
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture -21
Processor Design - Control for Multi Cycle Design

We have been discussing design of a processor where execution of each instruction is
divided into multiple clock cycles. We have seen how the data path is designed and today
we will look at the controller aspects how such a data path could be controlled.

(Refer Slide Time: 00:01:20)

In the sequence of lectures on designing of processors we started with very simple design
where everything about an instruction was done in a single clock cycle. We notice the
problems with performance and there were other issues so we have moved to a different
style where the instruction is divided into multiple clock cycles. So we will look at what
are the actions which are done in different clock cycles for various instructions and then
by putting these sequences of actions together we will try to build the flow of control for
carrying out these instructions.

(Refer Slide Time: 00:02:44)

We will then try to identify what control signals are required to control this data path in
each of the control steps; for doing so we will group the control signals into groups and
we will define some meaningful operations called micro operations. So each instruction
would be viewed as a set of micro operations which are done either together or in
sequence and that will somewhat simplify establishing a relationship between control
states and the signal values. Finally we will see how control states transit from one to
other and that will complete the design of control part.

(Refer Slide Time: 00:03:00)

So this is the starting point, we had arrived at this data path last time where the key
resources are memory, register file and ALU and we have tried to use these as far as
possible so that there is a maximum utilization of all the resources and you would also
recall that all intermediate results we try to store in some registers. So, for example, when
instruction is brought out from memory it is stored in instruction register and when data
is read out from memory it is stored in data register. Similarly, operand from register file
is brought out into registers A and B and the results of ALU operation are kept in register
called Res short for result.

So now we need to control all these components; all the registers may not change their
states in every cycle. So each register will have a signal indicating when do we write
something into those registers. We have controls for the multiplexer as usual and similarly
controls for ALU, register file and memory. But since we have new components like registers,
multiplexer also has multiplexers also have either changed in their size or in their organization we
will have to redefine some of these control signals.

(Refer Slide Time: 00:04:36)

So, first of all let us get back to the instruction and see how those instructions are divided
into operations which were done in different cycles. So what activity is done in which
cycle that needs to be clearly recorded before we can start working with the control
signals?

(Refer Slide Time: 00:05:04)

So, starting with R class instruction in the first cycle we read one word from memory into
instruction register that forms the instruction address of memory that comes from PC and
at the same time PC takes on the new value. So both these operations are done
concurrently within first cycle. In the next cycle we read the operand from the register
file and these two are brought into A and B. the addresses of register file excuse me are
provided by the instruction and the relevant fields here are bit 21 to 25 and bit 16 to 20
for the second operand. So this corresponds to…. the first one corresponds to RS, the
second one corresponds to RT.

Once again what we meant by putting these two operations in a single box was that both
of these are done simultaneously within a clock cycle number 2.

The next clock cycle for these instructions would see the actual operation being
performed by the ALU. I have written in a generic sense A op B where op is the
operation as would be guided by the function field of the instruction IR (0 to 5) (Refer
Slide Time: 6:37) and the last cycle will involve transferring this result to the register file;
the address come from bits 11 to 15 which corresponds to RD or the destination register.
This is how things have been divided and we have made a careful choice of what gets
done concurrently and what gets done in sequence.

(Refer Slide Time: 00:07:01)

The second instruction we will take is store word and the first cycle involves access to
memory to fetch the instruction and updation of program counter. The second cycle
involves bringing the registers out we need again to access two registers: one which will
participate in address calculation and second will carry the value to be written into the
memory.

(Refer Slide Time: 7:35)

So with same fields of the register file the same fields of instruction register file is
accessed and registers are values are brought out in A and B. In the next cycle we
calculate the address (Refer Slide Time: 7:53) by adding offset coming from bit 0 to 15 of

instruction with sign extension to A and this value is temporarily kept in this register
called result.

In the last cycle we will see an access to memory where contents of Res will be used as
an address and the data to be written into memory is B and memory write is performed.
So once again we require four cycles.

(Refer Slide Time: 8:23)

The next is load word instruction.

