
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 20
Processor Design - Multi Cycle Approach

We have discussed a very simple form of processor design called single cycle design and
in the last lecture we ended by making some observation about such a design. These
observations were about its performance and inability does certain kind of instruction. So
today we will introduce another type of approach called multi cycle design which tries to
overcome these problems.

(Refer Slide Time: 02:21 min)

This is the overall lecture plan and today we will start by repeating those problems re-
observing those problems which are related to single cycle data path. We will look at
how, we analyze the delays and what for the difficulty which is noticed. We will see how
clock period can be improved; how clock could be speeded up by using multi cycle
design. We will also look at this as a way of improving the resource utilization. The
resources are the main hardware components we have even in our data path and what
basically we will do is we will try to share these components such as memories and ALU
and to facilitate that we would need to introduced some more components but often lower
costs generally these are registers and multiplexers.

(Refer Slide Time: 02:22 min)

This is the data path which was designed in the previous lectures where every instruction
is completed in a single cycle. So all activities begin with a new address in PC and the
cycle ends by updating the PC value as well as updating the state of the whole processor
in register file and memory. So these are the three problems which we have noticed that
the slowest instruction pulls down the clock frequency; if there is a wide disparity in the
timings of various instructions then the whole set of instructions will be running as slow
as an instruction so that is the difficulty with such a design approach.

And secondly, resource utilization is poor. Apart from having a full fledge ALU we had
to use two adders and we had to keep the instruction memory and data memory separate
because in that type of design it is not possible to work with single memory from where
you fetch an instruction and then later on fetch data also so that we will not work out.

(Refer Slide Time: 02:50 min)

Also, I hinted upon some kind of instruction which cannot be realized by this type of
approach. So we will focus today on first two issues. Just to recall that we had analyzed
the performance by taking the delays of individual components some simple ones were
assigned zero delay and others had some significant delay denoted by t plus t A and so on
these symbols are denoting the delays of individual components.

(Refer Slide Time: 03:50 min)

(Refer Slide Time: 04:03 min)

And for each instruction or a group of instruction we enumerated various paths from
storage element to storage element through which the data has to flow in the instruction
and identified the possible expressions which would decide the overall clock period.

(Refer Slide Time: 04:22 min)

So this was the final expression we had. The one at the bottom is in a simplified form and
it could be noticed that the largest of these sub-expressions will actually decide the clock
period. To illustrate this further let us look at some values. Again I am not putting these
values in numeric sense but trying to depict it pictorially; so the horizontal x here is a

time axis and for each instruction I am trying to show the delays which are involved in
the flow of information along the data path.

(Refer Slide Time: 5:02)

For R class instruction there is a delay involved in fetching the instruction, fetching the
operands from the register file then doing the arithmetic operation and finally storing the
result in register file and so on for each instruction I have indicated the possible path
which may dictate the clock period. So I have taken nearly equal values for all these
terms except that there are slight differences; t i and t M I have taken same and in fact t
plus is also same; t A is slightly less than that and t R is even little less than that.

So, from first three cases I have dropped the t plus term because that is invariably that is
less than all these and we do not really need to look at that. So now you can very clearly
see that lw with this kind of values lw will dominate and dictate the clock periods. So
clock period would be from this point to this point (Refer Slide Time: 6:09); remember
that horizontal axis is the time axis I am showing along the time line. but once clock
period is fixed all instructions are taking same time and you could see so much of dead
time in other instructions in R class, sw, in beq and most in j.

Now when we introduce multi cycle design basically what we try to do is divide
execution of instruction into multiple cycles. So we need to decide what gets done in first
cycle, what gets done in second cycle and so on and there are lots of choices. So we will
take one simple choice here which tries to do one major action in one clock cycle. This is
only one of the possibilities and what it means is that now looking at each individual
times we take max of these and take that as a clock period. So in this case t i, t M or t plus
all are equivalent and the largest among all so that decides the clock period. The R class
instruction now gets done in four clocks: lw in 5, sw in 4, beq in 3 and j in 1 so there are
still small dead times because of inequality because all these times are not exactly equal

there is some differences. But you would notice that the overall improvement in
performance will be there because the overall wastage in time is much smaller.

