath and there
will be many instructions at any time in flight throughout datapath.

So first of all we will why we want to do the pipeline why we want to go through this kind of a
design what is its influence on the clock period and CPI or cycles per instruction. We will then
briefly look at the datapath design for this approach how we represent it graphically for the
purpose of analyzing the operation, then finally we will look at the problems we will face while
trying to do so.

(Refer Slide Time: 2:46)

It ideally looks alright but when you look through the details there are some difficulties and that
prevent us from achieving perfectly what we want to achieve.

(Refer Slide Time: 3:03)

So recall that we had started with a single cycle datapath design where once you start with an
address in PC the information flows through various stages within a cycle and the instruction
completes at the end of the cycle. So, for example here (Refer Slide Time: 3:28) address of the
instruction in PC instruction is fetched, the operands are fetched, the operation is performed in
ALU, if necessary memory is accessed, if required results are written so all that happened din the
cycle; meanwhile if required new address for the next instruction will be calculated.

(Refer Slide Time: 3:52)

So we had a couple of problems with this. Particularly there was a difficulty in achieving fast
clock rate because the slowest instruction here pulls down the clock frequency and secondly

resource utilization is poor. Although if you look at, let us say, adder, once the information has
flown through it the adder is not doing anything useful but adder remains tied up; adder is
engaged for the entire duration. So, all resources appear to be busy all through whether a change
is occurring in them or not . So once let us say a new address comes up for register file the
operands are brought out on the output of register file but now that remains static throughout the
rest of the cycle and we we in a way are tying up all the resources all the time. And of course
there is a fundamental limitation of this approach that there are many instructions which cannot
be computed in this kind of an approach particularly when instructions involve inherently
sequential operations.

We have taken some examples of such instructions in the tutorial. So with that problem in mind
we move towards a multi cycle datapath design and here I am simply drawing that same design
except that just to make things look little simpler I have excluded the j instruction or the jump
instruction. So some bit concatenation which is happening for jump and address jump address
calculation is omitted. So here (Refer Slide Time: 5:36) what we had done was step by step we
did two three things.

(Refer Slide Time: 5:39)

One thing was we tried to economize on the resources; wherever it is possible to merge we did
that then we introduced registers to make sure that resources after one cycle come free for the
next operation. So registers are actually to store the values so that the resource becomes free.

(Refer Slide Time: 6:05)

So the same datapath after merging memories and eliminating adder is shown here. We had then
introduced registers so that the action of one cycle gets isolated from the next cycle and finally
introduced multiplexers to complete the datapath.

(Refer Slide Time: 6:17)

(Refer Slide Time: 6:25)

Again I have omitted jump instruction. so now as we have come from single cycle datapath to
multi cycle datapath what we have got is a much faster clock a clock now needs to clock period
needs to accommodate not the entire operation of one instruction but one specific micro
operation right.

(Refer Slide Time: 6:55)

So now let us look at things little more abstractly. This is I am omitting, now I am going to omit
the registers and the multiplexers and just show main key resources and the interconnections. So
basically all multiplexers and registers would be gone, we have instruction memory, register file,

ALU so register file, ALU, data memory and two adders whereas in the multi cycle datapath we
have a single memory register file (Refer Slide Time: 7:47) and ALU and register isolating this.

(Refer Slide Time: 7:54)

So now let us look at a more precise comparison of these two. In single cycle design each
resource is tied up for the entire duration of the instruction execution whereas in multi cycle
design resource utilization is better; a resource which is utilized in cycle t of instruction I is
available again for cycle t plus one for the same instruction I. So a given resource can do
whatever it whatever is required in different cycles for the same instruction. In pipeline design
what we will try to achieve is something different that a resource which is utilized in let us say
cycle t for instruction I is after that free for the cycle t for instruction I plus 1.

If addition is done in the third cycle of one instruction, that adder will do for the same third cycle
the addition for the next instruction. So here by t I do not mean an absolute time but I mean the
second cycle of instruction or third cycle of instruction or fourth cycle of instruction. So we are
trying to share resources not within an instruction but we are trying to share across the
instruction. So one instruction goes past the resource and the next instruction comes in.

