Computer Architecture
Prof. Anshul Kumar
Department of Computer Science and Engineering
Indian Institute of Technology, Delhi
Lecture - 19
Processor Design - Simple Design (Contd...)

We will continue with the simple design of a processor which we began in the last
lecture. What we had done primarily was that we have taken a small subset of
instructions and try to design the data path. What we will do today is that we will look at
that design from a slightly different angle and come up to the same point; we will then go
in to details of control part design. So data path is the one which is doing the computation
and control is the one which guides or directs these computations so that the right action
takes place at the right time.

(Refer Slide Time: 01:36 min)

This is part of the overall plan. We are looking at a simple implementation where the
entire instruction gets executed in a single cycle. After we finish with this we will look at
the performance considerations and probably go for a more involved design which is the
multicycle design.

So today we will arrive at the same data path design by looking at it from a different
angle. What we will do is we will look at each instruction or group of instructions
separately and then try to merge the results or merge the outcome of each separate
consideration and then we will look at what control inputs are required to drive various
components in the data path and based on that we will build the specification of the
controller and then go in to details of the controller design.

We will see one possible implementation using what is called PLA Programmable Logic
Array and if time permits I will talk of performance consideration as how do you analyze
performance or analyze the delay of such a design. At the end we will notice that this

particular design approach has some limitations and once you understand those
limitations we will able to talk of an improved design.

(Refer Slide Time: 03:03 min)

So let us compare the two approaches which I am talking of: One approach we followed
in the last lecture and another one we will follow now.

(Refer Slide Time: 3:15)

What we did yesterday was that we began with one design let us call the D1 where we
looked at five instructions which belong to one particular group namely arithmetic logical
group. We augmented or enhanced the design by including store instruction. We
improved it further we expanded it further by including the load instruction then we
added on beq instruction and then finally we threw in place j instructions. So, that is how
starting with a very simple design we gradually built up a more and more involved design
and this process actually can be continued so you you can you can look at the entire
instruction set look at more instructions and by following a similar approach you can
keep on adding or enhancing the design that is one approach you follow.

(Refer Slide Time: 4:06)

What we will it do today is that we will look at separate designs as if there were only
limited number of instructions. So first we will have a design which looks at these five
arithmetic or logic instructions; of course the answer will be no different from what we
had earlier. But then we will leave that apart and look at just store word instruction and
see what are the requirements for this particular instruction.

Similarly, we will do it for lw separately, then beq in isolation then j in isolation and then
we will try to merge these five different designs which may have something in common
so that common part will remain common but we will kind of take a union of whatever
the requirements are of different solutions and put them together. Since our approach is
same that we are trying to do the whole thing in a single cycle and the given broad
components may be identified we will approach the same design point at the end.

(Refer Slide Time: 05:06 min)

This is what we had; the starting point even yesterday, that, for doing add subtract
operation you need PC to supply the instruction address, from the instruction you will
look at the register address fields, fetch two operands from register file, apply them to
ALU, result of ALU goes back to register file and mean while we also make sure that PC
gets incremented to PC plus 4. So these components can be put together to carry out the
first group of five instructions.

Then now let us look at sw alone in isolation.

(Refer Slide Time: 05:45 min)

Here ALU does something different; ALU does the address calculation and we bring in
the data memory component so ALU feeds the address for data memory and the data
input | do not know what happened to the curser | am not able to get curser here....
suppose leave that so the address is found by adding one register content and 16-bit as an
offset coming from the instruction.

Next we have data path portion of data path which will take care of Iw if that was the
only instruction.

(Refer Slide Time: 06:45 min)

So notice that now we are still looking at two addresses from the instruction but while in
case of stored both were being used to read, now one is being used to read and the other
is for writing; it is a load instruction so one register takes care of address generation and
the other address is where there is destination of data coming from memories.

(Refer Slide Time: 07:20 min)

This is for beq. So again | have omitted data memory. ALU is being used for comparison.
we are looking at two operands from the register file which is being fed to ALU for
comparison purpose and the target address in case the condition is true we need to go to
some particular target address; that is being calculated by adding an offset to PC plus 4
and note that we have sign extension and we have shift by 2 and all these things here.

