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We have discussed how to carry out basic arithmetic operations and our focus was to do 
them in a very simple manner without worrying about the performance. Today we are 
going to see what techniques can be used to speed up the operation; improve the 
performance. So in the overall sequence of lectures in this broad topic, as you see that we 
have discussed the basic design of various operations and today we are going to talk of 
speeding up of addition, subtraction as well as multiplication and finally then we will 
move on to floating point operations.  
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So first what we will do is we will look at a simple adder which we have discussed and 
see what actually governs the performance; what is the bottleneck; we will see a 
technique which is called carry look ahead. We will notice that it is carry which is taking 
time and some way to compute the carry fast is what is required. Then we will go over to 
multiplication and then try to see how multiplication can be carried out in a fast manner. 
The technique use there would be what is called carry save addition where we postpone 
the use of carry; rather than to immediately look for carry and wait for it we will 
postpone that and add at a different stage so in the process we will speed up our 
operation.  
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So, coming back to the simple adder circuit which we have discussed we had discussed 
how we do addition using paper and pencil and our attempt was to capture that in a 
simple circuit exactly the way we do it. That means we take the corresponding bits of 2 
operands, perform the addition and let the carry go to the next stage. 
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This is a circuit which adds two individual bits of the 2 operands and these 1-bit adders 
are cascaded or chained together to form adder of the right side. So, for example, if you 
are adding two 32-bit words then there are thirty two units which are put together like 
this. So in this you would notice that c 1 which is the carry out of the first unit is 



dependent upon c 0 and c 2 is dependent upon c 1 and so on. So it is this dependence of 
carry from one stage to the other stage which has to be taken into account to complete the 
operation and our attention would be focused on this particular aspect of carry going from 
one end to the other end; from LSB side to the MSB side. 
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What each adder does is a simple task of looking at 3 inputs ith bit of a and b the 2 
operands and the carry c i as an input and it tries to define c i plus 1 the carry for the next 
stage and s i as the sum for that particular stage. So it is a simple combination circuit with 
2 outputs and 3 inputs. There are different ways in which this can be realized. One 
possible realization is shown here. In fact two: s i can be expressed as a sum of product 
form of expression with the a i b i c i as the inputs. 
  
In a more compact form you can write this as an exclusive OR of a i b i and c i. c i plus 1 
on the other hand, is also a simple a simpler form it is in the sum of product form of three 
terms.  
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So in this how do you define the performance of such a circuit?  
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So, basically we should go down to how a gate behaves when input changes. So, at some 
point of time suppose the input changes, let me….. suppose we have AND gate and if 
you look at waveforms in time; suppose a is 1 and b is 0 up to some point when it 
changes to one then we expect that c would become 1 in response to this change but there 
would be some delay c is 0 at when at least 1 input is 0 so it is this delay which is 
attributed to the gate.  
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So, gate has transistors which switch from one state to the other state and it is that which 
takes time. Also, the gates are driving some load or some capacitance and that load has to 
be charged so the charging time of the capacitance is what dictates this delay. Without 
going much into details of this delay we assume that each gate has some inherent delay. 
  
Actually there is also delay in the signal propagating from one point in the circuit to the 
other point in the circuit over the wire. When you are talking of gates which are 
extremely fast where the delays are of the order of picoseconds or tens of picoseconds 
then the delays of wires also….., the time taken for the signal change to propagate over 
the wire that also becomes significant and comparable. 
  
On the other hand, if the gates were working in nanoseconds or larger, then the wire 
delay may be negligible. For the present discussion we will assume that wire delays are 
not significant because our focus is on the logic part of the design and we will take into 
account the delays which are caused because of the gates. So now, in a larger circuit 
when there are number of gates; you have one gate feeding another gate and that feeds 
another gate then this delay gets accumulated and the delay would depend upon how 
many gates you are putting in a series. So, more the gates you have in a series the larger 
the delay is. So roughly speaking you could say that if in ideal condition delay of one 
gate is let us say d units of time d picoseconds or whatever the unit is and you chain k 
gates then the delay will be k times d. 
  