(Refer Slide Time: 7:47)

One more thing you must notice is that the total time lw takes now is more than what it
was taking earlier. Earlier it was taking one clock which was from here to here, now it is
taking five clocks which goes from here to here (Refer Slide Time: 8:04). So because
there is some wastage of time here also but on the whole everything put together this
approach would still give you better performance or save time.

Now things look quite here quite good here because these different time parameters are
nearly balanced. I deliberately took these values which are only slightly differing from
each other and therefore the wastage you see is very little. But suppose there was a vast
disparity in this time we will be again having a problem situation. For example, suppose
for some reason the adders which we had for address calculation for branch and jump
instruction sorry not jump branch instruction and doing PC plus 4 they were pretty slow.

(Refer Slide Time: 8:58)

Let us say t plus becomes the bottleneck and this will hold up the clock. So now clock
will get dictated by this time and we will still follow the same approach; R instruction
takes four cycles, lw five cycles, sw four, beq three and j single cycle. But now notice
that the clock period is larger and it has to be sufficient to accommodate each of these
any of these individual activities. So t plus is dominating and you would notice that now
even these instructions although they are taking four cycles but they are taking longer
than what they were taking in the single cycle approach.

Of course lw was in any case taking longer than a single cycle, sw is also taking longer
than single cycle and in beq there is a little bit of saving there is of course still significant
saving in jump instruction
but there are very few jumps anyway in the whole program. So if you add the cycle per
instruction CPI of all these now R has CPI f 4 has 5 and so on we know the CPI of
individual instruction or class of instruction and we have seen how we can calculate
every CPI depending upon the frequency of occurrence of certain kind of instruction in a
program you can find an average. So, the total time a program would take could in fact
here be larger than what it would take in a single cycle case.

If there is an imbalance of this nature then this approach the way we have implemented
multiple cycle design could be counterproductive. So what can be done in such a case is
we have to do something so that there is a balance. What we are doing in a clock cycle is
uniformly true uniformly same that means we identify the activity to be performed within
a clock cycle which is generally balanced. it should not happen that, for example, here in
this clock cycle we are doing little very little and wasting lot of time (Refer Slide Time:
11:22) whereas this cycle here is packed that is unbalanced.

How to balance?

Possibilities are that you can have multiple actions in a period. If there are two let us say
two actions which are taking very little time you can do two in a clock. Earlier we were
doing a everything in a single clock so that kind of idea could still be retained. We need
not say that one action in one clock cycle although that is the simplest thing but this may
not be always very beneficial.

Alternatively or in addition to this you could have multiple periods for an action. For
example, it is not necessary that t plus if it is slow has to be done this action has to be
done within a single clock. You might do everything else in a single clock but may be
reserve two clocks for this so you might still have an overall better performance.

(Refer Slide Time: 12:34)

Now, once you bring this into picture the number of possibilities becomes very large and
it is not a very straightforward solution but the point here is that one could find a suitable
clock period so that the dead times or the wastage of time which is due to quantization of
time by clock is minimized. So we will not going into further details of that. We will just
resume that we have identified the major actions for each instruction and each can be put
in one clock cycle. So we will follow that approach keeping at the back of our mind that
there is a problem this is the direction in which we need to look into.

The second issue was improving the resource utilization.

(Refer Slide Time: 13:19)

Can we eliminate two adders? Can we just manage with a single ALU; that is one
question. In general, how do we share resources across cycles? You are using adder in
one cycle to do something, in another cycle you can do something else with the same
adder so the solution lies in having the results of one operation stored at the end of a
cycle in some register. You recall two designs of multiplier we discussed two different
types of design; one was array multiplier where we had cascade of adders with no storage
in between and the partial sum flew through flows through all those adders.

So now, as data flows through those you can notice that each one is not getting fully
utilized each would be active and signals are propagating through that to only part of the
duration. On the other hand, the sequential multiplier we had we did something with the
adder, stored the results in register and reused that adder again so the key thing is that
between two usages you have to store one result so you do something store the result and
then the resource adder in this case is free to do the next operation. So same idea we will
apply here and the three key resources we will keep in mind is register file, ALU which
will do all arithmetic and logical operations now and the two memories will be clubbed
into a single memory; it will store program as well as data.