(Refer Slide Time: 7:57)

Finally for jump instruction all that we need is putting the right bits together to form the
destination address. We do not need register file. This is instruction does not look at

register file, does not require ALU, does not require memory and all that you require is
some little circuitry to wire the bits forming the address appropriately.

Now we have we have come up with these five partial designs; we need to put them
together to form the final design. So these | am calling these as sub-designs we are going
to merge these so this was one. Let us quickly cycle through these; that is the second one;
this is for store instruction, then this is for load instruction..........

(Refer Slide Time: 08:50 min)

(Refer Slide Time: 08:53 min)

This is for beq instruction.

(Refer Slide Time: 08:59 min)

This is for jump instruction. So you would need you would notice that these are few
things in common; each instruction may not utilize all the resources but if you take union
of all these we can reconstruct the entire designs and that is what we will do now.

We will now..... now we will we will place we will take these five as if there were five
sheets of paper and just superimpose one over another and naturally the things which are
common will fall in place and which are which are not common we will kind of take
union of those but there will be another thing that there will be somewhere a conflict; in
one sub design we want one piece of data go to a particular destination, in another design
we want something else to go to that destination so we will identify those and take
corrective measures.

(Refer Slide Time: 10:22 min)

So the second one is superimposed over the same thing; third one is again put over that so
we are not erasing anything and somewhere the lines are getting doubled up somewhere
two different things will go to the same point.

(Refer Slide Time: 10:42 min)

(Refer Slide Time: 10:45 min)

This is for beq and finally this is for jump. So now we have everything just superimposed
and what remains now is to identify the points of conflict where we are trying to send two
different things to the same point in two different situations. So we now try to identify
conflicts. This is one point of conflict (Refer Slide Time: 1:08) where add subtract
instructions send one thing here and the load store instruction tries to send something else
here.

In one case we are adding two operands coming from register file; in other case we have
one from register file, one is a constant coming from instruction so there is a this is a
point of conflict. This is another point of conflict (Refer Slide Time: 11:34) in terms of
what goes back to the register file. So, in arithmetic instructions output of ALU goes
back, in load instruction output of data memory goes back. And associated with that is
this point of conflict (Refer Slide Time: 11:53) where there are different addresses used
to address the right port of the register file. It is either INS 11 - 15 or INS 16 — 20;
different fields in the instruction are addressing the same right port. This is also a point of
conflict wherein instruction other than branch and jump we simply want PC plus 4 to be
sent back to PC. But in case of branch we have something else coming out of address
calculation and that needs to be going to the PC and finally this point is where jump has
one way of calculating address, branch has another way of calculating address and
ultimately they need to go to the same destination.

(Refer Slide Time: 12:38 min)

What do we do for these?

From the other design we can actually get an idea that we need multiplexers and
multiplexer will be driven by suitable control signals. So we introduce multiplexers;
basically we have to introduce multiplexer and also connect the signal appropriately. So
you would notice that except for one place | have put in the multiplexer; the fifth one the
point of conflict between non-branch and jump instruction and other instruction would
get resolved automatically because the multiplexer we have put for branch itself will take
care of that because it is a conditional branch it has a provision of passing PC plus 4 as
the next address; so you are either having PC plus 4 plus offset or PC plus 4. So the
provision which we have PC plus 4 will suffice for non-branch and jump instruction so
we do not really need a multiplexer there.

(Refer Slide Time: 13:40 min)

Let us now remove the conflicting line and put appropriate connections in place of those
and we reach the same design which we had arrive at yesterday. So it is just a the idea is
to give you a different view different way of looking at it so whatever is convenient that
approach could be followed and there is nothing secret about one another.

Is there any question at this point of time? Alright, if this is okay let us move towards
working on the design of controller. So you would recall that we have identified control
points; since it is the same design we have same points. Primarily we are controlling the
multiplexers, we are controlling read write operation of memory, write operation of
register file and we had a gate controlling the PC source so that the controller design is
simplified.

