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Today we will discuss how binary division is carried out and how we build the circuit to 
carry that out for the processor. We have been discussing various arithmetic operations 
and logical operations and we have discussed the design of ALU.  
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Lastly we discussed how we carry out multiplication and we talked about different 
designs of multipliers. We will continue with that talk of binary division and design of 
divider.  
  
First of all, I will summarize how we did multiplication because there is some overall 
similarity between how multiplication and division is carried out; and we will illustrate 
division operation by an example, by taking two numbers, the same way we did for 
multiplication then from that we will derive the algorithms. We will ensure that the 
algorithm we are talking of are correct and discuss the circuits. Initially we will talk of 
unsigned division and then talk about signed division.  
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So, just to summarize what we did for multiplication; we looked at an example and saw 
that when you work on paper how you manually carry out multiplication. So the same 
process was captured by a circuit.  
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We went through a set of refinements and finally we had a circuit in algorithm which 
looked like this. 
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Essentially the multiplication operation was broken down into shifting and adding. So we 
then saw that for signed multiplication you need the ability to add and subtract and we 
talked about the Booth’s algorithm. We also discussed the range of values which could 
result when you multiply. There are two types of multiplication in MIPS which try to 
produce signed result or unsigned result and there are also pseudo instructions which 
work with a single word output. Normally when you are multiplying two one-word 
integers the output could be accommodated in two words so there are pseudo instructions 
which will check if the output is exceeding one word and accordingly give the overflow.   
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Now let us start with a division by taking two small 4 bit numbers and try to see how 
division is carried out. Let us say we have a number 00001101 which stands for 13 how 
that is carried out, how that is divided by a number 0100 which is four in terms of its 
binary equivalent. 
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We will expect that when you divide 13 by 4 you get three as the quotient so in 
anticipation I have put that here and we should be left with 1 as a remainder. Naturally 
this division would be carried out as a set of shift and subtract operations. So initially we 
see if this multiplier this divider can be placed in this position here we can subtract. So 
we examine this position (Refer Slide Time: 4:52) because this will correspond to a bit in 
the LSB position for the quotient.  
 
We are now targeting for a 4-bit quotient we have a 4-bit divider and if you are able to 
subtract 0100 in this position then it will result in a 1 here but in this case we cannot 
because this is larger in this position we are only subtracting a 0 and we place a 0 bit as 
part of the result. So, after subtraction we still have the same number and the next time 
we try subtracting in this position it leads to another 0 bit for the result and there is no 
change here. So we get 0011; I am just dropping of zeros on the left side which are 
insignificant and then we try subtracting in this position. And indeed now we can subtract 
so we get 1 in the quotient and after subtraction we get 00101then finally we subtract in 
this position which is right justified and this result is 1 in the LSB of the quotient and 
finally there is a remainder 1.   
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So we carried out these four steps. At each step we try to see if we can subtract or not. If 
subtraction is possible subtraction is carried out and 1 gets regarded in the result. If 
subtraction is not carried out then 0 gets regarded in the result. That is a very simple 
mapping of normal decimal division we are used to in binary domain. We require 
basically comparison. Before we can subtract we compare, if necessary we subtract and 
we record a 0 or 1 and from step to step we shift the position of the divider. So, in a 
nutshell it is result. 
  
you would notice Let us call this as A which is the dividend, divisor is B, quotient is Q, 
remainder is R and the values which are being subtracted is nothing but multiples of B 
the divisor multiplied with powers of 2 and weighted with either a 0 or 1. So, in the first 
position it was B multiplied with 2 raised to the power 3 which we try to subtract from 
here so you could see that B has been shifted 3 bits to the left in relation to A. And in 
position number 3 counting it as 0 1 2 3 in Q we record the result as bit 0. 
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So next time the attempt was to subtract B into 2 raised to the power 2 and then B into 2 
raised to the power 1 and B into 2 raised to the power 0 and the last value being 
subtracted is actually 0100 and not 0101. 
  
What we are trying to get is given A and B we are trying to find Q and R which will 
satisfied this. 
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So we take a register R which we initialized with A. A is the dividend and from this we 
will keep subtracting. Hopefully what will be left in A left in R would be the remainder. 



