
Computer Architecture
Prof. Anshul Kumar

Department of Computer Science and Engineering
Indian Institute of Technology, Delhi

Lecture - 18
Processor Design (Contd..)

In the previous lecture we had looked at the basic building blocks which are required to construct
the processor design. We will now try to put these together to come up with a very simple design
and later on we will look at the performance issues and try to improve the design. So what we
will do today is have a simplest possible solution to the problem of taking a set of instructions
and having a circuit to execute those instructions. So we will build this design in small steps that
you can see each and every step clearly and get a clear picture of how the circuit is getting
designed.

We will start with small set of instructions. First we will take only R - class instructions which
includes arithmetic, logical and comparison; add, subtract, AND, OR and slt. So, that will be
only part of the solution then we will add instruction by instruction and see how the whole thing
can be built. So, with the basic skeleton of the design we will include other instructions step by
step. So first we will include load store instructions to the basic set of four five instructions and
then we will include the jump and branch instructions. So, after having put the data path together
we will try to see how you control it; what actually is required in terms of control signals to
make it do the right operation at the right time
and we will interconnect a controller to this data path which we will build. We will not go into
detailed design of the controller; that we will take up in the next class.

(Refer Slide Time: 02:50 min)

So, once again let us look at the subset of the instructions which we have set out to consider for
building this data path. Among the arithmetic and logical instructions we have this five add,

subtract, two arithmetic instructions; AND, OR two logical instructions and slt which does the
comparison. So they are all of same class in the sense that they take two operands from registers,
perform some operation, put the result in register. Then we come to load and store which access
memory. So basically the data is transferred between register file and memory one way or the
other and then instructions which influence the flow of control beq which does a comparison and
then decide which it go and jump which is a conditional jump instruction.

(Refer Slide Time: 03:32 min)

As I mentioned in the last class the whole design will have two parts: the data path and the
controller. The signal which go from controller to the data path are called control signals and the
signal which comes from data path to the controller is considered as a status signal. So controller
times the activities in the data path and also directs what has to be done in which clock cycle or
which instant. So, the status signal is information the controller seeks from the data path to
decide the actions.

(Refer Slide Time: 04:22 min)

Now we are going to begin with these five instructions: add, subtract, AND, OR and slt. The
process involve or the actions which will be required would be to get the instruction from the
memory, taking program counter contents as address then depending upon the fields which
contain register values we access the register file. So the register the register addresses will come
from the instruction fields and the operand which we get from register file are passed on to ALU,
then the result produced by ALU is passed on to the register file and we also increment the PC
and make it ready for the next instruction.

(Refer Slide Time: 5:10)

So, before we begin let us look at the format of these instructions. The format has several fields;
a 6-bit field is the opcode field and for all these instructions this is common. There is a same
there is a single code which actually defines this; a larger group than this (Refer Slide Time:
5:34) this is only a subset of all the instructions which have a common opcode here, then there is
a source register 5-bit, third register 5-bit these two are the operands these two specify addresses
of the operands and another 5-bit field specifies the address of the destination. So all these are
numbers from 0 to 31 and specify one of the registers. Then this is unused (Refer Slide Time:
6:01) in some instructions this is used to specify shift amount and it is this field which is called
function field which will distinguish these five instructions from one another and also from other
instructions which are part of the group. So we would need to look at all the fields except for this
field which is just to be ignored (Refer Slide Time: 6:25)

So the action begins by fetching an instruction from the program memory. We have a program
counter, a register which will carry the address of the current instruction and there is an
instruction memory. Instruction memory in this design will be assumed to be having fixed
contents, we are not going to change the contents so the only input to this is an address input and
the only output is an instruction which come out of this. So you given address instantly the
instruction comes out; we assume that the program is somehow stored in this memory already by
some means.

In fact such memories are called read only memories if you are familiar with where by a special
process you load the contents in the memory and then you can only access it you can read it. So,
in that sense this will behave like a combinational circuit; does not require a clock, so you given
an input you have an output but the function which transforms input and output is fixed and by a
special process it can be changed. Therefore, the PC feeds the address input of this memory and
we get an instruction.