(Refer Slide Time: 8:30)

The first cycle again is similar. The second cycle involves reading one register from
register file. Here we need to access only A because the second address corresponds to
the destination here. What we read from memory will be stored in register RT so we need
to read only one register and in the third cycle we calculate address in the same manner.
In the fourth cycle memory access is performed; the data is read from memory, address is
carried in Res and the data which is read is brought into DR. In the last cycle we store the
DR value into register file, the address comes from RT. So this is the sequence of five
cycles which complete load word instruction.

(Refer Slide Time: 9:30)

(Refer Slide Time: 00:9:36)

Then we move on to beq; first cycle is same. in the next cycle we are doing lot of work.
one is to access A and B the two operands which need to be compared and we also keep
the result ready for the target address in case branch has to be carried out because the
ALU is free in this cycle. In the next cycle we are going to use ALU for comparison. So
in this cycle it is free. We calculate this address but do not keep it in do not transfer it to
PC immediately. We keep it in Res; the condition is yet to be checked. So, after checking
the condition we will either transfer it or not transfer it. That is cycle three where the
ALU will compare A and B the two operands which were brought out from register file
and if the condition holds then this new address is transferred to PC. So this requires only
three steps.

(Refer Slide Time: 10:40)

Lastly we will look at the jump instruction. again, the first cycle is same and in the
second cycle we compose this address of the next instruction by taking bits from PC and
IR with I missed out…. oh no, there is no sign extension here; this with 2 bit shift is
concatenated with 4 bits of PC and then transferred to PC. So this is done in two cycles.
Now you recall that the impression I might have given earlier was that this can be done in
a single cycle because only resource which is time consuming which is required here is
accessing the instruction after that there is no memory access required, no ALU operation
required so the total delay which we always use to think for this was max of t i and t plus.

(Refer Slide Time: 11:48)

But why are we occupying two cycles here. The reason for that is we want to do this
operation sequentially. The 4 bits we need to pick up from PC part is actually after PC
has been incremented. So, after PC is incremented one cycle is over. In the first cycle we
are incrementing PC and the result is put back in PC. So those 4 bits are picked up in the
next cycle and put together with the instruction. Also you would notice that it takes one
cycle to fetch the instruction. So although what is being done here is not a time
consuming activity but since it has to be sequenced after that it is occupying additional
cycle. So in a in a single cycle approach what was roughly taking equivalent of the
memory access time or addition time one of the two now it is taking more or less twice of
that.

(Refer Slide Time: 00:12:57)

This is just to recall that in the single cycle approach the data path was like this that we
did instruction access and PC update and directly we picked up the bits and formed the
address and we said that the time required is max of t plus and t i. So now if we have
decided one clock cycle to be let us say something which encompasses these we are still
requiring two cycles because of the need of sequencing things.

(Refer Slide Time: 00:13:33)

These were the timings we had conceived earlier and we were actually imagining the
time for jump to be just this much. basically first clock period will accommodate t plus
and t i would be used but we are doing something now; a very simple activity but now

since the time is quantized discretized in terms of the clock period we need to go beyond
this and we cannot use anything less than a cycle. We use two cycles for this instruction.
Is that point clear why we have to go to two cycles.

Actually as we will proceed further we will change things even for little worse but that
becomes essential. Now, we have seen the division of each instruction in two cycles; the
division of activity of each instruction in two cycles separately and once again we need to
put things together to form overall flow of control. So these are the five instructions or
groups and we will put their actions one after another in the same picture so that we have
a global view of the whole thing.

(Refer Slide Time: 00:15:04)

Now I have just, to accommodate everything on a single screen, I have omitted some
pieces of text which are more a matter of detail but what I have tried to retain is all the
destinations of the operation wherever the results are going and the main resources which
are being used. So, for the first cycle in all cases you would see that there is an existing
memory I have omitted some details here, there is updation of PC, excess of values in the
register file performing this arithmetic or logical operations, storing in register file,
storing in memory, reading from memory and so on. So you can see that the essence of
all these the skeleton of all the operations has been captured here.

Now the task is to put these together. We have different instructions taking different
cycles. You would notice some commonality something is common and that is where we
can merge but in the flow of control at some point we would need to branch because
different instructions require different actions. So the first part is; first cycle is apparently
common to all of them. So we could start always with that action and a common state for
all the instructions and once things start differing we branch to different states. Different
boxes will correspond to different state in which the controller would be and given a
given a state of the controller we would know clearly what actions are to be carried out in

that particular state. So what we are trying to arrive at is some sort of state transition
diagram which would describe the control.