The quotient Q initially is put as all 0s and another register D which will hold the value B 
which is the divider. Then there is a loop where we repeat this comparison and 
subtraction step. So, if D multiplied by appropriate power of 2 is less than R. So this is D 
positioned at appropriate position. So you would notice that when i equal to 0 in the 
beginning in the first step you need to displace it by n minus 1 position. So with i equal to 
0 the power of 2 is 2 raised to the power n minus 1 so that is it.  
 
In our case n was four so we are shift we have shifted the divider by three positions to the 
left. We are comparing it with R and if it holds then R is replaced with R minus D into 
the same factor and Q n minus 1 minus 1 that particular bit of Q is recorded as 1. If the 
condition does not hold we do not really have to carry out…… either you say subtract 0 
or you just leave as it is and the corresponding bit of the quotient is recorded as 0. Simply 
then step up i and repeat it for n steps. Is this clear? 
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This is our basic unsigned division algorithm. We will analyze it to make sure that what 
we are doing is correct and then we will do some modifications and improvements, 
transformations and implement this in the form of a circuit. So we want to make sure that 
what we are doing actually computes what we want. Our requirement is that 
ultimately….. there is a loop which is executed and we will ensure that there is certain 
invariant it maintains.  We will ensure that Q into D plus R is always equal to A. 
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Therefore, as the loop proceeds this will be ensured and also we will ensure that R 
remains within this limit. So intuitively we have put up this invariant and first of all we 
must make sure that this invariant is a useful one which will give us the required result. 
So, at the end of the program when the loop ends I would have reached a value of n and if 
we put n in this invariant put i equal to n in this invariant this will ensure that the 
remainder we are getting is less than that divider. 
  
You see, this unique, this equality A equal to Q D plus R can be satisfied by many Q are 
combinations. We are given A and D D is initially B and we are finding Q and R quotient 
and the remainder. So this is a single equation with two given values and they are 
multiple Q R combinations which can be satisfied. We want the one where R is within 0 
and D; the remainder should be less than the divider and it should be positive or non-
negative as I would say. 
 
So, with i equal to n this condition will be ensured. So, at the end of the program if you 
are ensuring this loop invariant then we have the right quotient and remainder and 
remainder is within the range we expect it to be. Therefore R is the correct remainder and 
Q is the correct quotient. So this is the this is to show that the loop invariant we are 
talking of is a meaningful one; it will actually ensure that we are getting a correct result.  
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Now let us prove it inductively. First we will ensure that this hold in the beginning.  
When i equal to 0 when you start, after initialization, this holds or not. So our step 1 
which is initialization is making i equal to 0, R equal to A, Q equal to 0 and D equal to B. 
So, if you put these values then we can initially be sure that this holds because Q is 0 and 
R equal to A which is ensured by this initialization so this holds. In this (Refer Slide 
Time: 14:04) if you put R equal to A and Q equal to 0 it is satisfied. And also, since i is 0 
this relationship that A is less than if A is less then B into 2 raised to the power n then 
this will also hold. 
 
(Refer Slide Time: 14:30 min) 
 

 
   



Now how do you meet this condition? 
Initially R is same as A and D is same as B and i is 0. So, in order to ensure this what we 
need is A should be less than B into 2 raised to the power n. So, if we assume that A is n-
bit number and B is not 0 so B is at least 1 then A is less than 2 raised to the power n or A 
is less than B into 2 raised to the power n. Therefore, this is satisfied if you choose A as 
an n-bit number although we can in the illustration which I took I had taken 8 bits for the 
dividend and that was with the intuition that when you multiply two 4 bit numbers you 
will get 8 bit product. So I started with an 8-bit dividend and tried dividing it with 4 bit 
divisor. But there are cases where this may not work. So we are to begin with we are 
talking of a specific case where A is a 4 bit number or n-bit number in general. That 
means the left n bits will be 0s. 
 
Let me go back to this (Refer Slide Time: 16:04) although I had the right value I was 
taking I was working with 8 bits but I had the right values because I had left 4 bits as 0. 
So what could happen is if you have A larger then algorithm may not work. We are trying 
to…. what we are learning here is that we will ensure that this algorithm works correctly 
if A is contained within n bits. 
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Now let us try to show this in general in the inductive manner. So what we will do is we 
will use mathematical induction; assume that before a particular iteration this holds we 
will show that it holds after the iteration that means it will hold throughout. So there will 
be two cases because in the algorithm we have a condition which is being checked and 
the action depends upon that. So we will take the first case. 
 