(Refer Slide Time: 9:34)

In terms of cycle time and CPI combination this is how we can place three designs. The first
design was a single cycle design where we had a long cycle time whereas CPI was low; by
definition CPI was one because we were talking of a single cycle design. On the other hand, on a
multi cycle design we achieved a short cycle time right but on the other hand the CPI went high.
So now if you recall how performance is determined performance is related to the product of
these two quantities so you want both these to be low. You want low CPI; possibly if you can do
1 it is very good and also you want faster clock short cycle time.

So basically farther away from origin you are the worse it is and the pipeline design actually tries
to get the short cycle of the multi cycle design then low CPI or CPI 1 of single cycle design. So
what it means is that every cycle ideally in every cycle we want to push in one instruction in the
pipeline and in very simple case imagine that the resources are placed in a sequence one after the
other and instruction will flow through these linearly.

Therefore if there are no problems we are there are problems which we will actually discus later
but imagining that this pipeline can flow smoothly the CPI we can achieve is 1. The clock period
on the other hand is still dictated by one operation and not the entire duration of the instruction.
So the cycle time will be more or less similar to what you get in multi cycle design. There would
be subtle differences that too may not be exact so I am showing some what a qualitative picture
and not a very quantitative picture.

So one thing we must notice is that if we focus your attention on a particular instruction the
instruction is still taking multiple cycles. Instruction has to go through several stages and it
emerges or it completes its action only after multiple cycles but the rate at which instructions are
initiated the throughput is higher so ultimately when you are executing large number of
instructions it is the throughput which will matter. We are not, for a large program we are not
worried about how long one instruction took individually; we are worried about the rate at which
instructions get executed because that will ultimately determine the time.

So if you have of course the number of instructions is finite and at the end you have to wait for
the last instruction to finish you are not it is not sufficient to just worry about initiation of the last
instruction so if let us say there are hundred instructions each instruction has to go through five
cycles then the 100th instruction starts in hundredth cycle and finishes in 104th cycle. So total
number of cycles will be 104 but approximately if since you are going to have not hundred but
thousands and millions of instructions roughly speaking the initiation rate would determine the
total time.

 Now how do we design a pipelined datatpath?

(Refer Slide Time: 13:25)

You see in this picture all that I have done is I have taken the same datapath of the single cycle
design I have as I mentioned that I have I would take this (Refer Slide Time: 13:40) where I am
omitting the multiplexers and some small details; just try to show broadly the flow of
information. So same diagram I have taken and introduced a couple of registers. We did
production of registers in case of multi cycle design when we went from single cycle to multi
cycle design. Of course there our attempt was twofold; we were also trying to share the resources
within the instruction; we are not trying to do that. By this pipelining mechanism itself the
resources will get shared across instructions. So we are leaving the single cycle datapath as it is
and introducing registers (Refer Slide Time: 14:27) so I have drawn these like walls vertical
walls which are crossing all the forward going lines right so everything which is cut by all lines
which are cut by these vertical walls are basically passing through register that means output of
these gets stored, output of these get stored and is available in the next cycle in this stage. So the
whole datapath is actually very clearly divided into stages; you can label these as IF stage
instruction fetch stage, instruction decode or register fetch stage, execution stage, memory access
stage and write back stage. So write back is actually happening into the register file but it is a
stage which is afterwards so that is how I have written it.

And these registers (Refer Slide Time: 15:22) which separate the stages are labeled by the two
neighboring stages. For example, IF stroke ID means the register between these two stages. So
now in this most of the paths are actually forward going paths which get broken by the registers
the....there there are two backward going paths one is this the data which needs to be written
back into the register file so which needs to go back because it is the same register file which is
doing read and write and the result of this PC address calculation this also has to go back to PC.
So these are the two and these do cause some complication which we will see in due course of
time. So the ideal thing is that the pipeline should be so-called linear pipeline because things
only move forward and do not come back because coming back in some sense is an indication of
reutilization of the resources.