(Refer Slide Time: 14:57)

Now what we need to do is a look at each instruction or group of instructions and see
what value needs to be given to these signals; what input needs to be given. So, for
example, let us start with R-type instruction or basically arithmetic logic instruction.
RDST needs to be made 1 because the write port has to be addressed by bits 11 to 15 of
the instruction so we need to give.... this control signal is 1. RW tells whether the register
file has to take in a new value or not; this also needs to be made 1 because you are
writing something in to the register file. ALU source is 0 we want to take the top input,
MW is O we are not writing into memory, MR is O we are not reading from memory and
MZ2R is also 0 because we are taking the bottom input of the multiplexer.

Going further it is not a branch instruction; we keep the signal 0 it is not the jump
instruction we keep this signal jmp also 0. Now let me point out that there is a change
which | have made in the diagram in relation to the previous one; it is that the label 1, 0 |
have reversed it as jump control multiplexer. that is just for convenience that we have the
meaning of the jump signal the polarity is 1 when it is a jump instruction and there is
nothing very particular about this but just to call it jump otherwise | would need to call it
jump bar that is the usual convention.

So now this is the set of values this is the set of inputs you need to give at control points
and if that is given the instruction done by this data path will be the R-type instruction.
We still have not specified what input we give to opi | will take it separately but let us
look at the others for each instruction. So all these put together is a table of values we
need to give at different control points.

(Refer Slide Time: 17:00 min)

Let us go to the next one sw instruction and repeat this exercise. Rdst is don’t care
because we are not writing into register file and that will be indicated by making RW as
0. So basically when RW is 0 value of Rdst could be anything it does not matter. If ALU
source is 1 because we need to take the bottom input, memory write is 1 it is a store
instruction, memory read is 0 and M2R is also x this will also go with Rdst. So, when
RW is 0 Rdst will be x and M2R will be x these will be don’t cares (Refer Slide Time:
17:54) it does not matter which one you select.

(Refer Slide Time: 17:58)

So as you would be familiar with a logic design that if there are don’t cares in the
specification these could be exploited to simplify your circuit so from that point of view
we will try to put x wherever we can and further brn is 0, jmp is 0. Putting all these
together we tabulate all the control signals which are required for this particular
instruction.

Next is the load instruction; similar exercise.

(Refer Slide Time: 18:28)

Here we are putting things back into register files so Rdst is 0 we are taking the top input,
RW is 1, ALU source this is same as what we had for store and now we are not writing
memory but we are reading so MW is 0, MR is 1 and M2R is also 1 because output of
memory is being sent to the register file; brn and jmp continue to be both 0s. So these
signals can be put together again in the table and these green table which 1 am forming |
will have to collide these together to form an overall truth table.

Next we move on to beq instruction.

(Refer Slide Time: 19:17)

In beq instruction neither we write in to RF nor we read or write from data memory so
those corresponding signals will be 0, Rdst is accordingly x, RW is 0, ALU source is 0
we need to take two operands from register file and compare them; MW MR both are 0,
M2R is x, brn is 1 it is a branch instruction now. So now the z output of ALU will be
brought into consideration and that together with brn will control PC source; jmp
continues to be 0 and all values put together are in this green table (Refer Slide Time:
20:02).

(Refer Slide Time: 20:06 min)

Finally we have this jump instruction. So, jump instruction again does not require
anything RF, ALU, DM all these are inactive so Rdst x, RW 0, ALU source is also x
now. Since we are not looking at we are not choosing ALU it does not matter what you
give as input, MW is 0, MR is 0, M2R is X, brn is also x. Now why it is x is because once
this last multiplexer this control by jmp where we have made 1 you are looking at the
upper inputs so it does not matter how the bottom input is being computed; you may
select any of these it does not really matter. So this is the set of control inputs for jump
instruction. Let us now put these together, well this is just a sub-table for jump.

