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We have discussed the design of ALU with respect to addition, subtraction, comparison and 
logical operation. We also discussed other operations like shift. We will continue on this and 
take a slightly more complex operation namely multiplier multiplication. So we will see how 
multiplier can be designed both for signed case and unsigned case. And in the next lecture we 
will move to another operation which is complex that is division. In the plan of lecture we have 
reached this point, talk of multiplier design. 
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We will begin with a very simple design shift and add multiplication. We will see how you could 
build the circuit following this shift and add approach. We will see multiple ways which differ in 
terms of cost of hardware or simplicity of hardware. Then we will talk about signed 
multiplication where you can either, do unsigned multiplication then take care of the sign 
separately or do directly signed multiplication. We will see what are the essential differences in 
the circuits which are required for signed and unsigned multiplication.  
 
 
 
 
 
 
 
 



(Refer Slide Time: 02:16 min) 
 

 
 
So let us begin with multiplication as we do with paper and pencil. It is a simple multiplication 
method as we are all used to…. the only thing is that we do in decimal system and the same thing 
translated to binary in fact is even simpler as you would notice. Suppose you have a 3 bit number 
A which has to be multiplied by another 3 bit number B so as usual we will multiply A by each 
bit of B with suitable weightage and simply add them. So multiplied by the LSB of B we get 
011, multiply A with middle bit of B you get all 0s, multiply with left most bit of B you get 
011so basically individual multiplication is multiplication with either 0 or 1 which is very 
straightforward. 
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Multiplication with 0 results in 0 and multiplication with 1 results in the same multiplicand itself  
and these partial products; each line represented here is a partial product they have to be 
weighted appropriately and the weightage here is power of 2 which means shifting it 
appropriately towards left and simply add all these. That is a simple way which we will try to 
capture hardware and the way hardware work is that you will start with zero value in some 
register; you can add first partial product to that you get this, add second partial product in this 
case of course there is no change, add the next partial product and you get the final result. 
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So basically you are carrying out addition of initial zero value and this partial product to get this. 
Then next one is added and the next one is added. So, as you can see, the whole thing breaks up 
into multiplication by 0 and 1 shifting by successively 1 2 3 4 so many positions and adding all 
these up. So we have already seen each one of these individually. we know how to add, we know 
how to shift and of course all we need is to multiply with 0, 1 which means performing 
essentially an AND operation. AND operation actually is equivalent to multiplication by 1 bit.  
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So we can express this as a summation where A is multiplied by bits of B that is B i with a 
weightage of 2 raised to the power i and we sum it over all values of i going from 0 to n minus 1;  
this is an unsigned multiplication. 
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And the circuit for doing this can be easily built. First thing we are trying to do is multiplication 
with a 0 or 1 so it is effectively A is multiplied by one of the bits of B so here I am illustrating 
with a four bit situation. This AND gate actually represents an array of AND gates where each 
bit of A is ANDed with B 0. So, in […..6:09] I am showing a single AND gate which is where 
we are taking a vector of bits A and a single bit B and output is a vector. So, strictly speaking I 



should have marked the size of the vector going into or out of it. So each of these AND gates is 
effectively an array of four AND gates. So what I am getting here add these points is the partial 
product A is multiplied by one bit of B. And then I require shifters so each of this shifter is doing 
shifting by a fixed amount so it is only a there is no active logic here it is only appropriately 
wiring it; these shifters do not have to select between shift and no shift; it is a fixed shift with 
each is doing so it is simply a matter of wiring it appropriately so that effectively shift takes 
place.  
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The next stage is addition. So, starting with a 0 here we add first partial product, then second 
partial product, third and fourth and finally we have a product of A and B. So when I say that 
these shifters are simply wiring it means that these four bits are connected at appropriate points 
at the input of adder. You connect directly or shift by one position or shift by two positions or 
shift by three positions as the case is. This is one very simple way of capturing this idea of 
summing the partial products to get an unsigned multiplication. Is any question about this?  
 