(Refer Slide Time: 15:08 min)

Now let us take this is starting point which is a single cycle design and in this we will see
what changes are required if we have to share these resources and we know that we are
going to do a multi cycle design so each major action would be done in a separate clock
cycle. Firstly, let us merge instruction memory and the data memory; replace both these
by a single memory. So we remove these and replace them with a single block which is
doing read as well as write and I have placed it here where program memory was kept but
what we will do is we will route its inputs and outputs back to the same memory that
means the ALU which was supplying the address (Refer Slide Time: 16:13) will go back
and supply an alternative address; this was the data input this will go back to this point
and the data which is being read will actually now come out here. So these inputs and
outputs which were connected to these will now be rerouted and brought back to this
particular block.

(Refer Slide Time: 16:40)

Therefore, first of all, this output of ALU which is the address for memory is connected
back. Now we are bringing in a conflict here but we know how to resolve that. We will
introduce a multiplexer here to take care of this but that is a problem we will tackle later.
So, first of all let us bring all connections here. I have taken care of address input, next
the data input which is going here will be now brought to this (Refer Slide Time: 17:07);
I have removed the old connection and it gets connected at this point. Similarly, the data
which is coming out of memory and was eventually through this multiplexer going to
register file will now come from this so that is removed and that is yeah it is connected
here let me see it again. So the old output of the memory is removed and the new one will
get connected into this. So it comes out of this and gets connected. Again we are bringing
a conflict here; we know that the data needs to be brought from ALU or from memory for
load instruction and for arithmetic instruction. So this is a conflict point we will resolve
with a multiplexer again.

(Refer Slide Time: 17:30 min)

What we will do is for the moment we will remove this multiplexer and reorganize it here
(Refer Slide Time: 18:40) later on. So, output of ALU is directly connected here for the
moment but we know that a multiplexer is required at this point. We have gotten rid of
one extra memory now gradually we will also collapse the two adders on to this ALU.

(Refer Slide Time: 19:10 min)

So first let me make space let me just shift things around so that there is space for
carrying out an interconnection. Just the same thing with things moved little apart and we
will first eliminate this adder and then eliminate that adder and same thing will be done;
remove this (Refer Slide Time: 19:35) and just route the interconnections on to this so we

remove that adder it was getting two inputs PC and 4. So the input coming from PC is
brought in to this point of the ALU so this is a new connection and the second operand 4
will be brought to this multiplexer.

(Refer Slide Time: 20:03)

The output of this adder which was here (Refer Slide Time: 20:12) was eventually going
through this multiplexer to be stored back into PC so, that we will have to tag from this
point now. So we remove that connection from top and take a connection from here. Now
we have still something hanging here; this was PC plus 4 which was being used for offset
addition here and generating jump address here. This will now come from PC because we
are assuming that you do PC plus 4 in one cycle the result goes back to PC. So the input
to this is not taken from here, we take the value; since it is a multi cycle design PC plus 4
would be done in a particular cycle and that value will be put back into PC because
remember that we are going to put all values into some storage element in some register
at the end of the cycle so that resource which computed that becomes free. Therefore, this
input here will come from PC now. I simply make that connection there. We have taken
care of removing the first adder.

(Refer Slide Time: 21:46 min)

Now we eliminate the second adder; this one will be moved away and its inputs are again
brought to the same ALU. So we have this output from PC which is already coming to
this so that actually will not bother us that is already there.
The second operand is coming from the offset eventually (Refer Slide Time: 22:12) and
that would be brought to this multiplexer. The output from here will have to go to this
multiplexer. Yeah, so this second output second input to the old adder is removed from
there and is connected here. Then we simply get rid of the first input because that is
already taken care of and the output I make some space first for that and then connect the
output.

One might question actually that sorry…… why is it that we are still having two inputs to
this they still seem to be coming from the same point. But actually it may be a little
difficult for you to see……. what will actually happen is that although this value (Refer
Slide Time: 23:37) which is actually supposed to go to PC this is the PC plus 4 value
which is coming on this line it is meant to go to PC immediately but the other thing
which is coming here after offset addition is meant to again go to PC but this is after
comparison has been done in this ALU of the two registers and this may go or may not go
so what will happen is first this value will get immediately stored in another register here
before we do it before we take further decision of sending elsewhere.