(Refer Slide Time: 21:07 min)

We will tabulate the instruction and against them we will have all the control signals. So,
if we put the opcodes of these instructions from those opcodes we need to derive these
control signals and these two together will form a kind of compact truth table for
controller circuit. And we know how to once the truth table is given we know how to
design a combinational circuit. There are many ways to do it but I am sure you at least
know one. Therefore, let us a put in the opcodes for these instructions.

(Refer Slide Time: 21:48)

All R-type instructions have 0 as opcode; these arithmetic logic instructions; this part is
common and that is why we are treating them together (Refer Slide Time: 21:54). So
there are also opcodes | have put for sw, Iw, beq and j. So what are the opcodes are? We
are just taking from whatever definition we have so there is nothing we are specifying
here; this is what is given.

so now here is a.... So, in the overall design there were two control boxes; this is the
main controller and after this now we can look at the second controller which controls the
ALU. So as far as this is concerned we have completed the design up to this point, we
have come to the truth table.

Now we first defined what is how we are encoding opc. opc if you recall, is a signal
coming from the main controller and going to the second controller which controls the
ALU. We said that we will have all instructions falling in three categories: R instruction
is one category, load store is another category and all the rest are yet another category.
And basically I should say branch is another category, for jump it really does not matter.
So we need 2 bits to encode those three groups and what we will do is we will put in
another column here which will define this.

(Refer Slide Time: 23:29)

So, arbitrarily let us choose some code; R-type is a 10, sw is 00, so is Iw, beq is 01 and
jump it is don’t care. Now the truth table is actually complete. the main controller now as
you can see has 6 bits as input; the 6 opcode bits are input for this and you have 2 bits of
opc plus 8 bits in the other table altogether and these 10 outputs have to be produced so it
is a 6 inputs 10 outputs circuit which we now need to design. But before we do that let us
see what do with opc. So we need to look at opc and the function field in case of R-type
instruction and decide 3-bit input control for ALU.

(Refer Slide Time: 24:30 min)

Hence, now the group of R-type instruction needs to be expanded; we need to consider
requirement of each individual instruction. So we repeat this R-type entry for five times
because we are considering five instructions: add, subtract, AND, OR and slt. So these
will differ in terms of their function field; opcode filed is same for these. The third
column shows individual instructions and the last column shows the function field. the
function field is not to be seen for instructions other than R-type instruction so | just put
don’t care there because in those particular bits we have something else; we have address
offset or some part of address and they are not specifying function bits.

Now, for different instructions we need to figure out what input we need to give to ALU.
For the second control circuit, for the ALU control circuit there are 8bits of inputs: 2 bits
of opc and 6 bits of function and there are 3 output bits which we will decide now by first
noticing what is the function ALU is supposed to perform in different instructions. So, in
the R-type instruction the action to be performed is directly given by the instruction as
add operation for add, subtract for subtraction and so on; for store and load instructions
we also need to perform add operation and for beq instruction we need to perform
subtract operation
and for jump we need nothing.

(Refer Slide Time: 26:13 min)

So we have enumerated the action required by ALU for these different instructions and
we also we we are now in a position to define what control input is required for ALU. |
am recollecting the ALU design, 1-bit of ALU is being shown here and you would notice
that we need 2 bits to control the output multiplexer; it has to select from one of the four
possibilities and 1-bit is actually used to invert b if necessary. Whenever you are doing a
subtraction operation then b needs to be inverted. So we need to form 1’s compliment and
give initial carry so that negative of b comes so 3 bits are required.

(Refer Slide Time: 27:08)

And we can | am assuming that the left most bit out of the 2 bits is b invert and the other
2 bits control the multiplexer. So 00 if you want is the top input, 01 if you want the next
input, 10 and 11. Therefore, for AND operation b invert is 0 but actually one could put it
as don’t care; if you are not using the adder part of it b invert becomes don’t care but | am
just putting it as 0. So for AND we are selecting the first or the zeroth input in the
multiplexer so the code is 000; for R | am keeping b invert as 0 and the multiplexer is
controlled by 01 and so on. So based on this the way we have designed ALU we can
actually define what is the control input required for this case and with this our picture is
complete.