Now the question is; is this factor d independent or not?  
Strictly speaking, this d would depend upon how many inputs the gate has and how many 
other gates this gate is feeding which means the delay is a function of fan-in as well as 
fan-out. But it is a, for example, a 3 input gate would have slightly more delay than 2 
input gate and 4 input gate will have a larger delay but the delay does not grow 
proportionally; it varies, it increases slowly it does increase but increases slowly. So in a 



idealized situation when you are not using gates with very large number of inputs or 
outputs then you might assume up as an approximate situation that D is more or less a 
constant. But we must remember we must keep this in mind that we are idealizing; we are 
making an approximation.  
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So, as I mentioned speed of the gate is affected by number of inputs to the gate and more 
strongly speed of circuit is affected by the number of gates in the series and there may be 
many paths you can trace in a circuit from input to output; the longest path the path 
which goes through the maximum number of gates in the chain is called critical path or 
the deepest level of logic. 
  
So, in fact this is really the motivation why we always try to express circuits, Boolean 
circuits as two level sum of products or you can alternatively do product of sum. You can 
have more complex expression where there is a parenthesis and deep nesting of ANDs 
and Ors. But a sum of product form or a product of sum form is most efficient from the 
point of view of this depth of logic consideration. 
  
So in the current design of the adder which we have talked of, you could imagine that the 
delay of each 1-bit adder can be brought down to 2 times d. You can always express that 
as we did earlier, as we have shown here we look at this realization of s i and c i plus 1 so 
you will have 1 level of ANDing, you have a series of AND gates and then an OR gate. I 
am ignoring again inverters, these compliments for the moment; they will also have 
delays which has to be counted for but it will be smaller as compared to AND and OR.  
 
So this circuit can compute the sum and carry in 2 d time. So now, if you have thirty two 
of these put together or n of these put together in general then the delay will be n times 2 
d.  
 



Now the question is how can we reduce this; so what changes; how do we restructure 
these gates; how do we reorganize so that the delay is reduced. So this is like trying to 
improve your algorithm doing the same computation in a faster time.  
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So now, as we have seen the cause of the delay cause of the large delay is rippling of the 
carry from one stage to the other stage to the next stage. It is because c i c i plus 1 is 
generated from c i by this expression (Refer Slide Time: 12:30) so that depends….. 
means that c 1 is expressed as a function of c 0; c 2 is expressed as a function of c 1 and 
so on. 
 
Now the question is can we do some look at; can we avoid this ripple? Can c i plus 1, for 
example, be generated directly from a 0 a 1 a 2 a 3 up to a i and b 0 b 1 b 2 to b i and c 0. 
So, of course c 0 is a primary input which we have to count for but if you can write for 
example, can we write c 4 directly in terms of a 0 a 1 a 2 and a 3 as well b 0 b 1 b 2 b 3 
and c 0. So we can think of c 4 as a function of these eight inputs; 4 bits of a, 4 bits of b 
and 1 carry. So in principle it is possible and let us see how do we do it.  
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So let us go step by step. First we write c 1 in terms of a 0 b 0 and c 0 that is the usual 
expression we have and we wrote c 1 we wrote c 2 in this form. Now all you need is you 
take the expression for c 1 and substitute that in the second one and also we expand 
because we want to ultimately have a two level expression. You could have a left that in 
parenthesis you could say that b 1 plus a 1 within bracket and then expression for c 1 in 
another bracket and then you can say that these two are ANDed but then we are 
increasing the level of logic. So our objective here is to keep the level low or number of 
gates which you find in a chain low so we expand it and we get a two level expression for 
c 2. 
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Next we take expression for c 3 and take the values of c 2 from this in an expanded form 
and substitute it here. You get again a large expression but still it is possible to get a two 
level expression. One could keep on doing this. you could From this you can generate 
expressions for c 4 then c 5 and you can go all the way go up to c 32 and what will 
happen is that c 32 will have 4 billion terms. Although theoretically possible it is an 
impractical solution and the assumption we made initially that we will consider that delay 
of each gate is constant that was that is possible only if the number of inputs number of 
fan-ins is not very large. But now what is going to happen is that we will have gates 
with…. these product terms will become very very wide they will have 32 inputs. So a 32 
input gate will no longer have the same delay as a 2 input, 3 input or 4 input of gate 
although we will keep things in two levels but our assumption about delay of individual 
gates will break down. 
  