 
 
 
 



(Refer Slide Time: 17:21) 
 

 
 
Here we assume that the invariants hold before the iteration i and we also assume this 
condition D into 2 raised to the power n minus 1 minus 1 is less than equal to R which 
means subtraction will be carried out, so this is one case. So what happens in this case is 
what would be examined now. So, given to us is that this condition holds, this inequality 
holds (Refer Slide Time: 17:51) and we know that under this condition subtraction will 
be carried out. So the new value of Q plus Q into D plus R is given by this where we have 
value of Q updated, we are setting this particular bit in Q and R has changed because we 
have carried out subtraction. So Q has become Q plus 2 raised to the power n minus i 
minus 1 and R has become R minus D into this power of 2. So the new value of this 
expression Q D plus R is given by this. So, if you expand this you will be again left with 
Q into D plus R. What it means is that at least this equality holds even after the iteration. 
  
We can also check if this inequality also holds. Thus, the condition of subtraction is 
ensuring that D is less than this and we know that D into this greater than R which means 
that D into 2 raised to the power n minus 1 n minus i minus 1 is less than equal to R less 
than equal to D into 2 raised to the power n minus i. So the left part of the inequality is 
ensured by our assumption and the other part is ensured by noticing that invariant holds 
before the iteration.   
 
Therefore, now R lies in this range and after the iteration once you subtracted this 
quantity from R (Refer Slide Time: 19:44) you can see that R is going to be lying in this 
range. So R was in this range and from both sides you can subtract this quantity and you 
can say that, now, after the iteration, R lies in this range.  
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Therefore, now, after the iteration i also changes to i plus 1. So therefore, we can say that 
for the new value of i R lies in this range and hence the invariant both components of 
invariant hold after the iteration. Is that clear?  
 
This was actually a more difficult case which we have ensured. The other case is when 
subtraction is not carried out is in fact easier. So we assume that invariant holds before 
iteration and the subtraction condition is false. That means D into 2 raised to the power n 
minus i minus 1 is greater than R. 
  
Now in this case the new value of Q into D plus R is a basic it trivially same as Q D plus 
R because you are setting a bit 0 your recording a 0, Q was initially 0 so essentially there 
is no change there is no change in R so there is no change in Q D plus R. And the 
condition of omitting subtraction that is this one ensures that initially we have R lying in 
this range. So basically R is in the half range of this and we are not changing the value of 
R, what we are changing is the value of i. So with the new value of i you can say that R 
lies in range 0 to 2 raised to the power n minus i. Therefore, in this case also invariant 
holds and therefore we have regressively ensured that we have a correct algorithm.  
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Now we will modify it and prove it so that we get a suitable hardware implementation.  
Is there any question so far? 
   
Now in the algorithm which I had written we were talking of D multiplied by 2 raised to 
the power some factor. So, rather than every time multiplying by that factor we will shift 
it step by step as we did in case of multiplication. Of course the directions of shift may be 
different here. So we start with a value in D which is B into 2 raised to the power n minus 
1. So initial shift is there by position n minus 1 and then we will always ensure that D has 
the right value so that you can always subtract D from R straightaway and this will be 
ensured by making D shift right every time. So we do D equal to D by 2 and this 
comparison becomes comparison of D and R and subtraction becomes subtraction of D 
from R. 
 
Also, instead of shifting instead of setting different bits of Q we will be shifting Q left 
effectively multiplying it by 2 and adding a 1 or adding a 0. Shift left and set the last bit 
set the least significant bit by bit to 0 or 1 so operationally this becomes easier. It is 
basically the same thing. First time we were placing B such that there was a shift of n 
minus 1 position. So we ensure that D is initialized to this number and subsequently 
move D right by one position every time.   
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So, once we have done this we can draw a circuit which carries out this operation.  
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So you would notice that the structure is quite similar to that of a multiplier except that 
the shifts are in different directions, addition has been replaced by subtractions. So here is 
a subtractor which will subtract D from R so R is one input, D is another input, result 
goes back to R. This D shifts right by one position every time, Q shifts left by one 
position every time and on the right side we will insert a 0 or 1 as the space gets created 
in Q. So there is a controller sitting here which will look at the result of comparison. 
Basically we are also assuming that this subtractor is doing comparison. So the result of 



subtraction is available actually at the output of this subtractor; we may not store it 
actually if the result is negative. So basically we are assuming that there is an indication 
that the result is positive or negative and this control acts accordingly. It will modify the 
value of R or not accordingly and it will set a 0, 1, Q as Q shifts to the left. So this is a 
this circuit captures the straightforward algorithm which we had just worked out. 
  