(Refer Slide Time: 7:51)

The next thing is to look at the instruction; various fields in instruction and address the register
file. So, particularly for these five instructions we are talking of, we need to access rs and rt
which was in second and third field in the instruction if you remember and bits of this 32-bit
instruction which we are getting would be used to address register file. So register file as I
discussed yesterday is specifically for this particular design; we need register file as an array of
register with a provision of reading two values at a time; you can read two registers and you can
write one register at any given time.

So now the addresses for these three things: two readings and one writing is provided
independently. They could be in general different, two or more also can coincide but a register
file will respond correctly in all these cases.

(Refer Slide Time: 9:03)

The three address inputs are read address 1, read address 2 and write address; these are the three
inputs, each of these are 5 bits, there are two data outputs: read data 1 and read data 2 and there
is one data input write data. Hence, we have instructions which is 32 bits so specific fields are
being tapped out of this. From bit number 21 to 25 this is rs the source register and that goes to
one address; bit number 16 to 20 forms a field which defines rt or the third register, this goes and
addresses rad2 or the second read address. So, out of these 32 bits we are taking two groups of 5
bits and connecting it to the register file.

Now, once addresses are given this register file will respond with data here (Refer Slide Time:
10:12) and the operand which will come out of this will need to be passed on to the ALU. So we
have an ALU; imagine the same design which we did couple of lectures back where, by
specifying some control signal you could perform addition, subtraction, AND operation, OR
operation you could do comparison for equality, you could do comparison for less than for the
purpose of slt so same ALU we are putting now as a block box, we are not looking into details of
what is inside, we understand that design and we are simply using it to build a larger circuit now.

(Refer Slide Time: 10:20)

(Refer Slide Time: 10:50)

So these two outputs are forming two inputs or two operands for the ALU and next the result
which is produced by ALU would be ha[ve] would be sent to register file for storage and that is
where the cycle of flow of data or cycle of instruction would be complete. So now, at the
moment I am not worrying about how to control ALU to do the right function. Now we are
looking at those five instructions together and ALU would need to be told which of these
instructions is. So we will, eventually when we talk of control we will look at bit number 26 to
31 the opcode field and bit number 0 to 5 bit number 0 to 5 the function field we will look at
those fields and then pass on some signals to ALU so that it does the right operation.

Right now we are not distinguishing between those files but just looking at the overall flow of
the data. The output of the ALU goes back to this register file to the right port (Refer Slide Time:
12:03). Let me just emphasis the terminology; these are called ports for the register file; port
meaning there is something like a gateway so there are two read ports in this and then one write
port and this is going back to the write port.

Therefore, now when we are writing we also need to arrange for the address where it has to be
written so we need to look at another field from here and make sure that the address is also
delivered correctly to the register file. So, bit number 11 to 15 are the destination address and
that connects to the third address input. So now with this the cycle is complete. So basically
starting with PC we have a sequential element here so at the edge of the clock a new value is
available at the output of PC which defines address of a new instruction and as a function of that
we get the instruction, as a function of that we get these operand, as a function of that we get the
result and finally the result is available at the input of the register file.

Therefore, now at this point when a clock edge comes to the register file this information will get
stored at that instant. So we are assuming that transition in the state of register file would be edge
triggered. So you have one clock at which PC gets the value and at the next edge of the clock the
result of this instruction will get stored in the register file and at the same time we will arrange
we will see in the next slide that PC will have to get a new value and be ready for the next
instruction. So let us a complete that part and see how PC is to be incremented. So all we need to
do is have a 4 added to the PC contents and connect the result back to the input of PC.

(Refer Slide Time: 14:10)

 This is an adder with one input as 4 (Refer Slide Time: 14:13), one input as PC and output of
this is going back to PC. So you give, let us say, at time t the output of PC was available for a
new instruction and then at time t plus 1 I am counting time in terms of clock cycles not in
nanoseconds alone. So at time t plus 1 which is the next clock you get a trigger here and trigger
there so the current instruction completes by storing its value storing the result in register file and
at the same time PC gets the new value and is ready for the next instruction. So that completes

one cycle and if the next instruction was also of the same type then in the next cycle that
instruction will be executed. So this cycle can go on and the important thing to note here is that
the instruction is executed in one clock cycle.