Now this requires n adder. If you have n by n multiplication to be carried out this will require n 
adder each is adding one partial product. We can simplify the circuit by using same adder several 
times. So we can capture this in the form of an iterative algorithm so I am keeping a count i a 
sum S is initialized to 0 and then I do something repeatedly, there is a loop where A into B i 
multiplied by 2 raised to the power i is accumulated i is updated and I repeat it for all values of i.  
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So what I am trying to indicate here is that there is an initialization step which is step one and 
step two which is repeated n times. Step two is both these assignments so actually what I imply 
is that all these both these are done together in the same clock cycle. So, for n-bit multiplication 
this would be done this loop will be done in n clock cycles; although I have written as two 
separate assignments but my intention is to do these two in hardware in a single cycle. 
  
Now there could be some improvements made in this. Instead of adding A multiplied by 2 raised 
to the power i what I could do is I could actually keep on shifting A itself, keep on modifying A 
so for every cycle A will get doubled and then I need to add A only. 
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Let us see the algorithm with this modification. Instead of saying s accumulates A into B i into 2 
raised to the power i…. this I am putting as a condition (Refer Slide Time: 11:04) that if B i is 1 
then I do this accumulation otherwise I do not do this addition and in any case whether si 
whether B i is 1 or 0 A is doubled every time. So I could say A is doubled or shifted left it is the 
same thing. And all these three activities are done in a single step. 
 
As I add A to s, I prepare the next value for A, for the next cycle in the same step. So this whole 
thing is one clock cycle as far as hardware is concerned: updating i, doubling of A and 
conditionally accumulating of A. So basically shifting of A here is taking care of taking care of 
this multiplication by 2 raised to the power i. Since I am doing it sequentially I can keep on 
incrementally shifting it every time. 
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The next modification here is that instead of looking at different bits of B in a successive 
iteration I can keep on shifting B in a register so that I always look at B 0 that will also simplify 
the hardware to some extent. Rather than trying to look different bits in different cycles I look at 
the same bit but move the bits in such a manner that I need to focus at the same point always. so 
here (Refer Slide Time: 12:44) I am checking B 0 always but to compensate for that I am making 
B as B by 2 which means B is right shifted every time to get the same effect. 
  
Now let us take this and look at its hardware equivalent. It is the same algorithm. What I require 
is essentially a mechanism to add A to s. So here is an adder, A is one input, s is another input; I 
am not showing how I am making s as 0 initially so that detail is limited but this will take care of 
performing this type of S gates S plus……. 
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And to take care of this, A will be shifted left after A supplies, while A forms an input to this 
adder A will also make itself ready for the next cycle. So at the edge of the clock S plus A is a 
stored into this and 2A is stored into A. So these two events will happen concurrently with the 
edge of the clock.  
 
Now one thing you should notice here is that this adder has to add two n-bit numbers. When you 
are talking of two n-bit A and B both are n bits but as the partial products are effectively shifted 
to left we need adder of double the size. First addition would be done at one extreme position 
and the last addition would be done at the other extreme position so adder has to be wide enough 
or essentially double the width to accumulate all these values. And this register which will hold 
A also is of double the length so the operand initially is placed in the right half in the right half 
the value is placed and it keeps on shifting to the left and by the end it has reached the other end.  
So this is the key part of the circuit and to control this we require another register holding B 
which will experience a right shift every in every iteration we shift B so that we are always 
looking at B 0 position which is the LSB of this. 
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This has to work in conjunction with control which firstly takes care of this iteration count. The 
process has to be repeated several times so there it does the counting and it also times the 
operation of all other units. I am showing these red signals which are controlled signals; this is 
working under control of B 0. 
 
Depending upon the value B 0 it will actually instruct addition to be done or either this circuit 
will pass on the value of A here sorry A plus S or just S itself. There is some logic here which 
either performs the S plus A or S plus 0 so that control is here and this is…… this, this and this 
(Refer Slide Time: 16:24) are basically to time the operation of these three registers when they 
shift and when they store in any value. Therefore, this is an essence of the circuit. There are 
some details which are omitted here. But what I would like you to notice here is how we are 
going from step to step and what is each crucial step here. Each step basically involves these 
things checking B 0, performing addition conditionally, left shift of A and right shift of B and 
update of a counter so that counter I am not showing it explicitly but it is part of the control.  
 