Similarly, there will be large fan-out for at least the primary inputs. You would notice 
that each of these variable there are after all 32 a inputs, 32 b inputs and a c 0 all these 
will be appearing in so many different terms 4 billion terms so there will be lot of fan-out 
as far as the primary inputs; all these a i’s and b i’s are concerned so it is an unworkable 
circuit. You will able to verify that this is….. the number of terms will be observed as 4 
billion because you know the first one has three terms, second has seven terms, then you 
have fifteen terms, then there will be 31 and so on so it is some power of 2 minus 1 so 
you can verify it yourself.  
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So, why do we not take an approach which is somewhat in between?  
We do want to have look ahead. You want to directly compute c i’s without looking at 
intermediate carries. So what we can do is we can basically allow some preprocessing to 
be done on a i and b i. We will look in to what role a i and b i are playing in 
determination of carry and try to do something before we really compute all the c i’s. So 
we have actually two stages: In one stage we will let individual circuits for each bit 



position, digest a i and b i do something compute something which is more useful and 
then do something what we try to do in the previous slide. So, instead of computing c i’s 
directly from a’s and b’s we will compute it from some preprocessed form of a and b. 
  
What we notice here is that the condition under which one particular stage generates a 
carry and condition under which propagates carry. So, when a i and b i both are one then 
irrespective of what carry is coming from input side a new carry will be generated. So we 
denote this by g i. So g i is the condition when carry gets generated in ith position 
irrespective of what has happened towards its LSB side. 
  
Secondly, when any of a i or b i is 1 if the carry is coming from the input side it will 
propagate to the output side. So c i plus 1 will be 1 if any of these is 1 or sorry I should 
say that c i plus 1 will be 1 if c i is 1 and any one of these is 1 so we denote this 
expression as p i or the propagate condition. So now we try to rewrite all the c i values in 
terms of p’s and g’s. 
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So we can say that c 1 is true if either carry gets generated by stage 0 or carry coming in 
gets propagated at this stage. Similarly, we can write for c 2 c 3 c 4 when c 2 is p 1 c 1 
plus g 1 c 3 is p 2 c 2 plus g 2 and so on. Now in this we can make substitution of the 
kind we did earlier in terms of a’s and b’s. So the value of c 1 we take from the first line 
and substitute here we get another sum of product term; this term we substitute here we 
get this and we substitute here we get this. Again we have growing expressions but you 
can see that the growth is much more contained. 
 
Of course this gives a feasible way of doing it but to what extent we can do. We still 
cannot keep on doing this for thirty two stages. So we will do it for limited stages and 
then we allow may be carry to go in the normal way.  
 



Actually coming back to these expressions we can we can reason this out directly also. 
So, for example, here for c 2 what we can say is that either carry gets generated at stage 
one or carry gets generated at stage zero and gets propagated through 1 or there is an 
incoming carries c 0 which propagates through p 0 and p 1 through stage zero and one 
and so on. So, similarly let us look at the last one. 
 
The condition for c 4 is that either there is a generation at stage three or generation at 
stage two which propagates through 3 or generation at stage one which propagates 
through 2 and 3 or generation at stage 0 which propagates through stage one, two and 
three and incoming carry which propagates through all these four stages. So you can 
either derive these expressions by substitution or reason them out directly based on this 
logic of what these terms p’s and g’s are.  
 
So now, this, as I mentioned this can be done to a limited extent; we will not try to do this 
for thirty two stages and we will do it for let us say four stages which is not very large 
and then see what happens. 
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So, first of all let us understand the circuit which will do this. We have the first stage 
which I have captured in these green boxes; each one of these contains basically one 
AND gate and one OR gate. AND gate generates gi’s and OR gate generates pi’s. So we 
have these p’s and g’s computed out of a’s and b’s then we have this block (Refer Slide 
Time: 22:35) which computes all carry values looking at p’s and g’s. c 0 is the input and 
it will computes c 1 c 2 c 3 and c 4 which has to go out then we have the circuits 
computing the sums out of a’s, b’s and carries. 
  