Remember that in the past we have talked of CPI and we have talked of figures of CPI which are
2 3 4 and so on; so later on we will discuss design where instruction execution does take multiple
cycles and there are good reasons why we would do that but currently this design is aimed at
doing the instruction in a single cycle and that was the simple component which I was talking of;
we are talking of simple possible design.

(Refer Slide Time: 15:47)

Now we have seen the design for these five instructions. We need to now go further; we need to
augment this to include more instructions and we will see that by making small incremental
changing we can accommodate more and more instructions. So let us address load and store
instruction next. The common thing there is that memory has to be accessed. And the
mech[anism] mechanism for calculation of memory address is same. You have to take this
number (Refer Slide Time: 16:25) which is the signed offset 16-bit number and contents of this
register, add the two and apply that as address for the memory and this field defines the register
which will exchange the data with the memory depending upon whether it is load or store. So we
need to look at these two registers specified by these two fields and a constant.

(Refer Slide Time: 16:55 min)

Here is a same design we have done so far and now we will add more things to it to make it
possible to do store instruction we will then add load instruction. So first of all we need to bring
in data memory. Unlike instruction memory this will have data input as well and that is actually
the only difference. You have address, read port, write port. Well, actually strictly speaking this
will be considered it will not be considered as two port memory it will be considered a one port
memory because you either do read or write there is a single address and we will define control
signals which will ensure that either you either you perform a read or write; so it is a single port
memory but it can do read or write whereas this is a three port memory (Refer Slide Time:
17:48) two read ports and one write port.
This one has a single read write port.

In fact some memory modules have these in common. There is a same set of wires which are
connected to memory through which you can send the data in or take the data out so that data
terminal is a bidirectional one; there is one address line and a bidirectional data line. In this case,
of course, again for simplicity we have separate read and write lines but there is a common
address line. This is also a single port memory (Refer Slide Time: 18:23) with a single read port
and that is all.

Now we have positioned the memory here, we now need to connect the inputs and outputs for
this. So, first of all the address as I mentioned will be produced by performing an addition. So we
will use ALU for doing the same thing. Because load store instruction does not require other
arithmetic operations to be performed we will use this ALU itself to calculate the address. For
doing PC plus 4 we could not used this because we had instructions which were using for some
other purpose and this PC plus 4 was being done over and above all that so we required a
different piece of hardware here. But for load store instruction we will use ALU to do the address
calculation and therefore I have connected it in this manner.

I need to make sure that the right inputs come to the ALU for calculating address and that is the
next thing. So we do not directly connect register file output to ALU because for address

calculation the constant coming from instruction will be loaded; we need to put a multiplexer
here which will have this rd2 output for R - class of instruction but it will have something
coming from this for performing address calculation. I have not connected it yet here because
those 16-bits which we get from instructions need to be sign extended before we can pass it on to
ALU. this is the block which is doing signed extension (Refer Slide Time: 20:16), it takes 16-bits
as input, bit number 0 to 15 of the instruction and it does sign extension so here it is a 32-bit
output.

Wherever I have not labeled things assume that you have 32-bit output 32-bit signals. Each wire
is actually carrying 32 bits. Exceptions are here where I have labeled explicitly or here I have
also indicated that there are 16-bits explicitly. So now you see what is happening that rs specified
by this field would bring out some 32-bit number here; 16-bit taken from here sign extended and
we will control the multiplexer to select this path.

When it is load or store it is this path which will be selected (Refer Slide Time: 21:17) so we
must give input one to the multiplexer, control input one and for add subtract instructions we
must give zero so that this goes in. So, wherever we have actually two paths converging to the
same destination you will notice that we have put a multiplexer and then it is the responsibility of
controller to control this multiplexer correctly so that depending upon what we are trying do the
right thing gets done or the right data gets passed through that multiplexer.

This part (Refer Slide Time: 21:52) takes care of inputs for data memory, address input in
particular so it comes from here and inputs of the adder inputs of the ALU are also arranged now
properly. To complete the picture we also have to make sure that the data from register file goes
to the data input of this memory. So where does it come from? In this diagram where will the
data come from which will have to be connected to this wd? [Conversation between student and
Professor (22:25)…….Yeah, rd2…..] because it is a rt the third field which actually specifies
which register has to be written so, that is already happening here and that output is available
here; we simply need to connect this to this.