(Refer Slide Time: 28:17 min)

(Refer Slide Time: 28:18)

Now, here we have the complete table. This is the truth table for the second controller or
the ALU controller where we have 8 inputs 8-bit input and a 3-bit output. So one stage of
design actually finishes here. Now it is a very straightforward, almost a mechanical
process that once you are given a truth table how do you put down a circuit which
will implement that truth table.

given a truth table you can actually write sum of product expression for it and put
necessary AND gate, OR gates; you can also follow other realizations as product of sum,
or NAND NAND or NOR NOR and so on. But one approach which is commonly used in
a case like this when you have multiple outputs and for control design typically that is the
situation. We follow a PLA based design where the design is actually derived in a very
straightforward manner from the truth table itself.

PLA basically stands for Programmable Logical Array. Logic array means that you have
an you have a array of gates which are...... and this structure is somewhat universal, you
can program it to implement any desired function. The PLA which will implement this
would be if very large. I will not describe the PLA which will implement this but I will
try to illustrate the basic principles, what is the basic idea behind this approachable
design.

(Refer Slide Time: 28:19 min)

(Refer Slide Time: 30:08)

PLA has two parts: one is called AND plane and the other is called OR plane. which
corresponds to this This is a basically with AND OR type of implementation or sum of
product implementation. So the AND plane has a row of AND gates which implement all
the product terms and OR plane has a set of OR gates which implement the sum terms.
So the input goes to AND plane, the output of AND plane is a set of signals representing
the products and the OR plane actually sums those products to form the sum of products
and gives the final output. So the structure This is the overall outline and what goes
inside the plane is a direct correspondence of what you have put down in the truth table.

(Refer Slide Time: 31:18)

Let me illustrate; so, for a simple situation let us say you have 3 inputs called ABC and 3
outputs DEF; you have a set of AND gates which would implement the products of
which are required in that implementation. So each gate here is capable of taking every
input either in true form or in complimentary form. So now the connection of each gate to
the inputs is what is programmable. So, if you are talking of M input and N output PLA
then each AND gate will be an N input AND gate. that means it can you can form an
arbitrary product of size up to at most M that means each literal for example literal means
A or A bar B or B bar and C or C bar so you can form.... what you see here is that the
left most AND gate is forming the product A bar B bar C; the next one is A bar B C bar
and so on.

In general you can form power terms which are of less than M inputs also so the sum of
these may not be connected and therefore a PLA just needs to form enough number of
terms so that all your outputs can be realized. And then you have a row of OR gates
which will pick up necessary required subsets of these product terms and sum them.

In this case D is summing the output of all the product terms, E is summing three of
them, F is summing one of them and this pattern of what gets connected to the AND
gates, which input gets connected to which AND gates in what pattern could be worked
out in a very convenient form from the truth table. And similarly, which product term
goes to which OR gate is also very easily derivable.

Now, in actual practice the gates do not look like this. these gates are actually what is
called wired AND gates or wired OR gates and in real practice they may not be actually
AND gates and OR gates you would either have NAND NAND organization or NOR
NOR organization but for conceptuality let us continue to think in terms of AND and OR
and the structure may look more like this.

(Refer Slide Time: 34:01)

So the top part is the AND plane and the bottom part is OR plane where the number of
vertical lines or each vertical line represents one product term. And you can see that each
vertical line is crossing every input and its compliment. so here you have three inputs and
therefore the vertical line which correspond to AND term or the product term are crossing
all possible input lines and their compliments so you you can wherever there is a dot put
here it means that the connection is formed.

So, given certain number of inputs outputs in product term the overall structure is same;
to go from one functional specification to another functional specification all you need to
is place your dots differently. You move these dots around different power terms get
formed and different product terms get summed so it is a kind of universal or
programmable logic where by placing these dots you can form the required connection
and get the required function out.

So, in actual practice the AND gates are formed actually vertically so they are
distributed..... I am not showing that exact circuit; at each cross point there will be a
transistor which will connect to the crosswire or you will not connect. So | suppose we
leave those details to course on Digital Hardware Design which we might do later but just
in overall functionality you understand that it is a programmable structure which can be
automatically generated from the given specification.