So, on the whole there are actually three stages and we can see what is how much delay 
this circuit will have. So can you figure out what is the maximum delay?  



See, the first stage delay is one unit; there is either one AND gate or OR gate single level, 
this second stage has two levels, the third stage also has two levels although I have shown 
for brevity I have shown Exclusive OR but you can write as sum of product. So basically 
there is one level plus two levels plus two levels there is a five level; so in 5 d time we 
can compute all the sums and the final carry. Of course the carry is coming in 3 d time 
and the sums are coming in 5 d time.  
 
Now we will take this as a module and try to build larger adders. So first we try to 
represents this in somewhat an abstract form. I have just [col……24:00] three stages now 
we are suppressing internal details so that we will look at the whole thing as a block box 
and try to put more of these to build larger adders. So I am just showing that on one side 
you have a and b inputs; one side you have sums, there is a carry c 0 and carry out c 4 
and three stages we are not now separating them out but there is a box which has three 
stages and in a smaller form I will show it like that.  
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So now, suppose we connect four of these in a chain form the way we did for ripple carry 
adder but now we have units of 4-bit adders and within 4 bits we have look ahead and 
across these blocks of 4 bits we do not have look ahead we have carry rippling through. 
So now there will be, let us see, let us try to find out how much delay this circuit will 
have. 
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So remember that the carry comes out in 3 d time and sum comes out in 5 d times so let 
me let me write the time when the thing will come out at different points. so this is this 
comes at 5 d I will omit d; this (Refer Slide Time: 25:36) is coming out in time 3 and 
from this 3 to this output it will take another 2 so this just a minute this will take d plus 2 
d 3 okay the carries which are coming out in this will be 3 plus 2 5 and 2 this will come 
out at after 7 d. 
 
You can see that that 3; this purple box will take 2 d time and another 2 d time here so 7 
d, this will come out at 5 7 9. So first let us look at the carry times. so the time was 0 here 
3 here, 5 here, 7 here, 9 here and from this 3 we get 7 here, from this 5 we get 9 here, this 
7 we get 11 here (Refer Slide Time: 26:44) so the whole thing has taken 11 d of 11 d 
units of time. If we had allowed normal ripple carry to operate, for 16 bits we would have 
required 16 into 2 that is 32 d so there is a considerable saving and saving will show up 
more and more as we increase the value of n or number of stages. 
 
So now here, there is partial rippling of carry. Question is can we even avoid that. one 
way would have been that extend this block or this carry look ahead to sixteen stages or 
thirty two stages but that increases the cost too much and the gates become wider so the 
delay also starts increasing because of that reason. But what we can do is we can apply 
the same idea once again at a higher level. 
  
So, we have two levels of look ahead. These four blocks are as OR but rather than letting 
the carry ripple through I try to do look ahead at that level. That means try to determine c 
4 directly from c 0 c 8 directly from c 0 and c 12 directly from c 0 at the next level. So 
what this will require is something which is equivalent to propagate and generate signal 
at block level. we have blocks of 4 bits and each level we generate block propagate and 
generate signals P 0 and G 0 P 4 and G 4 and so on and this unit which I am showing here 
which is looking at these capital P’s and G’s and generating these carries c 4 c 8 and c 12 



and also c 16 would be exactly identical to this small purple box which I have shown. 
The same idea that c 0 is coming here and there are P’s and G’s signals so either carries 
get generated through these G’s or carry gets propagated according to P signals.  
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So now what are these block propagate generate signals or group propagate generates 
signals that is what we need to see next. So we call these group propagate and generate or 
block propagate and generate signals. Recall that expression for c 1 c 2 c 3 c 4 in terms of 
P’s and G’s over these. So, on the whole looking at all 4 bits together we say that this 
block propagates carry is all small p’s are one. That means p 0 p 1 p 2 p 3 if all of them 
are one then incoming carry will get propagated. So we call this as capital P 0; this is a 
propagation condition across four stages.  
 