(Refer Slide Time: 22:44 min)

Now this is the complete arrangement for performing store word instruction and now we can
move to the load word instruction.

(Refer Slide Time: 23:00)

Now, in the load word the address generation part is same; that we do not need to touch, this is
same, same mechanism, same paths and that need not be modified. What additional thing we
need to do for load word is to take the data from data memory and put it back in register file at
appropriate address. So, first of all, we have this line going to wd write data of the register file
(Refer Slide Time: 23:27) so we have broken this here so that we can take this and this and put a
multiplexer. So there two options are and they need to be joined with a multiplexer. So this

multiplexer when you give control as 1 then it will send this to the register file and when the
control is 0 it sends this to the register file so we will have to remember that for add, subtract,
AND, OR instructions the control has to be 0 and for load instruction control has to be 1 here. So
this is one part of the picture.

The second part of the picture is to give the correct write address. The write address comes
from…… now let us figure out from where the write address has to come. See, for add/subtract
instruction write address is coming from this part (Refer Slide Time: 24:41) bit number 15 to 11
to 15 and for this it will come from bit number 16 to 20, for load instruction it is rt which is to be
used here. For add subtract it is the rd which decides the right destination now it is rt which will
do it. So again we need to make changes here, introduce a multiplexer because it is either bit 11
to 15 which goes there or bit number 16 to 20 which goes there so we have to make a provision
for that; we remove this line and put it through a multiplexer and the two choices are either this
or that. This is the choice which will be taken for load instruction, and this is the choice which is
taken for add, subtract, AND, OR, slt instructions. So now we complete the……this is the
complete picture for now. Seven instructions we have done: add, subtract, AND, OR, slt, and
load, store. So everything which is required for these as far as data path is concerned is there.

Now let us look at branch and jump instruction. Again we will take one by one. They would need
to do something with the program counter because these instructions influence how the next
instruction is chosen. We did not modify this part for load store because this part continues to be
same (Refer Slide Time: 26:10) you have one instruction and the next instruction follows. But
for branch instruction we need to modify this and also we will use ALU for equality test. The
comparison will be done and ALU will produce a bit which will indicate whether the two inputs
are equal or unequal.

The branch instruction has this format opcode this is the I - format as we have for load store, rs
and rt are the two registers which will be compared and this number would be added as word
offset to PC and it will be PC plus 4 to which will be add because that part we want to retain as
common for all the instructions.

(Refer Slide Time: 27:03 min)

So again start from this point where we have come up to. We need to do some modification here.
Instead of sending PC plus 4 back directly to PC we will introduce more options and the options
would be that this with something added to it.

(Refer Slide Time: 27:27)

Now let us look carefully. First of all this is a multiplexer which is making a choice; either we
take PC plus 4 or we take output of this adder which is adding something to PC plus 4. What is
that we are adding? We are adding this 16-bit constant which has been sign extended but it is
also been shifted. This s2 I am using to shift this number by 2 bits to the left which is effectively
multiplying by 4 and getting a byte number from word number. Therefore, as I had discussed

earlier it is a matter of simply wiring things correctly. We have the correct offset coming here
with gets added to PC plus 4 and is available to this multiplexer. now this multiplexer has to look
at which instruction it is; if it is not branch instruction it will simply allow this to go through if it
is branch instructions then it looks at the result of comparison in the ALU and accordingly a 0 or
1 will be chosen here. Hence, again we will get into those details when we discuss the control.
But for the moment we assume that somehow there will be some logic put together which will
take care that the correct value 0, 1 is given here.

So, as far as the data path is concerned what we have introduced here essentially is one
multiplexer and one adder and these wiring of signals so that a shift of 2 bits takes place.

Now just to remind you we had seen that signed extension and shifting are essentially wiring
there is no active gate or any active component involved. Sign extension means repeating one
particular bit and shifting means just rearranging these and supplying a constant zero to some of
the bits.