So, for example, if let us say if we had the same single memory (Refer Slide Time: 16:50) for
instruction and data; in this stage the address will have to be routed back to this memory and then
that data could be taken out further so that would definitely create some complication because by
the time you have reached this stage (Refer Slide Time: 17:08) some other instructions have
moved into the pipeline and they will be (.in conflict.. 17:12). I will precisely define this kind of
conflict little later but at the moment we assume that pipeline is by and large a linear pipeline.

Now there is one problem here is in terms of how we are starting the next instruction in the next
cycle. The next instruction depends upon the next value of PC but the way we have done is that
the next latest calculation is actually being completed here (Refer Slide Time: 17:52) where you
are ready to select between PC plus 4 and PC plus 4 plus offset and that is happening that is
available only after.... suppose this was first cycle, second cycle, third cycle so it is only in the
fourth cycle we have this value which we put back in PC. But if you do that then you cannot
really run your pipeline and keep it full.

(Refer Slide Time: 18:43)

We need to quickly be ready with PC plus 4 in the next cycle itself and therefore I carry out a
slight modification of the datapath. It is that the multiplexer.... of course I am not showing the

multiplexer here but the multiplexer which selects between PC plus 4 and PC plus 4 plus offset is
actually placed within the first stage so that is very important and the complication here is that
since there are many instructions in the pipeline there will be some instruction here and there will
be another different instruction in this stage or in this stage (Refer Slide Time: 19:04). So we are
trying to mix things. But at the moment let us ignore that we will we will come to understand the
implications of that but right now our focus is on quickly calculating PC plus 4.

And for the moment let us imagine that we do not have beq let us just turn away our eyes from
that and imagine that we have instructions like load store, add subtract and slt and so on and for
quite some time we do not have beq instruction. As long as we keep that away we have a
possibility of being ready with PC plus 4 in every inst in every cycle. So therefore this part is
really now geared to pump in a new instruction every cycle. Is that part clear?

(Refer Slide Time: 20:05)

Now let us try to analyze things little bit. For that we will not carry that big diagram and I
abstract it further. So you can either show very symbolically the five stages which we have;
instruction memory, register file, ALU, data memory and then register file. So RF I am placing
twice because there are two different functions being performed here (Refer Slide Time: 20:34)
you are reading here and you are writing here so it is the same register file but logically I want to
lay it out as a conceptually show it as a linear pipeline. Or I can show in terms of actions. The
action happening here is instruction fetch, instruction decode, execute, memory fetch and write
back (Refer Slide Time: 20:56). So now I could look at this may be try to put multiple
instructions in the pipeline and see how it happens.

And there are two ways we can do it. We can Before I go for that we can show usage of
different stages by different instructions by properly shading.

(Refer Slide Time: 21:21)

I want to just check if it is.... it is very light but are these shades visible? Yes or no. So you
would notice that these boxes I have in some cases I have shaded and in some cases they are half
shaded. Let us say devices like register file if I am shading the right half it actually means I am
reading because you know I am shading the active part closer to the output ports and shading the
left half means that I am indicating a right action so I am shading the portion close to the right
port so similarly for memories. ALU of course gets fully utilized so either it is fully shaded or
not shaded in this you will see all those shaded here.

IM always gets shaded in the right half, DM may get shaded in the left half or right half. So there
are different instructions: here add will represent the entire class, for load let us see, IM is
reading register file utilizing ALU then reading from memory, writing into register file. For store
these first three steps are same, the fourth step is that you are writing into data memory. For add
instruction memory operation kept and there is a bypass path (Refer Slide Time: 22:52) so after
that I am doing write into register file. For beq I need only first three stages.

Now, also imagine that whether an instruction requires five stages or less. We will we will not
worry about that part of it. So for example, add instruction will do just writing in fifth cycle only
and therefore we will be wasting cycle in between as far as add instruction is concerned. And this
does not bother us because as I mentioned what is of concern to us is the throughput. So by
trying to do register write in fourth cycle we might create complications for instructions before
or after so we do not do that. We have sort of fixed as shown here (Refer Slide Time: 23:53)
fixed what is done in which cycle and at which stage. So write back is always fifth cycle right
whether you need something in between or not.