So, at the moment time I am keeping these two both which look identical right now but
one will come immediately from the output of ALU, one will come from a register which
is following ALU so that distinction we will show up later but at this point you just take it
like this that we are simply retaining.

One was following this kind of design process. You might actually…. if you are not able
to see that you may eliminate one of these but does not matter. If you need one later

again, a separate one then you can bring it back into the picture but I am just following
this approach.

(Refer Slide Time: 25:07)

Now we need to introduce registers at various places so that output of every resource is
stored in register. I simply make some space for that and gradually introduce registers.

(Refer Slide Time: 25:20)

So, which are the points where we need to introduce registers. what we are reading from
the memory needs to be kept in a register; we are reading two things: the instruction and
we are also reading the data which needs to go to register file eventually so two registers

will be required here where one will store instruction and one will store the data. Then
you are reading operands from the register file, they will be kept in small individual
registers here, the output of ALU will be kept in another register here. So these are the
places where we need to put registers.

So we place one register here we call it IR or the instruction register, one is to be placed
here we call it DR or data register so both are carrying information brought from the
memory. Then A register holds the first operand and B register holds the second operand
which come out of the register file. Then there is a register which we call RES or the
results which comes out of the ALU and here I have made the distinction that PC plus 4
value is immediately going to the PC from ALU output; it is it is getting stored but
getting stored in this PC whereas the other things what else ALU is doing; ALU is doing
normal addition, subtraction, AND OR, slt operation so that that data will get stored in
this register before it goes to register file and also the memory address which is being
calculated for load store instruction will be resting in this here before it goes to the
memory and also for branch instruction the next instruction address which I calculate by
adding offset will sit in this register before I make a choice here whether to take PC plus
4 or PC plus 4 plus offset, so, that is the purpose this register will serve.

(Refer Slide Time: 26:09 min)

Now the last thing which remains is to introduce the multiplexers. We will At some place
we will require fresh multiplexers, somewhere we will simply do a rearrangement may be
enhance the size or restructure the multiplexer inputs. So we have multiplexer already
there which are feeding the program counter. What I will do I will just collapse them into
a three input multiplexer three input one output multiplexer which appears simpler and
physically just bring it out here (Refer Slide Time: 28:20) so introduce a new multiplexer
here but I will eliminate the old ones; this has three inputs; one input comes from RES
register, one comes from ALU directly and one comes from this jump address. Those
three are brought in here the output of this is going to feed the PC.

(Refer Slide Time: 28:47)

So, first I switch the output then one input comes from register result, one input comes
from ALU and the third input comes from jump address and I have gotten rid of the
earlier multiplexer.

(Refer Slide Time: 29:15)

You can see it again. So this is one connection.

(Refer Slide Time: 28:55)

(Refer Slide Time: 29:28 min)

This is second connection.

(Refer Slide Time: 29:32 min)

This is third.

(Refer Slide Time: 29:35 min)

This is the fourth. So one output and three inputs they are all rearranged.

Next we look at the multiplexer which is taking care of the first input of ALU. ALU has
two inputs now. The first input comes from either A register A or it comes from PC from
here (Refer Slide Time: 30:03). So simply I need to introduce a multiplexer here and
connect these two inputs to that multiplexer.

(Refer Slide Time: 30:16)

So this is a two input multiplexer: One input comes from PC, another is already there
shown from register A. Then this multiplexer which is feeding second input of the ALU
now has four inputs B, B register, the constant 4, this offset which is used for load store
instruction for calculating the address; it is the offset in the instruction with signed
extension.

For branch instruction we need to do a shift also we need to sign extension followed by a
shift so these are the two separate values and there are total of four possibilities. We need
to have a bigger multiplexer here now.

(Refer Slide Time: 31:12)

So place a bigger multiplexer and simply connect these signals properly. So we would
need to see we will need to worry about the control of these multiplexers; what control
value control input is required for different instructions and that you will analyze later in
the usual manner. Then we move our attention to this area where we have data coming
from DR or from RES that needs to be multiplex before we feed into the register file. So
just move that wire at the bottom; this one (Refer Slide Time: 32:06) to make some space
here where I am placing this multiplexer so this is one input from DR the output is
properly connected and this signal coming from result is actually extended brought to
this.