G 0 is a generate condition generation condition in these four bits which means that 
generation takes place either at level three or stage three or stage two, stage one or stage 
0. Generation may take place at any of these four stages and propagate out to the extreme 
left. We say it is g 3 or g 2 and p 3 or g 1 and p 2 p 3 or g 0 and p 1 p 2 p 3. So given this 
you can write c 4 in terms of capital P 0 and c 0 that is this block propagates c 0 or this 
block generates a carry. So we will have similar conditions for all the blocks and then 
carries can be computed in this look ahead manner.  
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So, in general we say that P i is the p i plus 3 and p i plus 2 and p i plus 1 and p i; G i is 
again composed of this g i plus 3 or g i plus 2 propagating through this stage, g i plus 1 
propagating through these two stages, g i propagating through these three stages and once 
these are done we can have c 4 c 8 c 12 c 16 expressed in much the same way as we had 
expressed the carries c 1 c 2 c 3 and c 4. So basically it is the same form of expression 
and I will leave it for you to verify.  
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One thing I would like you to notice here about comparison of this form with this form 
(Refer Slide Time: 31:58); here the growth of the number of terms was exponential; the 



number of terms is roughly doubling whereas in this case the growth is linear so that is 
what has saved as and why it is linear here and why it is exponential there is because here 
you have the carry appearing at two places so let us take this. 
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When you take c 2 and substitute its value it gets substituted twice so that is the reason 
why it roughly doubles every time whereas in this case you have only one term 
containing carry and when you make substitution it grows by just that amount so next 
time again you substitute once so it grows by that amount so it is growing linearly. 
 
And another way of explaining these p’s and g’s is that the generate term is here which 
we have sort of abbreviated as g 0 and propagate term is essential taking this as a 
common factor. What is getting multiplied with c 0; what is getting ANDed with c 0 it is 
a 0 plus b 0 so that is the propagate term. So once we have taken this out in the process 
we have made things slower because we have added more stages but we have got a 
circuit which is reasonable and feasible. 
  
Now let us move our attention to multiplication. You recall that I talked about two 
different types of multiplication: One was when you put the number of multipliers 
number of adders to add the partial products and the other one was when we did this 
iteratively using a single adder. So let us look at this approach where you have number of 
orders as we do not have to go through sequentially because the sequential approach 
would mean that you have to perform addition, store it somewhere then redo the addition 
so on. So here also the signals propagate through various adders but there is no storage 
involved so there is some advantage in terms of speed. So such multipliers are called 
array multipliers for natural reasons. 
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What we will try to see is how we can speed up such an array multiplier. There are many 
different approaches for multiplication; you can have actually tree multipliers. For 
example, you are basically adding four terms; rather than adding them in cascade what 
you can do is you add two terms separately, two terms separately and then add the two 
sums. So when you have to add several terms you can actually form a tree so that is 
another clause of multipliers. We focus our attention on these so-called array multipliers 
where you are adding different terms in a cascade form. 
 
So we will look at the question of addition of multiple terms. I am not quite showing a 
multiplier here but a circuit which adds four numbers. In the case of multiplication these 
numbers will happen to be those partial products but let us say we have four arbitrary 
values to be added; you will have 1 adder which adds two terms, next one adds third, next 
one adds fourth term. So, suppose we put the usual ripple carry adder for each of these 
stages then what is the consequence. The signal has to propagate horizontally; there is a 
carry rippling through and there is propagation vertical also; you are going from one 
stage to another stage. So the last thing which will get computed is the MSB of the final 
result; it has to account for propagation in this direction as well as in that direction. 
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So here what we can do is since we have to go to the next stage we have to wait for 
signals to propagate vertically; we can take advantage of that and prevent propagation of 
carry to just the left neighbor of 1 adder cell. So logically it is equivalent that let us say 
this carry instead of going from here to here suppose it was to be sent to this one this 
adder (Refer Slide Time: 37:02) has to wait for some of this to come down. So 
meanwhile the carry of this also can be made available here and we can also postpone 
this carry let it go to next stage and so on. 
  