(Refer Slide Time: 24:10)

Here the divisions from this are not too many but in a realistic situation when you have many
instructions the differences between the instructions may be more varied and therefore you will
find that in the utilization of stages there will be more holes. But again this uniformity helps in
organizing the pipeline.

(Refer Slide Time: 24:31)

So now how do we represent execution of multiple instructions over the pipeline? There are two
approaches which we can follow; one representation is that on the horizontal axis we represent
time and on the vertical axis we represent different instructions; show a sequence of instructions.

Alternatively we can show pipeline stages on the horizontal axis and on the vertical axis we
show time so let me illustrate both of these.

(Refer Slide Time: 25:03)

So here is the first approach. The horizontal line is the timeline now and each row would
represent how an instruction is progressing. So instruction I progresses through the five stages in
time... here time is in terms of clock cycles. I am not counting time in nanoseconds or
microseconds it is in terms of clock cycles. So cycle t it does instruction fetch and cycle t plus 1
does decode and so on; it goes through the pipeline in the times cycles t to t plus 4.

Next instruction enters the pipeline in time t plus 1 and leaves at t plus 5 and so on. So you have
instruction after instruction which is entering the pipeline and you can show multiple instructions
by showing them staggered in terms of their stages like this.

So now if you want to look at snapshot at a particular time for example let us say time t plus 3
you have instruction I in DM stage, instruction I plus 1 in ALU stage, instruction I plus 2 at RF
stage and instruction I plus 3 in IM stage. So the second representation which I tried to mention
will try to capture this.

(Refer Slide Time: 26:25)

So here is the pipeline so we are in a sense we are keeping the pipeline stationary and we are
trying to see how instructions move through those. So at time t these are the instructions filled in
the pipeline in different stages (Refer Slide Time: 26:43). In the next time cycle these
instructions shift one stage right and you have I plus 1 here, I here and so on. So again you can
focus your attention on a particular stage and you will see that how instructions are going past
this stage in different time cycles; you can focus your attention on any of these and you can see
how instructions are flowing through each of these stages.

So basically whether we go for this representation (Refer Slide Time: 27:24) or this
representation Refer Slide Time: 27:28) they are trying to capture same information just from
two different angles and the idea in any of these is to be able to see how the instructions are
placed to each other relatively because there might be some interaction which may have to take
place between instructions and for that purpose you need to see several of these together.

(Refer Slide Time: 27:51)

So now if the instructions can flow the way I have shown in the last two slides everything is
wonderful and you achieve the CPI of 1. But in practice this may not always happen and there
are some obstructions or hurdles in that happening so these hurdles can be classified into these
three hazards which are called structural hazards, data hazards and control hazards.

Structural hazards are basically resource conflicts where two instructions are trying to utilize the
same resource at the same time. If one instruction is utilizing ALU in one cycle and in the same
cycle another is utilizing the register file there is no conflict. But if something happens that two
instructions want the same thing then there is a conflict and the pipeline gets choked.

Why would this happen?
This could happen if the pipeline is not a linear pipeline. We have shown a very ideal linear
pipeline where nothing comes back the only place we are coming back in our design is that we
are sending the address back to the pc but that of course does not cause a problem because it is
address for the new instruction and the new instruction gets initiated by that. The other places
that the data which is to be written back into the register file is actually coming back so but
fortunately it does not conflict. Let us go back and see it here for example (Refer Slide Time:
29:46).

Instruction I is writing into register file in cycle t plus 4 whereas instruction I plus 3 is reading
from register file in the same cycle. The kind of design we have assumed for register file we
have said that it can do reading and writing simultaneously; it has to read both which will be
utilized in this example by instruction I plus 3 at the same time the right port will be accessed by
instruction I. So there is no conflict because the resource has that ability to cater for two
instructions at the same time right. On the other hand, the way we have chosen our memory it
can either do read or write at the same time. So therefore trying to share DM and IM would not
have worked out. For example, you would notice that in cycle t plus three I is using DM and I
plus three is using IM and if this memory is not capable of doing one read here and one read

there (Refer Slide Time: 30:59) then there is a there would have been a problem. If you do want
to share and you can put a multiport memory this could work. But practically these memories are
not multiport and therefore it makes sense to keep this structural hazard away by having two
separate memory.