At the moment we have five different chains or five different sequences but we want to
have a single graph which indicates how one moves from one state to other state and
what action is required in each state. So, obviously these can be merged. The first cycle
seems to be carrying out same activity and we can put we can merge this.

(Refer Slide Time: 17:24)

Therefore, after merging we have a single state and then a point where we are branching.

(Refer Slide Time: 17:46)

Now, another important thing which needs to be noticed at this stage is we are
contemplating a bifurcation here; we are splitting from this point onwards after first but
this requires us to look at the opcode. Before we can split we need to see what the opcode
is and which instruction or instruction group it is. But you can start looking at opcode
only after you have fetched the instruction and brought into IR. So now this is available,
therefore instruction is available to you from second cycle on onwards and therefore you
can start looking at opcode from the second cycle onwards.

Typically in a complex design this decoding of opcode or understanding which
instruction it is could also be a time consuming activity. The circuit which is going to
identify a particular instruction would typically be allowed a full cycle to do it. Of course
we do not need that but still the opcode decoding will have to take place in the second
cycle although we may not have the second cycle fully occupied. Therefore practically
this bifurcation or split must occur after second cycle because if you have to go from this
state to one of these states we should know what the instruction is here but instruction is
known only after this first step is completed. So it is only after second step we can branch
off to different chains and do special action necessary for various instructions. Therefore
second step will also have to be common.

Now let us see what is required to make it common. One thing is that not all instructions
are trying to read two values from register file. Here you need two values, two values;
one: here you are reading two values, here you are reading none. Is there any harm if all
instructions read two values; they may use it or may not use it. The answer is there is no
harm; it does not cause any problem in the functionality of the instruction; it might you
might consume some energy in doing so but let us keep that aside and agree to fetch both
the values in all the instructions in an attempt to come up with a common action for the
second cycle.

The other thing you notice here are that address is being calculated here which may be
useful for branch instruction and this value is kept in register called result. So what if we
repeat this also in all the instructions. Once again ALU is free we are not doing anything
with it so if we occupy ALU in an activity which we may discard later on still there is no
harm apart from energy consumption. Also, the result register is not holding any value
which will get overwritten here. So what we will do is let us try to make this as the
common action for all the instructions; the only trouble comes with jump here (Refer
Slide Time: 21:14) because jump requires that we transfer a new value to PC but that we
cannot do for all the instructions; that would mean that the next instruction after every
instruction a jump will be carried out. Therefore we need to postpone this to the third
cycle. We will do a common action in the second cycle which is same as the beq action.
For all other instructions there may be some superfluous or unnecessary activity which
may get discarded but there is no harm. The only harm which is occurring is that this
action PC getting a new value is getting postponed.

(Refer Slide Time: 00:22:10)

This is the picture with a common decoding cycle. This cycle is actually often referred to
as decoding cycle or operand fetch cycle. Now, this is this jump instruction has taken
another hit here and we are eventually using three cycles for it. But please remember that
this is an instruction whose frequency of occurrence is comparatively much much lower
than others and therefore the overall impact of this loss in the performance will be
negligible so we do not really mind it. And now we have a very clean situation that there
are two common cycles. By the end first cycle we know what instruction it is and we are
ready for the next value of PC. In the second cycle, after the end of second cycle (Refer
Slide Time: 23:09) our operands, if we need, are ready in A and B and the branch address
is ready in Res if we need later on and then we can move on to one of these separate
branches. So, two further cycles are required for R class, two for store word, three for
load word, one for beq and one for jump and with that all the instructions will be over.

(Refer Slide Time: 23:35)

So now this is the cycle, this is a broader cycle (Refer Slide Time: 23:43) which needs to
be repeated over and over again. So therefore, after these last states in the chain we come
back to this. Now, as far as controller is concerned it is a small finite state machine with
as you can see these about ten or so states and it keeps on cycling through these. So here
you do the fetch, decode, (Refer Slide Time: 24:07) you come to know what instruction
is, follow one of these paths and then you are ready for the next instruction. So, as long as
power is on on the processor it will keep on going through this overall thing….. so this
whole thing is called instruction cycle and within this you have clock cycle.