(Refer Slide Time: 29:22 min)

So, in the previous diagram the sign extension and the shift are essentially these kinds of wiring
arrangements (Refer Slide Time: 29:42). Now finally we come into this jump instruction. Jump
instruction has only two fields: the opcode field and a 26-bit field which decides the next
address. Once again, since it is not a full 32-bit address we need to retain some bits of PC as it is.
So what we will do is we will take these 26 bits and 4 bits from PC plus 4 again not PC and form
a new address for the next instruction. So we would require another multiplexer which will
provide one additional choice.

(Refer Slide Time: 30:31)

We introduce that multiplexer here, remove this line and pass through a multiplexer. And the
input for this multiplexer is coming from instruction bits. We are taking these 26 bits from the
instruction field, shift it left by two positions to get 28 again for the same reason we want to get
byte from the word number; 4 bits we are picking from PC plus 4 bit number 28 to 31 and these
4 bits and these 28 bits are concatenated together to form a jump address which is a 32-bit value
and this is available as yet another input for going back to the program counters.

The program counter PC has three possibilities: either it is plain PC plus 4 or this PC plus 4 plus
offset or this combination of PC bits and instruction bits. You can actually combine these two
multiplexers into a single three input multiplexer; that is another way of designing but we will
just retain it in this manner.

Now, the next thing is to start worrying about how we are going to control this data path; what
are the points where we need to apply control signals so that is what we will see next. All
multiplexers would require control and in this exercise of identifying controls we will assign
names for the purpose of reference for all the control signals so we will call this control signals
for this multiplexer as Rdsd or Register File Destination. It will select the destination address in
the register file; it comes from here or from here (Refer Slide Time: 32:35).

(Refer Slide Time: 32:36)

Then register file needs a control signal to tell it whether it has to write or not. All instructions,
you would notice, are not writing into register file so it is only first five instructions write and
load instruction; these six instructions out of the nine write into the register file so this will have
to be made 0 or 1 accordingly. ALU source which I am labeling as A source is the control signal
for this multiplexer and this will distinguish whether ALU is being used for address calculation
or for normal arithmetic logical operations.

ALU would require 3 bits to control it. Recall the design of ALU which we have done. We had
some circuit and then at the end there was a 4 input multiplexer which will select AND output,
OR output or plus minus output or output for slt. So 2 bits are required to control that and
another bit to choose between add subtract so there were a total of 3 bits so I am labeling that as
op standing for operation. Then a status output which will come from ALU I am labeling it as z
standing for 0 so it is a comparison of the two operands from the point of view beq instruction.
Comparison, you recall, was done by doing subtraction and checking of the result is 0 so that is
why I have labeled it as z. This is not an input, this is an output, this is the status and others are
the control (Refer Slide Time: 34:30).

Data memory requires control for read or write so MR stands for memory read, MW stands for
memory write. We will make sure that memory does only one operation at a time. Actually in
this kind of arrangement where read and write lines are separate it is also possible that you do
read and write simultaneously in this. But it has to be from the same address, same location in
the memory is used for reading and writing simultaneously but in our design we do not do that;
we will either do read or write.

Then there is another multiplexer here (Refer Slide Time: 35:23) which is distinguishing
between what goes to register file whether it is from memory or from ALU so memory to
register file M2R. This is called P source PC source basically either here or there, then whether it
is jump instruction or not it is another control signal. Hence, these are the control signals so we

require some circuit which will produce so many outputs 1 2 3 plus 3 6 7 8 9 10 11 so these 11
outputs and that control will have to look at this and also look at two fields of the instruction: the
opcode field and the function field so that is the controller which needs to be designed it has to
have this 12 inputs. In fact, strictly speaking, it is plus 1 so 13 inputs and 11 outputs.

So, if you can design that and plug it in here that will complete the task. But we will not design it
as a monolithic circuit; we will design it again in terms of some simpler parts as you will see
now. Now you want to bring in the controller. We will not go into details but we will just go
through an outline of what it is going to be.

First of all we look at the opcode bits and these bits are sufficient to distinguish between jump,
branch, load, store and this group of add, subtract, etc altogether. So except for controlling ALU
from these 6 bits we can derive all the information. Out of the eleven signals eight can be
straightaway figured out using these. Of course generating this will require us to look at z also.
So let us connect the output of this control. I will show the outputs and connect to various signals
which can be driven by this.