In real practice you actually have single main memory but what you have separate for instruction
and data are the caches. So sometimes you may have multiple caches so multiple level caches;
the first level cache which is closer to CPU plays actually this role (Refer Slide Time: 31:46) a
separate instruction and data cache there.

Another situation which can actually lead to structural hazard is that if your ALU has to do very
complex operations which inherently take multiple cycles. So far we have been talking of add,
subtract, compare and so on but suppose we were to extend our design to include multiply and
divide we have discussed designs which are single cycle designs as well as multiple cycle
designs particularly for divider we have it is possible to have faster divider but let us say we
know only how to divide in multiple cycles. Then a divide instruction will be in this stage ALU
stage for several cycles and what happens to the instruction which are following it they will get
held up so the pipeline will see a structural hazard or a resource conflict either when two
instructions are trying to utilize a resource because of non-linearity in the pipeline or because
some stages take longer and some stages take less because of that imbalance also you may end
up in one instruction still busy with the resource whereas the second instruction has reached that
point and is minding the same resource.

(Refer Slide Time: 33:16)

So now this is a hazard in our design; by design we have kept it out for the set subset of
instruction we are working we have a datapath where there is actually no structural hazard. The
data hazard on the other hand is not entirely a function of the hardware but it is something
inherent in the computation you are trying to do and it comes because of dependency among the
instruction. So one instruction produces a result which is required by the next instruction so that

is a fundamental computation requirement and you cannot let one instruction go past another
instruction or follow very closely another instruction because of this dependency. So only when
the result has been produced it can be consumed by the others that is a fundamental limit and we
will see what are the implications of that.

Finally control hazards are because of break in flow of control. So you have a branch instruction
or jump instruction where... excuse me can you please go out of the class; I am talking to you; I
noticed that you are continuously speaking.... no, please go out.......... the last category of hazard
is the control hazard which come because of branch or ump instruction where we alter the flow
of control.

Recall that we have made an arrangement to calculate the next instruction rate PC plus 4 every
cycle so that we can keep the pipeline full. But these instructions mea that you have to take a
decision and the decision may be taken in a later cycle say third cycle for example. So till that
happens you do not know what is the next instruction to be included and that is again a
fundamental difficulty in trying to keep the pipeline full.

(Refer Slide Time: 35:30)

So, elaborating further on this the structural hazard as I mentioned is because of the resource
conflict. So if we do not have separate instruction data memory we will have conflict. We have
retained the multiple adders which we had in the single cycle design so no resource conflicts
arise. If you do not have that adder, many instructions would need to utilized ALU in multiple
cycles and then we will have difficulty because the way the way we have designed the pipeline
we want a resource to be free for the next instruction. So each instruction at the moment use
ALU utmost in one cycle right they are instructions like jump which do not use but others which
use ALU is not more than one cycle that is true for all the resources. And as I mentioned that
ability of RF to allow read and write separately keeps the structural hazard away.

(Refer Slide Time: 36:34)

Let us look at the impact of data hazards. So suppose you have a sequence of instructions load
word followed by add, subtract, slt so the key thing to be noticed here is that this instruction is
putting something in register t1 which is utilized by instructions which are following it. Now let
us try to understand where will this value be put in t one and where will it be utilized.

Instruction I will have this information brought from memory (Refer Slide Time; 37:15) and put
back in the register file in the time slot. So you notice that in this representation this horizontal
axis is the time axis. So this represents a one particular time slot and the data which this
instruction produces is available after this cycle.

Now, whereas the next instruction which is add instruction it would normally like to read the
operands in this cycle in the register file and this is in time this is happening earlier so there is a
problem here. We have to position we have to sort of retime these things so that the register read
here of this instruction happens afterwards so it should actually happen after a gap of these two
cycles it should happen somewhere here right so whole thing had has to be delayed.

If you look at this (Refer Slide Time: 38:15) because there could be multiple instructions which
are dependent this value is being also read in instruction I plus 2 and I plus 2 is trying to read it
here and earliest it can read is here and so on so I plus 3 also would need to be delayed. So
depending upon which instruction it is trying to read data from which instruction you may have
to introduce delays and the impact of these delays is that your pipeline is not full always and
throughput rate or the CPI becomes more than 1 or throughput becomes less than 1 instruction
per cycle.