Now we will carry similar kind of improvements in this as we did for multiplier. We will 
first make sure that subtractor is reduced in size. Right now it is a 2 n-bit subtraction 
because D D gets D has the divider which can be placed anywhere; initially it is quite to 
the left and gradually it is shifting right so all bits are significant at some time or the other 
and therefore we are keeping a 2 n-bit subtractor. What we will do is that we will change 
this situation and make D stationary; achieve the same effect by shifting R to the left so 
their relative position is same. We are shifting D right keeping R stationary; instead of 
that we will keep D stationary and shift R to the left. So, in terms of algorithm what we 
do is as follows. 
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Now you would notice that D will start with the value B. It is not B into 2 raised to the 
power n minus 1, D will have value B, D will be an n-bit register whereas R has R has the 
dividend placed in correct position so that the dividend divisor are relatively positioned 
correctly. So you recall that the first time we shifted D was by n minus 1 bits and not n 
bits so the same position is maintained here because D will be now subtracted from R in 
its left n positions as you will see now. 
  
We are comparing D with the higher n bits of R. R is still a 2 n-bit register and I am 
assuming that the two parts left n bits and right n bits will be referred to as R H and R L 
high and low.  
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So now it is RH or the left half of R which will participate in this subtraction. so let me 
again show you this diagram (Refer Slide Time: 28:05); I think it will be easier if I get 
back to……. so to get this same effect what we have we are going to place A; if you shift 
A to left 1 bit…… you remember that we have placed two A in R which means A has 
been shifted to one position left and then placed in R so actually what it will contain…… 
let me get this….. 
 
So initially I would have obtained this position…… not writing very clearly. I have 
placed A, 1 bit shifted left and B will be compared in this position. So it is I am sorry so 
this is R H, this is R L and I will always be working with D which is n bits and R H 
which also is n-bit so they will be compared and the subtraction will be carried out. Next 
time R will be shifted left D will remain here. Instead of shifting D we are shifting R left 
so the starting position is here which must be carefully noted.   
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So, coming back to the same point (Refer Slide Time: 31:58) we are comparing D and R 
H and if this condition holds R H becomes R H minus D and this part is same Q gets two 
Q plus 1 and if the condition does not hold Q gets…… I am sorry this should have 
been…… ignore this let me correct this (Refer Slide Time: 32:19). 
 
So, if the condition does not hold Q simply shifts left and R is also shifted left now.  
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Therefore, with these two changes we can have a circuit now that subtractor is only n 
bits, size of register D is reduced and both the registers shift in same direction. So now 



the next modification is very straightforward. We have R shifting to the left and as the 
position gets vacated here we can keep on stuffing the bits of Q so we do not need to 
keep a separate register for Q and utilize the part of R towards the right end which is 
getting vacated to accumulate the bits of Q so that is a very straightforward change and 
we have omitted register Q here.  
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Therefore, we are basically doing R equal to 2 R plus 1 or R equal to 2 R. So, effect of 
shifting Q and R is sort of combined and at the end of the iteration R H the left half of R 
will contain the remainder and right half will contain the quotient so the same n-bit 



register contains the results. So this leads to a circuit which is now in the final form 
where we have one register shifting, another register which is n-bit and a simple control 
which looks at this result of subtraction and looks at the sign and accordingly controls the 
operations.   
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Now we will introduce another form of division which is called restoring division where 
what we do is; this step (Refer Slide Time: 35:03) which was there where we are I am 
now getting back to the first form of the algorithm where we had just introduced, after the 
basic algorithm we had introduced the shifting operation. So we were comparing D and R 
and accordingly we were subtracting so this is called actually non-restoring approach. We 
first check and then subtract and the alternative is that we carry out subtraction in 
anticipation and if we have made a mistake then we restore or we make a correction so 
that is called the restoring division.  
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This was a complete step 2 as I have listed here and in restoring approach it changes in 
the following way, we subtract unconditionally and the next step within the iteration is 
that if now the result is negative then you correct, make R equal to R plus D, rest of it 
will remain same. It is in this case Q becomes 2 Q and in the other case 2 Q plus 1.  So, if 
R is not negative then you do not need to make any correction and D part D equal to D by 
2 and i plus plus is common. 
  