Now let us do something so that the requirement of two n-bit addition can be cut down. We can 
mange with n-bit addition then something here will be simplified. And the idea of this comes 
from….. let me get back to this diagram, this one (Refer Slide Time: 17:33). So you would 
notice that at any time one of the value which you are adding is only n-bit and it is only when 
you look at the whole thing it is 2 n-bit wide but if you look at each addition you are adding one 
n-bit value in some position. So if you focus on that you need to have only n-bit adder; there is 
nothing changing on the right of it and there is nothing changing on the left of it. So, if you 
arrange your information such that you are taking care of those n bits where the new value is 
positioned you can work with n-bit adder.  
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Here is the modified circuit where what we are trying to do basically is that we are adding A to 
the left half of S. SH is denoting the high end of S or the upper half of S. So A is always added in 
that position and you are making sure that the two are correctly aligned so what we will do is we 
will be shifting S to right every time. initially S contains 0, you add that to the left half of S then 
it is shifted as I shift it to right then you add A to…… again it is the same position so it is the 
partial product which we have accumulated that keeps on shifting to the right. instead of shifting 
A to the left in every cycle we are shifting the partial product obtained so far to right which 
actually maintains the same reality position and achieves the same effect and the consequence of 
that is the adder needs to be only an n-bit adder. So A is now n-bit register A does not shift at all; 
the value A gets added to the left half of S and after addition you can shift S to right.  
 
Therefore, I have introduced another step here that after this addition S becomes S by 2 which 
means you are shifting it to the right and the rest of it is same. B has been shifting right the 
counter increments and so on. So the crucial change is here that the addition is only to the left 
half of S and S shifts right. Although I have introduced this as another step but it is actually 
possible in principle to do all this in a single clock; I will not going into the details; you can just 
take my word for it for the moment. But it is possible that the final value which has to be there in 
S as a result of summation and shifting. You can actually look at that and place that directly in a 
single step. That is not very difficult. But just for conceptual clarity we assume that first A is 
added and then shift is done. 
 
There is one more subtle point here is that when you are shifting S right there is a carry which 
will come out of this which might come out of this that has to enter so it is not a pure simple 
right shift with the zero getting stuffed into the vacant position; it is this carry which you do not 
want to lose it is an intermediate carry which has to be accommodated here. So apart from that 
subtle consideration it is very straightforward. What we have achieved is we have reduced the 
size of this register by a factor of 2, we have reduced the size of adder by a factor of 2. And 
having done this there is another interesting observation which can be made. That is, we have 



now two registers S and B which are shifting right so initially S has all 0s and as you perform 
addition and shift right you keep the bits keep trickling into the right half of S but initially 
everything is zero so as partial product gets added, one by one, the bits keep on entering the right 
half of S. At the same time B is this register is filled with the value B and as it shifts right it 
keeps on making spaces on the left side. So this observation leads to the possibility of combining 
S and B in the same register. 
  
What I am saying is that initially right half of S is vacant and it is getting filled up gradually bit 
by bit from the middle whereas B initially is full and getting vacated bit by bit on the left side so 
the two actually match so the two together never require more than 2 n bits. So what we can do is 
we can actually initialize as with 0 in the left half and B in the right half and then look at the 
right most bit of S instead of right most of bit B and the rest remain the same. 
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The initialization of S is different. We have 0 and B put together performing to n-bit word which 
is put in S  
and, yeah, here shifting of B is avoided there is no B register now so s become s by 2 which is a 
right shift and rest of it remains same. This is the final circuit which we will I will leave at. It 
requires one 2 n-bit registers one 1-bit register and a single n-bit adder. 
  
Any questions about this?  
In MIPS we have multiplying instruction which actually takes two operand in two registers and it 
produces a 2 n-bit results which are kept in two special registers: one is called high and one is 
called low; Hi and Lo. So there are special instructions which can be used to move data between 
these registers and one of those thirty two general purpose registers. But the output of 
multiplication goes to those specific registers high and low. 
  
Actually there is also pseudo instruction for multiplication which takes three registers so two for 
operand and one for result and that actually expects small numbers so that the product is within 6 



within 32 bits and it ignores Hi and only Lo is looked at and automatically brought into one of 
the registers. 
 
Now let us move towards sign multiplication. There are two approaches to this: one is we handle 
sign in magnitude separately. That means if there two signed numbers we find their magnitudes, 
multiply them, get magnitude of the product and determine the sign. So sign, you know, if the 
two numbers are of the opposite sign then the sign is negative they are of same sign, sign is 
positive and must we know the sign of the product you can put it back in the appropriate form 
the 2’s compliment or whatever approach you have. 
  