(Refer Slide Time: 39:00)

So here I show how you need to stall or delay an instruction because of this hazard. So this
instruction which would have normally started here in this cycle needs to be started little late so
that register reading takes place after writing has taken place. Now I have done something
cleverly here that actually I am doing this reading not after this cycle but in the same cycle. This
is possible if you can do reading in the later half of the cycle and writing in the earlier half of the
cycle.

So assuming that the register file is inherently little faster compared to ALU and memories and
the time for clock cycle is dictated by the other units... just as an example suppose register file
read write time was 1 nanosecond and ALU time was 2 nanoseconds instruction memory and
data memory time was also 2 nanoseconds so then I keep a cock period of two nanoseconds and
within this two nanoseconds as far as register file is concerned I can spend first half of the cycle
or one nanosecond in writing and later half in reading. So that gives me little advantage here and
otherwise I would have to delay it by three cycles and I am now managing by delay of just two
cycles. So this is a if you do not do that then there will be more delay. Now whether we can do it
or not actually depends upon the timing. So the example of timing I chose it is possible it may
not obviously be possible so one has to know that in general the delay would depend upon where
you can schedule write and where you can schedule read.

(Refer Slide Time: 41:07)

So stalling is the simplest response to data hazard but it is possible to do something better. What
you do is data forwarding where we try to make the data go from one instruction to other
instruction as soon as it can. So, instead of letting the data first be written into register file and
then from register file we can create extra paths in the datapath that the result of first instruction
for example which are available after ALU cycle and are required by ALU cycle of the next
instruction are somehow passed directly. So that means here we are seeing forwarding in the
logical sense in terms of instruction to instruction but in terms of datapath if you notice what it
means is that the output of ALU is also being fed back to the input of ALU it means that the we
would need some multiplexers to carry this additional path. We will get to those details a little
later.

I would just like to understand like you to understand the basic idea that if we let this information
be forwarded in this manner (Refer Slide Time: 42:36) then you notice that we do not require to
stall this instruction. The action of writing it into register file will still take place because may be
some instructions down below also need that so they are not immediately reading; the instruction
which is following and this would require some analysis by the hardware. The controller will
basically have to see if they are two consecutive instructions of this kind (Refer Slide Time:
43:00) where the destination of one is the source of other then we simply allow this to we
activate that path. There are many other possibilities and in the subsequent slide let me quickly
show the other possibilities.

(Refer Slide Time: 43:18)

If the first instruction is load and the next instruction is let us say add load instruction has the
required value available only after memory cycle. So here we are forwarding from this memory
cycle from data memory output to ALU input and here you need to introduce one delay but it is
still better than two delays. Here we have not eliminated the delays but we have reduced the
delays.

(Refer Slide Time: 43:49)

This is another possibility now here that next instruction is the store instruction. Recall that store
instruction has two different uses of two registers: one register it uses for address calculation in
third cycle and another register it requires for transferring data to memory in the fourth cycle. In

the previous two examples in this diagram (Refer Slide Time: 44:18) and in this diagram the
second instruction is an instruction which requires data in the third cycle. So here I am looking at
instruction which required data in the fourth cycle. So it is this register sw will have another
register here as part of the address specification so that gets utilized in the third cycle but this
(Refer Slide Time: 44:48) gets utilized in the fourth cycle and this is the data here so whether it
is add instruction we need to we forward from the output of this stage.

Basically it is the output of ALU which will simply just pass through this stage without any
modification will be available at the end of this stage and then passed on to the input of the data
memory right and if it is load instruction which is the first instruction then of course from output
of data memory you can pass onto input of data memory. So let me approximately indicate in
datapath what we where these paths are actually.

(Refer Slide Time: 45:39)

So we talked about paths going from ALU output to ALU input. So it will not be strictly
speaking ALU output immediately but after the register. After this stage the data is available at
this point (Refer Slide Time: 45:52) and that is fed back and brought in through multiplexers to
this input or that input of the ALU. Or it could be output of memory which is picked up from
here and brought to the input of ALU.