So what we are doing here is that rather than making carries go to left we make them go 
diagonally left and down and therefore the additional delay which might come because of 
leftward carry propagation will be cut down. So here is a circuit which will do that. 
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Therefore, now you can do this; this is called carry save addition because we are saving 
carry for the next stage. You can do this upto some stages but the last stage has nothing 
else to fall back on so in the last stage carry has to propagate which might give an 
impression that you would require one extra stage so you keep on saving carry for the 
next stage and the last one you add. But what happens is that in the first stage since you 
have no previous stage here to feed carries you can actually have the third operand fed as 
carries.  
 
So, if you really see let us go back to this expression of the sum (Refer Slide Time: 
38:42) or even if you look at that it is symmetrical with respect to a i, b i and c i so it is 
only our interpretation that one of these we are calling as carry input but as far as the 
circuit is concerned you can think of this as a 3 input and 2 output adder. It reduces 3 
inputs to 2 inputs and these inputs are interchangeable. So what we have done is that 
three of the inputs have been added in the first stage itself. So, from the first stage you 
have sums coming out as well as carries coming out. Both have to go to the next stage so 
the next stage is taking these sums and the carries; carries have to move diagonally, sums 
have to move vertically and the third sorry the fourth input gets added here; so a i’s have 
got added here so one could have written a, b and e in the first stage and f at the next 
stage but these are all interchangeable.  
 
Well, this is showing as…. plus there is a resolution problem….. this is showing as minus 
take it as plus. So, in the last stage we have again sums coming out and the carries. 
carries are These carries are being added at the sums position and because we have to 
have a carry propagation here also. So you would notice that the number of these adder 
cells is exactly the same no more no less but they have been rearranged in such a manner 
that delays are delays are smaller. So how much is Let us compare the delays.  
 
In this case what is the maximum delay; what is the longest path you can think of? 



You try for many inputs try to go any output the longest path would be obviously 
something which leads to this; and there many ways because of any horizontal movement 
or any vertical movement you could either go like that and like that so that makes it 1 2 3 
4 5 6 7 or if you go like this 1 2 I am sorry 1 2 3 4 5 6 7 whichever way you go there is a 
chain of 7 adders. 
  
Now, here in the last stage you have one extra you are noticing one extra adder here; our 
numbers were four bits; because as you keep on adding the magnitude keeps on 
increasing and you have to accommodate for extra bits so these carries you do not throw 
away let them be absorbed by an adder here. So there is a delay of seven units here 
whereas in this case again we can try to find what is the longest path. You have, for 
example, let us take paths leading to this we have 1 2 3 4 5 6 (Refer Slide Time: 42:34). 
There is a saving. Since we are talking for small circuit it does not show so much. Or we 
go way other path let us see that nothing is longer than 6; 1 2 3 4 5; 1 2 3 4 5. So the other 
path also are of five length; this is the longest path of length 6. 
 
One more thing which can be done here in this is that you can replace this with a…… the 
last stage could be actually carry look ahead adder. See, carry look ahead adder is more 
expensive but faster. We have seen that you have to put extra logic for carry computation 
so we can afford to have one of these adders that means the last adder has a faster and 
expensive adder and then effectively it will be less than 6. Wherein in this case (Refer 
Slide Time: 43:43) if you were to speed up you will have to speed up at each stage to 
make sense and it will be much more expensive.  
 
Now let me show you this principle applied to a 4 by 4 multiplication. Let me switch 
to…. let me denote by p i p ij rather a i and b j so we have to have a i’s multiplied by b 
i’s. Well, you cannot see that now. Recall that we had A multiplied B equal to sigma of A 
times B i 2 raised to the power i so 2 raised to the power i is only a matter of waiting it or 
shifting it which we will do through wiring. So A i each bit of A will have to multiplied 
by each bit of B effectively so I am [d….45:17] to simplify things denoting with p ij. So 
we have a p ij’s for i going from 0 to 3, j going from 0 to 3 and we have to somehow feed 
these two various adders. So to this let me feed p 00 p 10 p 20 p 30 so this is A multiplied 
by B 0 the first term and the second term we need to add is p 10 p 20 p 30 sorry 10 20 I 
made a mistake, let me redo it.  
 