The second approach is to directly multiply sign integers. So, unlike addition and subtraction 
where this 2’s compliment representation made it possible to look at signed and unsigned 
addition subtraction identically except for overflow detections but the addition subtraction 
process was oblivious of whether there is a sign or not. For multiplication that does not exist. So 
we have to device a method which can directly multiply signed numbers and what that requires is 
a common expression representing the values of positive as well as negative integers.  
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We expressed the number in terms of its bits in this form:  
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Here you see, basically we have expressed B as a summation of B i into 2 i for different values 
of i. We need to find something which handles positive as well as negative numbers. Again 
representation we will use 2’s compliment and this representation is shown here. So you would 
notice that there is similar kind of summation but it goes to bit n minus 2 only. The last bit which 
is a sign bit is handled separately so all that we have done is put a negative sign with this. So 
again the weightage is 2 raised to the power n minus 1 here but only difference is that this comes 
with the negative sign. 
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Why is it so; we can see it here.  



(Refer Slide Time: 27:53) 
 

 
 
So let us look at two cases. What happens when the number is non-negative and what happens 
when the number is negative. So, if B is non-negative we could have expressed this in this form 
that is the usual thing for unsigned number. But since B n minus 1 is 0 because this number is 
non-negative the sign bit is 0 therefore if we pull out the last term and put a different sign it does 
not matter this term is 0 in any case. With B n minus 1 is 0 whether you put plus or minus it does 
not matter because this part is 0 (Refer Slide Time: 28:39) so a positive a non-negative integer B 
can be expressed in this form so this part is…. this case is very straightforward. The other cases 
are that of negative numbers which needs a little bit of analyses. 
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When B is negative its value is basically minus magnitude of B. So this represents; this is the 
magnitude of B and the prefix with minus sign is what B is all about.  
  
Now let us see what the magnitude of B would be. Since it is a negative number we can express 
we can find the magnitude by knowing that it is a 2’s compliment representation. So 2’s 
compliment representation means 2 raised to the power n minus weighted sum of the bits. So, 
this is the interpretation of that number had it been an unsigned integer. So, to find its equivalent 
magnitude, retain this as a negative number, we take that value and subtract it out of 2 raised to 
the power n. So this is by definition of 2’s compliment representation that you subtract this from 
2 raised to the power n. 
  
Now this summation (Refer Slide Time: 30:08) can be broken up, we take n minus 2 terms keep 
them inside summation and bring out the one which corresponds to sign bits. Now, B n minus 1 
is 1 in this case so this thing is nothing but 2 raised to the power n minus 2 raised to the power n 
minus 1. Since 2 raised to the power n is nothing but two times 2 raised to the power n minus 1 
this difference will correspond to…… let me write it here ….this whole thing outside the 
summation is equivalent to 2 raised to the power n minus 1 I am sorry 1 in the subseq[uent]……  
so this whole thing (Refer Slide Time: 31:19) is equivalent to this which I have rewritten 
bringing B n minus 1 back because that is this is equal to 1 so I can write this multiplied by B n 
minus 1 which is 1 to get in this form. So this thing substituted here I get minus B n minus 1 2 
raised to the power n minus 1 and that becomes positive so I get this. 
  
I have shown that both positive or negative numbers when they are expressed in 2’s compliment 
form can be captured by a single expression. Now we have an expression which ignores whether 
it is a positive or negative number and we can multiply the two together.  
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So, direct signed multiplication is basically A multiplied by this expression. But I work on this 
little bit more, on this expression to get to a convenient form. First of all let me explain this. 
What I get is the first term is a negative sign and all other terms are in positive sign.  
 
Now all other terms are broken into two parts. For example, this B n minus 2 into 2 raised to the 
power n minus 2 is written as this (Refer Slide Time: 33:03) sum of these two terms whereas 
effectively I have put a factor which is double of that. If you take B n minus you can actually 
verified it by working by yourself. Take B n minus 2 common out of this you get 2 raised to the 
power n minus 1 minus 2 raised to the power n minus 2 this is this actually is twice this so what 
you will get is….. so if I break each of these terms like this I can then combine the term with 
same power of 2. 
  