For store instruction we need to bring it here either from this point or from this point. For an add
instruction let us say there is an add instruction followed by store instruction. So it is this data
which was output of ALU but which simply idled here and came here and this will be brought
back to this through a multiplexer. So we will see those details little more deeply later on but the
basic idea is that we incur these additional expenditure of more paths and more multiplexers and
as a result we can possibly reduce some delays and in some case also eliminate.

(Refer Slide Time: 46:35)

What happens due to branch instruction now? So as I mentioned earlier that when we talked
about initiating every cycle one second we said let us keep branch away. Now let us face this
consequence of having branch instruction.

(Refer Slide Time: 47:20)

Suppose this instruction I is a branch instruction and here if some condition is true we are
branching into L which is not a consecutive instruction it is somewhere else. So after this
instruction there will be a tendency to start I plus 1 or I plus 2 but the actual address is only
known after this stage (Refer Slide Time: 47:52) after you have done the comparison and you
have also calculated the next address. So, if the branch has to be taken it is in this cycle that you

can initiate instruction L. Now you have two choices that either the moment you notice a ranch
instruction you freeze the pipeline, don’t do anything allow just that instruction to go up to a
stage where decision is known and then get the next instruction and proceed. So in the process
you would have lost a few cycles but that cannot be avoided.

On the other hand, you might say that ok I will wake up only I will know but meanwhile let it
continue with the instruction in a sequence. So the hardware will pick up the next instruction
because PC plus 4 is already there started, in the next cycle take I plus 2 instruction and push that
in the pipeline and here you realize that probably you have gone wrong and then you abandon
this; flush it out of the pipeline and start something which was actually required.

So here here you are doing something in anticipation. If condition turns out to be false then you
have actually utilized this cycle. If condition turns out to be true then you did something in good
faith but now you have to abandon it so it does not matter and there is no way you can start
earlier than this. So this is one particular one way. So just to revise one was to not do anything,
wait till design is done and then start the write instruction. So the choice is between I plus 1 and
L. So even if it is I plus 1 is to be done you start it here (Refer Slide Time: 50:04).

The other approach says that start something in anticipation if it is I plus 1 you have gained
something if it is L you have not lost anything. You have lost something which you have to be
lost in any case.

In fact this can be made little more clever that somehow here you try to guess the outcome of the
branch; this is called branch prediction and you try to do since you are doing something in
anticipation why not make little extra effort and try to predict whether I plus one is the most
likely consequence or L. So you somehow do that prediction and try to start one of the two.

Again there is a possibility that you may since after all it is a prediction unless the numbers get
compared and you know finally whether it is true or false you may not have made the right
decision. In case you have made the right decision you have gained; in case you have not you
have lost something which you would have probably lost eve otherwise. So branch prediction I
have stated in a very simple term but there are many issues involved many ways of doing it can
be done statically done dynamically and you know to do it dynamically it would require lot of
hardware support and so on.

We will probably look at that little more in detail. At the moment what we notice is that branch
potentially causes these stalls in the pipeline (Refer Slide Time: 51:49).

(Refer Slide Time: 51:52)

So I have discussed the basic ideas of the pipeline design. We began by looking at the
relationship between a single cycle design and then multi cycle design and then by bringing a
pipeline into the same framework and seeing how they compare in terms of clock period and see
CPI. We have seen that pipelining approach gives you fast clock similar to multi cycle design
and low CPI similar to single cycle design.

Pipeline datapath is obtained by introducing registers in between the stages in the forward paths.
For analysis purpose we had a symbolic representation which tries to show various instructions
time-wise or stage-wise. And finally we talked about three different types of hazards: structural
hazards, data hazards and control hazards. We have seen that in the simplified case we are
talking of it has been possible to remove structural hazards altogether; data hazard also we can
cut down to quite some extent by using forwarding. The control hazards are most nasty among
these. We can do something about these but not get rid of them fully. So in subsequent lectures
we will see more details about the design, the datapath aspects and their control, thank you

	Prof. Anshul Kumar
	Lecture - 24