(Refer Slide Time: 32:24 min)

Now this is taken care of. Finally I need to put a multiplexer at that point. So here we
have address; there are two address resources PC for fetching in the instruction and this
RES where load store address would be calculated and kept, this is another address
(Refer Slide Time: 33:06) so it will be simpler to just extend this line here and I will
remove this line which is coming from top; same thing, I just pull it more neatly from the
bottom.

(Refer Slide Time: 33:31)

Now this is a complete design of the data path for multi cycle. Basically more effort was
there to ensure that resources are properly shared. For that we need to collapse multiple
components on to the same thing and with the help of multiplexer we are able to feed
different inputs to those resources at different times. And then registers were introduced
to break the time interval. So time interval gets broken in to multiple clock cycles and
now the paths which need to be considered for delay analysis are a much shorter path.

For example, you can take paths going from one storage element to another storage
element. When you are fetching instruction it is this path PC to IR or there are paths from
IR to A or IR to B or from DR to register file. And similarly, path from A and B through
ALU to result register and so on. So, main sources of delay are these three components:
memory, register file and ALU and if these three are roughly balanced when this will
work very nicely. So, that is complete design. We will look at the control part in the next
lecture. I will just rearrange this diagram to make redraw this little neater.

(Refer Slide Time: 35:25)

We will go into details of control signals. Basically now we have lots of multiplexers. We
have 1 2 3 4 5 6 six multiplexers are there which require control and multiplexers like
this one will require 2 bits to control them. Apart from that we have the usual control
requirements for memory, register file and ALU. We also need to now look at these
registers in which cycle we load these registers and which cycles we do not.

So, for example, if you take let us say add instruction, after the first cycle IR gets loaded,
after the second cycle A and B gets loaded, after the third cycle RES gets loaded and then
in the fourth cycle this RF writes RF gets the value written into it. Also, we will typically
load PC with the new value PC plus 4 at the end of first cycle itself. If it is a branch
instruction and branch has to be taken that we will overwrite that PC plus 4 value in the
PC by a different value and similarly in jump we will write something else in that. So,
even PC will require a control.

In every cycle we need to determine whether a new value goes into this or does not go
because there is no register which is now loading a new value in every cycle so this needs
to be taken care of and the number of control signals therefore is quite large. We have
these six multiplexers out of which two require 2-bit input so a total of eight control
signals we require just for multiplexers.

We have two for memory, 1 bit for RF and 3 bits for ALU so this is another 6 bits and
we have 1 2 3 4 5 and 6 registers
so one control signal for each of these registers. So there is a large number of control
signals which are required. And also, the control would be different in the sense that in
every cycle there is a different set of control. So the control will no longer be a simply
combinational box; it will be a sequential machine which goes through a set of cycles
four cycles, five cycles or three cycles depending upon what the instruction is and in each
cycle it tries to control things differently. So the design is a more involved in that sense

and that is the reason the single cycle design was considered the first being the most
simple design.

(Refer Slide Time: 38:37)

So, in a summary we have moved over from single cycle design to multi cycle design. we
have compared their performance. Basically it gives you better performance and by
resource sharing it tends to reduce the cost. But now we must notice that there is a trade
off although we are trying to gain both in time and in cost somewhere there are losses
also and we have to be careful that losses do not overshadow the gains. So for example,
in performance improvement if the quantization has to coarse and if there is an imbalance
on the values of timings for different individual actions then on one hand we might gain
but on other hand we might lose all the gain simply because there is an imbalance.

Similarly, while resource sharing we have eliminated those adders and we have removed
we have eliminated one memory but we have incurred extra cost in terms of registers and
multiplexers. So you are sharing but there is an overhead of sharing and we have to be a
little more careful in our calculation and ensure that the overhead does not overshadow
the gain. Finally just to close we had design where data path conceptually is simple in
terms of key resources with just one ALU, one memory and one register file but there are
registers and multiplexers which glue these all together. So, next we will look at the issue
of control design for such a data path, thank you.