So, for example, here these two (Refer Slide Time: 33:42) have the same multiplying factor 2 
raised to the power n minus 1 what I get is B n minus 2 minus n minus 1. Similarly, this term 
will combine with the next term involving B n minus 3 and so on so what i get is this summation 
of B i minus 1 minus B i weighted with 2 raised to the power i and summed over i goes 
from……. I think this should have been 0, yeah. So this is 0 but to facilitate writing in this 
particular manner I have introduced a dummy B minus 1; this goes up to B minus 2 but 
otherwise this term will remain unpaired; to combine it with another term I have introduced a 
zero term which is actually 0 by definition. Assuming that B minus 1 is 0 by definition I can 
reduce the last term here so that every term gets paired and then this formula can be written 
uniformly. 
 
Therefore, given this representation of B you can write A multiplied by B as this summation; it is 
just that in this I bring in A within summation. So now what does it require; it requires partial 
products to be formed according to this (Refer Slide Time: 35:21). Instead of multiplying A with 
B i which is 0, 1 I am multiplying A with this term and this can have what are the values it can 
have it can have a 0 value, plus 1 or minus 1 so still things are not too difficult. Minus 1 would 



mean that I take actually minus A. So this partial product would be A, 0 or minus A and adding 
minus A means basically subtracting A. So i have something which is very similar to what we 
have done; there are just a few differences which I will enumerate. Instantly this is called 
Booth’s algorithm. 
  
So let us compare unsigned multiplication, signed multiplication here. In unsigned multiplication 
what we saw earlier we looked at B i which can be either 0 or 1 and accordingly we either 
perform no addition of perform addition of A whereas in signed multiplication we looked at two 
bits together B i and B i minus 1. Actually we are looking at this minus that which can have 
values 0, 1 or minus 1. So, when both are 0 we have no addition nothing to be done no addition 
no subtraction; when this is 0 and this is 1 (Refer Slide Time: 36:52) since we are doing B i 
minus 1 minus B i we need addition of A. When this is 1 this is 0 we subtract A and when both 
are 1 again we require no addition. So, with this small change introduced all the circuits which 
we had could be made to work for signed multiplication. The only thing we need to remember is 
that what we had shown as adder needs to be capable of performing addition and subtraction. 
And there has to be little logic which looks at the pattern of B i and B m it looks at two bits and 
decides instructs that circuit to perform either no addition or addition or subtraction.  
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Well, this algorithm which I mentioned as Booth’s algorithm was originally devised not for 
signed multiplication; its motivation originally was something different which is as follows that 
if you have…….. let us look at the multiplier B. If you have a row of 1s as per the logic we are 
doing something when there is change from 0 to 1 or 1 to 0. Let me go back to this one. See, 
when both are 0 both are 1 there is nothing required; when you are going from 1 to 0 there is an 
addition, when you are going from 0 to 1 there is a subtraction. So let us say this is part of the 
word comprising B and you are scanning the bits from LSB to MSB. So when you have a run of 
0s there is nothing required; when you have a change from 0 to 1 then you perform subtraction 
and when you have a change from 1 to 0 you perform addition. 
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Another way of understanding this is like this that you can write a number like this as 1 0 0 0 0 0 
0 and subtract a 1 from this position (Refer Slide Time: 39:09). So actually it is this one which 
corresponds to one subtraction and this corresponds to an addition. So, when this algorithm was 
devised by Booth the attempt was made to minimize the number of addition, subtraction which 
are required and that was in a context where a step involving addition will take longer and a step 
not involving addition will take shorter time. So, attempt was to see if there if there is chain of 1s 
if there is a string of 1s instead of doing 1 2 3 4 5 6 addition you perform one addition and one 
subtraction so there is a speed up there.  
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But of course in modern hardware each iteration takes one cycle whether you are doing addition 
or you are not doing addition so it is not considered as a mechanism to speed up things. But it 
gives us a mechanism to look at positive and negative numbers in a uniform manner and carry 
out signed multiplication directly.  
 