(Refer Slide Time: 24:25)

So an instruction cycle would require four clock cycles or five clock cycles or three clock
cycles as the case is that is in this particular design but there are of course machines
where this range of number of clock cycles could be much much varied.

Now we need to worry about what action we perform in each of the states. So these are
the states (Refer Slide Time: 24:56) but before that there is another small improvement
possibility here which we will notice is that load word and store word have one more
cycle in common where the address is being calculated and we can actually merge that
and as far as load store are concerned we keep them together up to the third cycle and
then bifurcate into load and store so that reduces number of control states by one more.

(Refer Slide Time: 25:31)

So total now I have how many states 1 2 3 4 5 6 7 8 9 and 10 now there are total of ten
states and we will proceed further by looking at now the control signals.

(Refer Slide Time: 00:25:46)

So this is back to the same data path. We have now roughly seen how we need to exercise
these and what needs to be done for various instructions in different cycles; so that
picture has been made very clear now. We get back to each of the components which
require a control and try to understand how we need to control it. So, for each of the
register I have indicated a control signal. So, for PC PC write I am abbreviating as pw.
This is the IR write IW, DR write DW and then A and B have their AW and BW signals
and Res write is ReW. So there are signals control signals which will indicate whether a
particular register changes its state in a cycle or not and in which cycle the state is
changed we will know from this flow chart. We will always refer to, now, this flow chart
or this state transition diagram (Refer Slide Time: 26:54) and then decide the values.

Now we have also 1 2 3 4 5 and 6 multiplexers each one requires some controls so
control for this multiplexer decides whether we are accessing instruction or data and
accordingly the address comes from different sources. This multiplexer decides whether
we are writing into rt or rd, this decides what gets written into register file (Refer Slide
Time: 27:28) we are calling it M2R memory to register or it is ALU out to the register.
The name of this signal is same Rdst we had earlier. this multiplexer is controlled by a
signal called A source 1, this is controlled by A source 2 and we had earlier two registers
and two multiplexers which were handling the next PC value; now it is the single
multiplexer with three inputs and the control signal is labeled as p source or PC source.
The memory register file and ALU have their usual control signals same as what we had
in the single cycle data path.

Now you would notice that there are many more control signals as compared to the single
cycle data path we had. So I will not try to build the table exhaustively for all of these;
what we will do is we will group the related control signals together and also identify the
meaningful operation which we call as micro operations. For example, PC plus p PC plus
4 going to PC will be considered as a micro operation; it is an understandable action

within itself and it will affect some of the control signals in the data path. So we will be
grouping the signals according to our logical needs and then try to look at things group-
wise so that will simplify the matter substantially.

So first we talk of a group of signals called PC group which are related to PC; program
counter and its address. So I will build a table where I will list micro operations which are
related to PC and the signals which are related to PC. So the signal you can see right
now; one is Psrc the last multiplexer which is being controlled by this and the write signal
for PC I have split into I have used two signals PWu and PWc; PC write unconditional
and PC write conditional. you would notice that in some micro operations like PC gets
PC plus 4 we are writing it unconditionally whereas there was an operation like this
(Refer Slide Time: 30:22) where we are writing into PC with some condition. So this
state will generate a signal which I am calling as PWc conditional and a state like this or
like this will generate a signal which I am going to call PWu unconditionally. So the
signal PW which is going here would be derived out of these two; I will explain that in a
moment. But let us see different micro operations and the signals which they imply.

So, for doing PC gets PC plus 4 I make PC PWu as 1, this then I do nt need to care and
the source I am selecting is 1 so three things are going into this multiplexer if you recall
is output of ALU directly, output of ALU through Res register then the address which is
for the jump instruction. So let me just go back and check if I have indicated the correct
source here.

(Refer Slide Time: 31:29)

So these are three inputs to this multiplexer (Refer Slide Time: 31:38): after the register,
before the register and this jump address. So recall that we will write output of ALU
directly into PC when we are doing PC plus 4 so we do not bring register into picture.
But the target address for a branch we are temporarily keeping into this we are not

directly transferring to PC and therefore when we transfer to PC we will take from output
of the register therefore both paths have been provided.