If it is load instruction which we can figure out from here (Refer Slide Time: 37:56) we will
allow this to pass through here otherwise we will allow this to pass through. So this hardness can
be determined from this, whether we have to write register file or not can be determined from
this, ALU source can be selected, it can be determined from this, memory write and memory
read. So if it is load instruction we will do memory read, if it is store instruction we will do
memory write. Then control of this multiplexer; it has to distinguish between load from other
instructions so that also can be done.

Here we are doing slightly differently. We are first of all figuring out that it is a branch
instruction. So this controller will activate a signal which tells us that it is a branch instruction
with the z output to control this P source. So you can see what is happening. if the instruction is
not a branch instruction you will have a zero here which means that P source is 0 irrespective of
what is z and the multiplexer passes the upper input. So, when it is not a branch instruction we
do not branch; we do not even look at z, when it is branch instruction we will have this as 1; the
controller will make this output as 1.

(Refer Slide Time: 39:45)

Now it will depend upon z; we will get 1 here or 0 here. So if the result of comparison was true if
the two registers are equal this will be activated this will be 1 and you will get a 1 here so this
address will go as the next address of PC next value of PC and if the test failed then this will be 0
you will have a 0 and PC plus 4 will continue.

Another way if you recall the gross diagram I had drawn where there was a data path and the
controller I had shown the status signal going to the controller. So, strictly speaking, the
controller is not just this, it is this plus this (Refer Slide Time: 40:28). But it actually simplifies
the matter to look at it as a 6 input circuit rather than a 7 input circuit because the influence of
this has been handled separately which makes it somewhat convenient.

Then we can also control this multiplexer by figuring out whether it is a jump instruction or not.
Now, what is left is the opcode, an operation which the ALU has to perform and it will depend
upon 6 bits which come from the function field. So, the instruction 0 to 5 would be seen by
another kind of control circuit I am calling it A controller ALU control.

So, looking at these 6 bits we are trying to determine what these 3 bits are. But remember that
ALU is being used for load store instruction also for different purposes. So we need to look at
this also. But we do not need to feed all those 6 bits here but what we need to tell this circuit is
which class of instruction it is; whether it is R - class one of those instructions or it is load store
or something else. So we will have some information coming out from here connecting to this
and this needs to be just a 2 bit information because we like to distinguish between three
different cases: the R class instruction, add, subtract, AND, OR and slt that is one possibility;
load store together grouped as another possibility and all the rest as third possibility. So we will
take 2 bits out of this and connect to this and I am calling it opc which stands for operation class.

So basically this circuit now has 6 inputs plus 2 inputs so 8 inputs producing 3 outputs. So we
have taken special care to keep the number of inputs low so the complexity of a combinational

circuit like this or like that depends upon the number of input lines and number of output lines.
But I will not I will not explain that but you can take it that with the number of input lines the
size of the circuit or the complexity grows generally exponentially. But with outputs it will
generally grow linearly. So we are more worried about keeping the numbers of inputs as low as
possible. So, if there are large numbers of inputs then we can look at the parts of it separately and
then combine the results that are always a better strategy; that is what we have followed.

This circuit is predominantly looking at the opcode field (Refer Slide Time: 43:38) whereas this
is predominantly looking at the function field and some additional information it requires about
opcode is being actually processed by this and made available here. So, after having done this
what remains is basically to look at the design of this and design of this. So if you can enumerate
what outputs you require for what inputs you can do it in a straightforward manner and same
thing here. We will take it up in the next class.

(Refer Slide Time: 44:13 min)

So just to summarize, we have designed a processor except for some controller details for these
nine instructions add, subtract, AND, OR, slt, load word, store word, beq and j and our approach
was a very simple step by step approach; we gradually put the components on the table, connect
wires and build up the circuits. So first we took this group of first five instructions which are
similar in nature the only difference comes in the way you control the ALU so we did that we
started with these five added, store and load and then added, beq and jump; then we identified
the control signals for the various components which were put there and we placed some black
boxes which are called controllers which expected to produce these signals and the next task will
be to look at the details of these two black boxes and design this. That is all for today, thank you.