Now finally let us look at what is the range of values which a multiplication would produce. 
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When you are talking of unsigned numbers the result would vary between 0 and this term (Refer 
Slide Time: 40:55) which is nothing but square of 2 raised to the power n minus 1 so this is the 
largest unsigned value you have and square of that is this. So this is the largest sum you can get. 
So this number could be expressed; I have illustrated with an 8-bit example and equal to 8 this is 
what you will have… this 2 raised to the power 2 n basically corresponds to a 1 here and all 0s. 
So, from that you subtract 2 into 2 raised to the power 2 n which means 2 raised to the power n 
plus 1 which means you subtract a 1 in this position so you get this number and this add 1 which 
is here. So this is the largest number as seen in binary you will get. That means there will be first 
n minus 1s, there will be n 0s and there is a 1 so this is the common pattern you will find 
irrespective of what n is. And obviously it requires 2 n-bit registers to hold the result. 
 
On the other hand, on the other hand, when you take sign multiplication the range would be….. 
so the largest most negative number is this and most positive number is this (Refer Slide Time: 
42:44) so if you consider square of this and square of this this will give you the range. So this is 
2 raised to the power 2 n minus 2 within a I am sorry this should not be a negative sign. The 
most negative value will come…… no, this is not correct, this will be, yeah, this will also be 
positive actually so I should, no, this is the most positive value  
and the most negative value will come when you multiply most negative with most positive. So 
let us work it out. What you get is minus 2 2 n minus 2 plus 2 raised to the power n minus 1 so 
most pos[itive] let us look at each of these first. Most positive value will be 2 raised to the power 



2 n minus 2 which should be this followed by all these 0s. So, that is the largest positive value 
you get. 
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And the largest negative value you are getting is you have minus 2 n minus 2 is actually this, so, 
to that you add 2 n minus 1 which is a 1 here. So this is the most negative value, this is the most 
positive value you get (Refer Slide Time: 44:57). 
 
Roughly speaking you are not you are getting about half the value. If you take approximately 
you are getting roughly half the value half the values in magnitude but still you have to use 2 n-
bit registers you are not utilizing in the last bit fully. So MIPS has a mult and multu two 
instructions are there; mult and multu; I think in the last lecture I placed it wrongly in the group 
where overflow is detected and there is no difference in signed and unsigned operation. Actually 
there is a difference between these two; multu will interpret that two operands as unsigned 
integers so the ranges are different whereas mult will treat them as signed integers and perform 
multiplication, get results in this range. Since you are accommodating all the values in 2 n bits 
you are providing for 2 n bits the two registers are Hi and Lo. So, in both cases irrespective what 
the result is it can be contained within 2 n bits it never goes out so there is no problem of 
overflow.  
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On the other hand, the pseudo instructions which tries to look at only n bits of the results there is 
a pseudo instruction, these instructions let me let me…….. so let me write this instruction. If you 
have an instruction with these two operands each is n bits the result is in Hi and Lo and you need 
instructions move from high and you say r3 or move from low let me put a different register so 
the result which is in two registers can move to one of the gprs; the high part, another gprs 
contain the low part. 
  
On the other hand, the pseudo instruction which works with, I think multiply with overflow, it 
will take three registers so the programmer is not bothering about the fact that the result first 
comes to high low and then it is transferred to r3…… sorry in this case the result…. r2 r3 are 
operands so the result is going in to r1. So we are looking at only n bits of the results and 
ignoring the higher n bits. So, if the product is bigger than that if it requires more than n bits then 
it is a case of overflow. So this is the exact description of these instructions.  
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So, to summarize, we began with our paper pencil method as we understood from early days of 
school that you multiply the multiplicand digit by digit so same thing translates to multiplying 
the multiplicand by bits of the multiplier and then adding these partial products with appropriate 
weightage. So we could translate that into a circuit which had one adder from each partial 
product and then we sort of wrapped it around, put that in a sequential iterative process where the 
same adder performs additions of various partial products. Then gradually we made certain 
observations and tried to improve the circuit.  
 
The first improvement was that we reduced the requirement of addition from 2 n bits to 2 n bits 
and made one of the registers which was holding the multiplicand shorter. Then, after having 
done that we also noticed that the register requirement can be reduced by sharing in the same 
register between the accumulated sum and the multiplier. Then we moved on to the case of 
signed multiplication which was basically derived from a common representation for positive 
and negative integers and the resulting algorithm was Booth’s algorithm. 
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Although it is the original motivation was different which was to save the time it is a mechanism 
which allows signed numbers to multiply directly. And then we have also discussed range of the 
values and different MIPS instruction which look at the numbers differently as whether they 
detect the overflow or do not detect the overflow. I will stop with that.  
 