Having done that now let us a look at what good work we have done. We have got a
design now how does it fair in terms of performance. So, for doing so we need to
calculate that delay and their impact on the overall clock period. So, first of all, let us
look at the component delay so that we will build it bottom up.

We have register one register in this case PC for which we will assume that delay is 0.
Actually just to simplify the analysis we will look at the delay of some prominent

components take them as nonzero others we will take as 0. So register delay we will
assume as 0, adder delay, now | am referring to the adder which does PC plus 4 and the
one which does PC plus 4 plus offset. So let us call let us denote that by t plus the delay
of ALU we will denote by t A, delay of multiplexer we will assume again 0, one does not
have to assume this; | am just doing this to make the expressions or analysis little
simpler. but of course the assumption is a rational assumption in the sense that the delay
delays which are actually small compared to the others are being assumed to be 0;
register file t R, program memory t i, data memory t M and then finally the bit
manipulation components has again there are only different wirings we take it as 0

(Refer Slide Time: 37:38 min)

Strictly speaking, even the interconnecting wires will have some delay and if your gates
or logic is too fast then wire delay becomes comparable or significant. But again for
simplicity we will ignore that.

So now, in terms of these parameters can we determine the clock period? Yes, if we
analyze the paths we can...... what we will do is, you recall that | mentioned, at one edge
of clock you have a new address in PC from where the cycle begins, the data flows
through various components and ultimately you write something in the register file or
write something in memory and additionally write something in the PC at the next clock.
So the clock period has to be sufficient to allow all these information to propogate to the
destinations.

Once again... yes, [Conversation between Student and Professor...... (38:37).....] Sir,
what is the difference between register delay and register file delay?

Well, register file is an array is a collection of registers and register delay | am talking of
single register like program counter. Now, register file has additional circuitry that you
are giving an address that address is getting decoded one of the register is getting selected

and there is some multiplexing at the output end. So depending upon the size of register
file how many register it is it will have some delay. Of course it is not difficult to see that
the delay of memory would be comparatively much more than delay of register file. And,
in fact it could be larger by one or two orders of magnitude. But we will assume that, for
the moment assume that the memory is reasonably fast and it is not....... if that was the
case then if you take normal memory the bulk memory which you have in the processor
and take the access time of register file we can probably set everything to zero except for
the register file except for the memory.

In actual practice what would be influencing the clock period of a processor is not the
main memory but cache memory. So we will worry about those details later; at the
moment let us assume that the way we have been designing; we have put memory as part
of the processor design which is an over simplification. But let us assume that it is the
same technology which is being used to build other components of the processor and the
memory and all the delays are comparable. So the way | am looking at now in the
sceneries is that all the parameters which | have put as nonzero or somewhat comparable.

Therefore, we will again to simplify the problem look at each instruction or group of
instructions separately, see what is the demand on time placed by those instructions and
then put the results together. So if you would consider add, subtract, AND, OR these
instructions then there are two paths we need to worry about: a path which is computing
the sum or difference of AND and OR which goes through instruction memory, register
file, ALU and back to register file so there are t i plus t R plus t A plus another time t R
these will all these will get cascaded so all these gets summed; the other path is going
through the adder to compute PC plus 4.

(Refer Slide Time: 41:28)

So, now if I am saying that all are comparable then the first one is actually meaningless,
you know, | put it straightaway and neglect that and the second expression will dominate.

But let me be a little open here and say that the clock period is max of these two (Refer
Slide Time: 41:49). The reason | want to keep t plus in picture is that as far as ALU is
concerned, since ALU timing is getting summed with other things | will have to make an
attempt to make this ALU very fast otherwise things will be back.

So it is typically in the ALU I will put carry look at logic and stuff like that. Whereas the
other adder has much more room much more let us say cushion so I can afford to have a
slow adder here because that is going to cost to me less. Therefore t plus could be; | can
afford to have t plus larger than much larger than t A. you would recall that the delay in
carry look at addition and delay in carry propagate addition they could differ quite vastly;
One is proportional to 1 and the other is propositional to log N so the difference between
them could be large.