One more thing which we should see here is the way z is going to be used. In the single
cycle design we used z directly to control a multiplexer through AND gate so there was a
signal coming from controller that was ANDed with z and we controlled a multiplexer.
So basically we were making a choice between PC plus 4 and PC plus 4 plus offset one
of the two going to the PC. But now things are handled little differently because PC plus
4 is sent to PC unconditionally in the first cycle.

In the third cycle the choice is either to transfer the new address or not to do anything.
Therefore, effect of z will be brought into the way PW is being generated. So, in the first
cycle we will have output of ALU directly through this multiplexer going into this, in the
second cycle the address is calculated and kept in Res and in the third cycle we will bring
this out here without looking at z but we will look at z and decide whether to transfer it or
not. So you will see that z will come into picture when I define how PW is derived from
PWu and PWc.

(Refer Slide Time: 33:47)

This is next micro operation where we conditionally transfer an address to PC. Here I
activate this signal and do not activate this signal because source is 0 which means this
value which is in Res is being taken and the third case is that the jump address goes to the
PC. So again this is unconditional, so PW u is 1, PW c is x and source is 2. So in these
tables I am going to write 0 1 2 3 etc when the signal takes multiple values more than two
values. But actually you can think of the binary code of these going to the components
and not this decimal value.

So, apart from these activities I would also like to define what is the default value of
these signals. When I am not doing any of these what should I feed to these particular

points so the default value should keep everything inactive. Therefore, both write signals
are 0 and then of course once that is the case the source does not matter so I put an x and
here is how PW is derived from Pwu and PWc. So, if PWu is 1 PW becomes 1
irrespective of what is that we have here. But when PWu is 0 and PWc is 1 then it is Z
which dictates what we get here. If both are 0 then again Z gets ignored. So basically I
need one AND gate and one OR gate so the controller will produce these two signals and
with the two gates I will derive PW which gets connected to the PC. Alright? Is that
clear? Any question about that? Yeah.

(Refer Slide Time: 35:51)

This is the address which is being formed for jump instruction (Refer Slide Time: 36:00)
and in one of those cycles…… right now we are not worrying in which cycle what is
happening but all we are worrying is that given an action like this to be performed how
do we control the data path. So, to make this happen we need to make the unconditional
write signal as 1, we do not care what PWc is because you see when PWu is 1 the values
here do not matter the result here is going to be 1 it is a sort of overriding signal. But on
the other hand, when PWc when we want to activate PWc we have to make sure that this
is 0 because this will otherwise suppress that.

So PWc is don’t care and we need to select the correct value to go to PC. So, in all these
operations, notice that PC is the destination but the sources are different. There are three
different sources; and the multiplexer is selecting the sources (Refer Slide Time: 37:07).
This is 0 sorry this corresponds to 0 input of multiplexer, 1 input of multiplexer and 2
input of multiplexer this is all the things that have been connected in the data path so that
takes care of what the value is being transferred and these two signals are taking care of
whether this transfer is taking place conditionally or unconditionally and that default.

Hence, there are many control states where we are not changing the value of PC and there
we need to keep both these as 0 and the value of P source does not matter. So, I would

give some names to these which will make things convenient in subsequent discussions.
The first one I will call as PC increment, this is branch and this is jump and this I call no
op or no operation. So just some names for convenience I have assigned to these.

(Refer Slide Time: 38:10)

Now let us look at operations which revolve around the memory.

(Refer Slide Time: 38:20)

The relevant signals here are memory write and read control signals, this I or D
instruction or data this signal decides what is the source of address for the memory and
these two signals decide where we keep the things which is coming out of the memory

when we are reading from memory. So, this controls writing into IR register, this controls
writing into DR register and one operation is fetching the instruction. So we are not
writing here we are reading; it is an instruction and the multiplexer code for that is 0, the
value which is being read is written in IR register so we keep this 1 keep that 0; next is
getting data from memory so again we are reading we are not writing, it is data so that
makes it 1, we are not storing to IR we are storing into DR so that is 1 and that is 0; next
is writing into memory so now we make write as 1 and read as 0 once again it is data so I
or D is 1 and we are not storing anything into IR or DR so both these are 0.