p 00 actually will stand alone; I will put p 10 here, p 20 here, p 30 then next will be 
second index will be 1 so p 01 comes here, p 11 p 21 and p 31. So this is the first stage 
where I have added A multiplied by B 0 and A multiplied by B 1. Then in the next stage I 
will start adding p 02 and so on; p 12 p 13 sorry sorry p 22 02 12 22 and then 32 this can 
be added here and in the last stage we add p 03 p 13 p 23 and p 33 and we have we 
require eight result bits; let me call this S 0 S 1 S 2 S 3 S 4 S 5 S 6 and S 7; these initial 
carries are 0 so we have this with normal carry ripple through and you can see that the 
delay of this circuit would be again declared by the path leading to S 7 output and the 
longest path would be this. Let me trace it out. So, for n equal to 4 this delay equal to 1 2 
3 4 5 6 7 8 eight times delay of 1 adder which is 2 d.  
 



In general you can say that this is……. You are going to; you have propagation 
horizontally, you have propagation vertical and you also have some horizontal 
propagation which is across these stages (Refer Slide Time: 51:17). So, if you extend this 
if you extrapolate these two ends you will have one two let us see; actually it will be 
easiest if you look at this path (Refer Slide Time: 51:47) which is of the same length but 
easier to quantify. So you have some horizontal propagation, some vertical propagation, 
some horizontal propagation. So you can calculate exactly but you would find that it will 
be something like three times n. This is approximately n, approximately n, approximately 
n.  
 
(Refer Slide Time: 5218 min) 
 

 
 
Now, when we do a carry saving, you carry save addition then what do we get?  
So, we will require the same 12 adder units and each of these I will look at in this form 
(Refer Slide time: 52:59) takes 3 inputs you can put them in any order, generates a sum 
and a carry. So, p 00 I let go straight, p 10 and p 01 are fed here; I have nothing else to 
feed here, I could have fed 1 more here but there is nothing else to be fed here so I will 
maybe I can leave 1 0 here; here I can feed p 20 p 11 and p 02. 
 
You would notice that what I am feeding along a column the sum of indices would be 
same. So 2 plus 0 1 plus 1 are 0 0 plus 2. So here I will feed p 30 p 21 and p 12 so I have 
a need for feeding p 03 also at this stage so I can leave here. these four terms are to be fed 
in this particular column and here again I will be left with I will have still four terms so I 
think I left 3 only so I can take p let me see p 00 p 10 p 20 p 30 this I have finished; p 10 
11 12 and I can have p 13; then 02 12 22 and 32 can go here (Refer Slide Time: 55:36); 
then next one is 03 here p 13 is already accommodated, 23 will come at this stage and 33 
will come at this stage. So I have I have added all 1 2 3 4 5 6 7 8 9 10 11 there is 
something missing, can you figure out? 03 13 23 33 02 12 22 and 32; 01 11 21 yeah 31 is 
missing; I think I should have put that here so that should be….. where is p 22?  
 



So all that one has to do is take care that a term gets added in the right column whether it 
is added earlier or later it does not matter. Doubtful whether something is left out here or 
not so you can check but anyway this is the overall structure of this adder as this 
multiplier and you would notice that the delay now is dictated by this path (Refer Slide 
Time: 59:05). So you have one diagonal movement and one horizontal movement so 
roughly it will be a proportion to 2n instead 3n.  
 
(Refer Slide Time: 59:13 min) 
 

 
 
(Refer Slide Time: 59:30 min) 
 

 
 
So let me just conclude; what we have seen is that as far as addition is concerned and 
same would be true for subtraction the key idea was to go from ripple carry to carry look 



ahead and go from O(n) type of delay to O(log n) type of delay; why we get (log n) is 
because when you do multiple levels of look ahead; suppose we had we went from 4 to 
16 we got two levels; if suppose you have to go for 64-bit addition so we had one unit 
looking across 4, another unit at the next level will look across 16 and then yet another 
level will look across 64 so it grows like a tree and the number of such look ahead levels 
will be given by…. will be proportional to (log n). I am not putting a base here; if you 
have individually look ahead across 4 so it will be (log n) to base 4 but that is only 
proportional factor whereas in case of multiplier we moved from delay which is 
propositional to 3n to delay which is proportional to 2n by doing carry save addition; 
there is a sort of 3:2 roughly which is the saving. I will stop with that. 
 
 
 
 