So basically change has occurred here that we have introduced an unconditional 
subtraction and there is a conditional addition. So now in this case we we we are actually 
using two steps in the iteration. So two clock cycles would be used because first you have 
to carry out subtraction it is only then you can carry out addition. So, apart from the fact 
that you are using additional steps the subtractor has to be replaced by a circuit which can 
do addition or subtraction but that is not a big deal we have seen how that can be done.  
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The motivation for doing this is what it is going to follow that we can actually postpone 
these restorations by making this following observation that if you are restoring now in 
any particular step you are restoring by adding D to R and in the next iteration there will 
be again an initial subtraction, D would have reduced by a factor of 2 so now you are sub 
now you are adding D and in the next iteration you will subtract D min[us] D by 2. The 
same effect can be achieved by not doing any restoration now and in the next iteration the 
initial unconditional subtraction may be replaced by addition. So adding D now and 
subtracting D by 2 later is equivalent to subtracting sorry adding D by 2 later.  
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So what we are doing is we are wording an additional step of restoration now and achieve 
the same effect by choosing the initial unconditional step to be either an addition or 
subtraction. So the algorithm now looks like this. 
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Initially we will look at the sign of R because possibly there might be a pending 
restoration requirement. In the previous iteration we might have subtracted where 
subtraction is not to be done and as a result we may have a negative R value. So, if R is 
negative in the beginning of the iteration we make it R plus D else you make it R minus 
D as usual. So negative R implies that there is a pending restoration which we have 
postponed and we start with an addition. Otherwise in the normal case we start with the 
subtraction. 
 
I am just showing a separate step where after this we are recording a bit 0 or 1 in Q and D 
is halved, i is incremented and this is that completes the iteration.  
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So now, of course I am not yet eliminated two steps; I still have two steps but I have just 
taken care that restoration is postponed. So in each iteration you are doing only one 
addition or a subtraction. Earlier there was a possibility of one addition and subtraction 
both in the same iteration and they had to be necessarily done in sequence. Now with 
some modification we can actually […..40:38] these two steps. 
  
But one important thing is that since you are postponing your restoration; in the last step 
if you postpone and no more iteration is left you may still have a pending restoration. So 
a final adjustment may be required here. So I am adding a step there; at the end if R is 
negative finally then you would need to make a final correction.  
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We will improve it further where we are actually combining these two steps. So, 
recording of that bit in Q is actually brought within this condition in a single step so if R 
is negative then you are doing initial addition and you are here you make Q equal to 2 Q 
minus 1 otherwise you start with initial subtraction and make Q equal to 2 Q plus 1. 
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So basically what you would notice is what is happening is that as you are doing…. Let 
us this is an anticipatory subtraction which you do and in anticipation you are also 
recording a bit 1 in Q. So, later on, when you possibly correct this you also would correct 
this effectively. So recording of bit in Q is also done in anticipation and possibly 



corrected in the next step if necessary. So, that effect is achieved by doing 2 Q minus 1 
and this part remains as it is and there is a final step. So now finally also we may require 
a correction in Q. This is a step which if R is negative finally we have a correction done 
in R as well as in Q.   
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So let us…. let me….. you want me to illustrate how this correction Q is getting done or 
you can you can see it through. Let me illustrate this.  
  
What will happen is that, see, let us say we have some we have some bits of Q, we have 
reached some point and let us say we have put one in anticipation and if it is getting if it 
is correct it will be left as it is. If in the next position we are doing corrections then we 
will be subtracting one from this position next to it which means this 1 I mean if you just 
see it locally this 1 0 and from that if you are subtracting 1 it will become 0 1. Or if let us 
say if this need for correction continues; if you if you are subtracting a 1 again here then 
this one also become 0 and you get a 1 here and so on. So essentially what is happening is 
that the 1 which you have put in anticipation gets converted to 0 and you are putting a 1 
in the next position and if even that is not correct next time when correction is done even 
that gets moved further.   
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So I will suggest that you actually take out you take some examples and work through 
these algorithms so that you I have convinced yourself that it works correctly.   
 