(Refer Slide Time: 39:51)

You also might hear it might occur to you that there is some kind of redundancy in these
signals. It may appear that you may be you to derive one of these from others or one from
one of these from more than one of others so there are yes many possibilities. You might
even notice that some signals can be totally omitted. For example, IW and MR seem to be
identical. So we can make such observation and simplify the controller design. So it is
indeed possible but we will just limit at this and not get into those details.

Finally the default here is to keep a write read both signals low, also the register load
signals low and then this does not really matter. Some convenient name for these; this is
fetch, this is memory read, memory write and no operation. So now, in later discussion
this….. once we say fetch it would mean that this is the operation we are performing and
this is the set of values we have (Refer Slide Time: 41:17) given to control signals of this
particular group.

(Refer Slide Time: 41:21)

(Refer Slide Time: 00:41:29)

The third group is register file group and here we are talking of writing a signal RW
register file write, Rdst this decides where the address comes from when you are writing;
whether it is RT or RD, this tells (Refer Slide Time: 41:48) where the data to be written is
coming from whether it is coming from memory or from ALU and whether we are
writing into A and B register. So reading RS into A we make RW 0, Rdst don’t care and
2R don’t care, these Rdst and M2R will be relevant only when RW is 1 so when you are
reading these do not matter we give a write signal to it and B does not require…..
similarly, reading into B is similar except that we write into we make BW as 1.

Now here it is writing into register file so we will make the write signal 1, we need to
define Rdst so it will be 1 in this case, M2R is 0 and we are not modifying A and B. This
is writing DR into register file so again RW is 1 but this has a different value, Rdst is
different because the address is coming from different points and also the values being
written are different. AW BW both are 0 and default is to keep RW 0 and to keep so we
do not make any change in the state here so all write signals are kept 0.

(Refer Slide Time: 43:27)

Once again you would notice that these two signals Rdst and M2R (Refer Slide Time:
43:27) are complementary of each other so one could reduce the signals. Names for these
are: rs2A, rt2B, res2rd, mem2rt and no operation. So these five names I am going to use
later on.

(Refer Slide Time: 43:49)

(Refer Slide Time: 43:58)

Finally, we have the ALU group. The signals are opc; it is a 3 bit signal sorry this is a 2
bit value which we derived from the opcode. What goes to ALU finally is a 3-bit signal
which will look at opc and the function bits and that part of the circuitry will be totally
unchanged. Then we have the multiplexer control signals A source 1 and A source 2and
signal which controls writing into result register.

So a micro operation which we saw earlier is appearing here also because doing PC gets
PC plus 4 influences the PC group of signals as well as the ALU group of signals because

we need to ensure that addition is done here. We will look at opc later; look at the source
and get back to this diagram.

(Refer Slide Time: 00:45:06)

A source 1 has a choice of PC and A source 2 has a choice of B 4, this is offset for load
store and offset for branch. So these are the four possibilities here and two possibilities
there. So let me put all these together actually.

(Refer Slide Time: 46:02)

So, A source 1 has value 0 or 1; 0 for pc here and here and 1 for A, A source 2 has four
possibilities, 0 for B that is here 1 for store, 2 for load store offset and 3 for branch offset.

For this operation again we are comparing A and B so it is like this as far as source are
concerned 1 and 0 this and this. This is indicating (Refer Slide Time: 46:48) whether we
are writing into Res or not. So in these three steps we are writing. Here we are not writing
into Res, here we are not writing into Res and this opc encoding is same as what we had
done earlier. For those instructions where we have to simply perform addition without
looking at anything else we make it 0 so we had done this for load store instruction and
now even for these address calculations we will use 0 because our logic would be that
whenever there is a 0 here that ALU controller would ensure that ALU performs the
addition and one would mean that it performs subtraction unconditionally and two it
would mean that we look at the function bits. So same encoding is used and accordingly
we fill this up.

(Refer Slide Time: 47:48)

The last case is the default where these are don’t care does not matter what ALU does as
long as the result is not written anywhere so we ensure that ReW is 0 and ALU may do
something which is don’t care. So now with this done we have seen the relationship
between micro operations which we picked out of that flow chart and how they assert
various control signals; what values they imply for various control signals. The names of
these are PC increment, arithmetic, memory address, PC address, branch and no
operation.