(Refer Slide Time: 42:45 min)

For sw what comes into picture istit R t A and then t M. Now, incidentally here I am
assuming the same time for reading and writing both in case of memory and in case of
register file. In general they need not be same but again just to keep things going out of
proportion | am trying to | am just using the same value for each. t plus again remains
another path; for lw the chain seems to be longesttit Rt At M and again t R.

(Refer Slide Time: 43:20 min)

(Refer Slide Time: 43:32 min)

For branch there are three paths | need to consider. one goes through both the adders so t
plus and t plus; another path goes through t i the instruction memory from where we are
picking the offset and then adding it to PC plus 4 so it is t i plus t plus and for the third
one the way the comparison being done is ti t R and then t A so whichever is the largest
of these will dominate.

(Refer Slide Time: 44:05 min)

For jump it is t plus or t i. Now let us put.... basically now what we will say is that the
clock period has to be large enough to accommodate all these possibilities. So it is max
overall this max which I can just put as max of all these terms.

(Refer Slide Time: 44:26)

So each row in the upper group of expression each row corresponds to one instruction or
its group. So t plus t i plust R plus t A plus t R these are coming from R - class
instruction, second line is for store, third line for load, fourth line for beq and fifth line for
jump.

Now, looking at all these together now something can be thrown off because they are the
other things which are clearly dominating those. So t plus alone can be thrown out
because there is a t plus plus t plus. The long expression we have for load word Iw
dominates the big expression we had for add subtract and also one we had for store word.
So this reduces without any assumption to the bottom expression where we are saying it
is max of three of these expressions. The first one is coming from load word and the next
word is coming from beq.

if you If all these terms each individual factor each individual t were comparable then
basically let us say each of these were 1 nanosecond just for the sake of arguments then
your clock period would be 5 nanoseconds which means 200 MHz clock is what you can
learn with. So this is how the things stand at the moment. we will We will see what we
can do to improve things here. But let me just summarize now.

What we observe over this is that the slowest instruction is pulling down the clock
frequency or clock performance which would most likely would be the load word
instruction. The other thing which are not directly obvious and I am not pointed them so
far is that resource utilization is poor. We have ALU sitting at some place but we have
put two adders for doing an operation which ALU could have done. So question is a
design possible where we do not need those extra adders; can ALU do everything without
loss of performance. So we would need to answer that question. Then the third question
is it possible to do any instruction in this particular manner; given any instruction it may
be complex, we have taken very few simple instructions
is it possible to do all instructions in a single cycle the answer is again no. There are some
instruction which may necessarily require one to take multiple steps and go through
multiple clock cycles.

(Refer Slide Time: 47:16)

For example, if there was some instruction which reads from memory and also has to
write in to memory with the given constraint of data memory with single port where there
is a single address we can either do read or write or in best case you can do read write but
from the same address. On the other hand, if you have an instruction which requires
reading from one address, doing something and writing in to another address that
certainly cannot be done in a single cycle. Or complex instructions which require moving
a block of data from one area in the memory to another area would require several reads
several writes or instructions which require in similar manner multiple operations which
have to be necessarily sequenced. There is a fundamental limitation. So, because of
various reasons we would need to go for different designs and try to address all these
questions.

So I will close with summarizing what we have discussed today.

(Refer Slide Time: 48:28)

We first of all started with a different approach to arrive at the same data path design and
approach was basically to have several simpler design and merge them together; resolve
conflicts by putting multiplexers wherever was necessary. Then we examined the control
requirement of various instructions, identified the value of control signals which need to
be applied, tabulated them and came up with the control parts specification as truth
tables. We looked at a possible way of realizing which is one that is one possible way of
doing it PLA based and finally we analyzed the design from performance point of view,
looked that how different paths are getting formed through which data has to flow what
are their implications what is its implication on the performance and we notice that in this
particular design approach the slowest instruction pulls on the performance of everything
and in the subsequent lecture we are going to see how to get rid of that, thank you.