Now, once we have brought the algorithm to this form effectively we have now made it 
almost ready for a signed division. What is effectively happening is that in every iteration 
by adding or subtracting D we are trying to bring R closer to 0; you are starting with 
some value and your attempt is to bring it successively close to 0 so you subtract initially 
a large value then you subtract half, subtract half of that, then half of that and so on. So 
essentially you are trying to bring it close to 0 and if we observe it in that sense whether 
the value was initially negative or positive it can still work. 
   
If the dividend was negative we are still by adding a positive value we will bring it close 
to 0 or if divisor is also negative by subtracting divisor we will bring it close to 0. So 
essentially attempt is to look at signs of R and D and accordingly either subtract or add. 
So, instead of checking whether R is positive or negative we will see if sign of R and D 
are the same or different. If they are different then we subtract sorry if they are different 
then we add because if opposite sign values are being added then the result will be small 
and if they are of the same sign then we subtract so that is the change in the logic. 
 
I am looking at the MSB of R and D the sign bit and if they are not equal then we add 
otherwise we subtract and accordingly Q becomes 2 Q minus 1 or 2 Q plus 1 so that is 
the only change and we can use the same thing for a signed division. The final correction 
step also makes a similar check; it compares R n minus 1 and D n minus 1. If they are 
still of the opposite sign then there is a final addition which is being done. 
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So now intuitively is this correct; what is the relationship between signs of dividend, 
divisor, quotient and remainder? So let us have a look at that. We are given basically 
dividend and divisor and we are looking at all possible sign combinations. Any of these 
could be positive and any of these could be negative and the two right columns show the 
corresponding signs of quotient and remainder.  
  
So, what is the logic which is intuitively governing this; that sign of the quotient would 
follow similar logic as you have in multiplication. When you multiply two numbers of 
the same sign that is positive into positive or negative into negative the result is positive 
so same thing we will do. You are dividing a positive number by a positive number you 
get a positive quotient. You divide a negative number by a negative number you get a 
positive quotient. So, the quotient is following the same logic as multiplication. 
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Therefore, when the signs are opposite the quotient is negative; when the signs are same 
the quotient is positive. The remainder always takes the same sign as that of dividend 
because remainder is something which is left out of dividend you try to reduce the 
dividend to 0 but something is still left so it has to be of the same sign and if you look at 
this (Refer Slide Time: 50:08) so the final correction actually which is being made here 
will ensure that remainder is ultimately of the same sign; this is…. no, actually that is not 
obvious from here; I think it is….. one could prove that the remainder would be of the 
same sign although it is not obvious from this condition. 
 
Well, actually I would like you to I have written several algorithms and the kind of proof 
I did using invariants you should try for a few more particularly this one. So it should 
ensure that the correct signs are being obtained here. In particular the remainder should 
be of the same sign as the dividend and the quotient would depend upon whether the sign 
of divisor and dividend are same or opposite. I leave it to you to ensure that very 
regressively. 
   
So let me summarize what we have done. We started with simple handworked example 
of 4-bit division in unsigned case and we notice that using basically compare shift and 
subtraction operation you can carry out division in a sequential manner. So based on that 
we developed a basic algorithm, we analyzed it thoroughly to ensure that it is correct and 
from there we derived the circuit. In the circuit then some improvements were made. First 
improvement was to reduce the size of the subtractor; instead of 2 n bits subtractor we 
reduced it to n-bit subtractor and then we did some improvisation and reduced the 
number of registers so ultimately we worked with one n-bit register and two n-bit 
register. Then we brought in the concept of restoring division.  
 
Initially you carry out anticipatory subtraction so there is no comparison involved here 
now; subtraction is an unconditionally or I should say blindly you subtract and then 



restore. Then we saw that restoration can be postponed which simplify each iteration and 
of course it made it necessary for us to have a final step where a final restoration of final 
correction was necessary.  
 
(Refer Slide Time: 53:22 min) 
 

 
 
Then with slight changes we were able to modify this algorithm for signed numbers and 
remember that when we are talking of signed division we are doing addition, subtraction 
with 2’s compliment number so therefore the addition, subtraction need not be done or 
addition, subtraction are not conscious of whether the numbers are signed or unsigned as 
long as representation is 2’s compliment; so that fits and nicely and we can have the 
algorithm work on two signed integers and perform divisions. I will stop with that. Next 
time we will take up floating-point operations and with that this chapter will be done.   