(Refer Slide Time: 48:35)

(Refer Slide Time: 00:48:53)

So now I can tabulate these. Before that let me redraw the diagram with these new
symbols put in the boxes. So instead of those assignment statements I have replaced those
with the new micro operation symbol which I have described in previous few slides. So
for example, in the first cycle I am doing fetch and PC increment, in the second cycle I
am doing rs2A and rt2B and Paddr; all these three are done concurrently within the
second cycle and so on. So all these signals have been all these micro operations have
been put into appropriate states. Also, these states could be numbered: cs0 to cs9.

(Refer Slide Time: 49:44)

Now I need basically two tables: one table will define for a given control state what
micro operations I perform which will also directly imply what are the signal values for
various control signals that is one table. Next table would define that given a control state
what is the next control state and this transition may be conditional; it will depend upon
the way I am bifurcating so it will depend upon the opcode. So let us see both these tables
one by one. So first, we will see relationship between control states and signal values.

(Refer Slide Time: 00:50:24)

So, I am not listing signal values here; I am only listing the micro operation in the
particular group. So these are the four groups I identified: PC group, Memory group, RF

group and ALU group and in cs0 the operation I need to perform is PC increment this
actually shows up here also as I mentioned it requires to control signals at both the ends
and in memory group the operation is fetch.

In cs1 I am fetching these operands and calculating branch address. In cs2 this is the first
first distinct state for R class instruction so I perform the arithmetic operation here so the
R class instructions go through cs0 cs1 cs2 and cs3. In cs3 the value gets written. And all
those which I want to keep inactive you will find there is no offsetting there. So here the
result is being written into register file (Refer Slide Time: 51:41).

(Refer Slide Time: 51:47)

Then c4 is the common state for load store here memory address gets calculated, then c5
completes the store operation we have a memory right here, c6 performs memory read
operation and c7 performs transfer of data from memory to register file, c8 completes the
branch instruction so again a branch operation branch micro operation shows up in PC
group as well as in ALU group because it requires a comparison here and it needs to
change the state of PC so both these get influenced. And c9 completes the jump
instruction so it is influencing this pc group.

(Refer Slide Time: 52:33)

What I can do but I will not do that here is that each of these micro operation symbol I
replace it by a bit vector that bit vector defines the relevant control signals. Once I have
that I also encode these nine states in binary so you can use 4 bits to encode this state. I
form a truth table where this is the input, the code of the state is the input and the bit
vector which I write here are the outputs. So these are control signals which go from
controller to the data path.

The second part of the control design is how control state transitions take place. So, again
for each of the states let me fill it up for each of the state I am defining the next state but
the next state could be different depending upon what is the opcode value. So from cs0 I
am unconditionally going to cs1 in all cases. From cs1 one goes to cs2 or cs4 for load
store it is common again, for branch it is cs8, for jump it is cs9.

(Refer Slide Time: 53:58)

From cs2 which is for R class instruction go to cs3 and these conditions will not occur.
Once you have gone to cs2 you know that it is R class instruction and others are not
relevant. So you can see that R class instruction goes through cs0 1 2 and 3 and back to
cs0.

For store instruction we start with cs0 go through cs1 cs4 cs5 and then cs0. For load it is
cs0 cs1 cs4 then cs6 cs7 and then cs0. For branch it is 0 1 and 8 and then 0 for jump it is
0 1 9 and then 0.

So now what kinds of truth tables I have here?
Here the opcode and 4 bit of the control state these form the input of one combinational
block and the next state value or the 4 bits which encode the next state are the output. So
if you implement these two tables the tables shown here and the tables shown in the
previous slide namely this one you can use two PLAs to implement this so these two
PLAs plus one register holding the control state 4-bit register hold in the control state will
form the controller. I will draw that picture next time and look at some alternatives. So
today we will stop at this.

(Refer Slide Time: 00:55:42)

Let me just summarize that we saw how instructions get divided into sequences of micro
operations; how we group the control operations control signals and then define the
relationship between micro operation and control signals then we associated control
states with the micro operations and we also identified control state transitions, thank
you.

