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Today, we will start something called analytic tableau. And actually the interesting thing about 

the analytic tableau besides various other technical things is that. So, besides various technical 

things analytic tableau is interesting. Because it is actually invented by a logician called 

RAYMOND SMULLYAN. Who is also a magician a puzzlist and he is written some fairly 

interesting books on solving of puzzles on logical problems on self reference. And RAYMOND 

SMULLYAN is also a I mean he is written some books on incompleteness on self reference and 

so on. One of his book is called what is the name of this book.  

That is self referential is another one on. Self Reference is also closely linked to self application 

in the lambda calculus. So, there is one on combinators called to mock or mocking bird I mean 

you know what a mocking bird is a mocking bird is a actually an australian bird called the 

kookaburra right. It is called a mocking bird but it sort of mocks itself you know and then it 

sounds.  

So, mock or mocking bird is essentially like is essentially doing a self referential calculations in 

combinatory logic or the lambda calculus. So, in addition to the RAYMOND SMULLYAN also 

has some interesting puzzle books. And he has a way of developing logical theories just through 

puzzles. So you have a sequence of problems in and the solutions to those problems is eventually 

lead to what is how to what to talk about, might either be about self reference or might be about, 

(Refer Time: 02:44) incompleteness. or it might be about, a the lambda calculus whatever I mean 

and So, he is has some fairly a interesting looking interesting ideas as books and book writing is 

concerned. And also some interesting puzzles that he has invented and he is also magician who 

actually for many years in the 60s and 70s. Actually he had held a magic shows and with all the 

getup and so on. And so for the New York so, it an very interesting character. But, besides that 

he is also a logician and he came up with this analytic tableau method in the 60s. So it will look 

trivial especially from the top from the point of view of proposition logic. But, it is important to 



do it because practically all theorem proving methods nowadays use the analytical, use some 

form of analytical tableau derived from Smullyan tableau.  

(Refer Slide Time: 03:43) 

 

So that is interesting so it is quite fashionable to use tableau’s for theorem proving So, as far as 

resolution is concerned so one of the things about resolution was that you still had this mammoth 

formula. Which a I mean an argument converted into a mammoth formula each component of I 

mean you had to convert it into CNF. Which sometimes can involve using distributivity. Which 

means you can it might expand the formula actually that you going to perform resolution on. 

And so, this CNF is something that so even if resolution was better than the tautology checker in 

the sense. That you could do this in a divided fashion it is you still have to do you still have to 

create a CNF before you can apply resolution.   

So, the other thing about resolution is that the numbers of clauses and sizes of clauses could 

temporarily increase. So, in terms of the amount of space required for storage it can they can 

actually increase. Of course termination of resolution relied on the reduction of number of atoms 

at each step of the resolution. And other thing is for resolution to work realy correctly you need 

to clean-up your initial set of formulas. So, that you do not have debri lying around duplicates 

and so on and so forth.  



Otherwise what can happen is you can be you can get into a false sense of saying. That you have 

not been able to resolve even though you might be a valid argument. Because of the fact of some 

of those formulas still lying around which should not have been there.  

So, it might prevent your deriving the empty clause. 
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See the tableau method also does exactly like I mean like resolution the tableau method checks 

for essentially for un-satisfiability. So, the resolution method preserver satisfiability, so you start 

with an initial set of formulas delta. And you do a resolution you perform a resolution on some 

atom you get a set of formulas delta prime. And if delta is satisfiable then delta prime is also 

satisfiable and so and that is how the method of resolution goes on.  

What we will do later is we will prove all these facts that I am stating now. But, essentially it 

preserves satisfiability. And if you derive the empty clause then essentially it means that it is 

unsatisfiable. So, if delta prime is that is if delta is satisfiable then delta prime is also satisfiable. 

Therefore if delta prime is unsatisfiable then delta is also unsatisfiable and that is how it works. 

So, essentially each step of the method the satisfiability is preserved. So, the tableau method also 

exactly does that I mean it preserves satisfiability. It does not preserve logically that is an 

important thing. So, unlike resolution one of the things that you save in the tableau method is 



that, you do not have to deal with transformations or rewrite rules on rewriting. Mammoth 

formulae into some normal forms so, a necessity of the normal form is not there. And  

So, that tableau method works directly on this, formulae. So, you want to prove that psi is a 

logical consequence of phi one to phi a. Then you just negate psi and do not do any 

transformation take this list and your tableau method works directly on this list. And what the 

tableau method does is it actually does a breaking up of compound formulae. So, one thing is it 

does the breaking up of compound formulae essentially this for each formula that there is only a 

finite number of times you can up break it up into sub formulae. So, it uses a sub formula 

property which we will define later. But, which you intuitively understand it is like a sub term 

and you cannot do this forever. So, you are already guaranteed that for these n plus one formula 

once you broken them all up the tableau will end. I mean it is some finite tree so, there is no 

possibility of it going on forever that is one thing so termination is guaranteed in the tableau 

method.    

 And the other thing the tableau method does is that it relies on the symmetry between truth and 

false. So, after your modular truth had just this you could just think of them as just these two 

values belonging to a complete lattice there is no reason to believe that one is there is no reason 

to have any symmetry between them. So, the tableau method relies on a certain symmetry 

between truth and false. So, at a semantic level and it so certain versions of the analytic tableau 

are also called semantic tableau because of this reason. But, there are some difference between a 

semantic tableau and an analytical tableau we will come to that much later on the course.   So, 

essentially at a semantic level you rely on the symmetry betweens truth and false. So, to check 

for satisifiability or unsatisfiability. 



(Refer Slide Time: 09:42) 

 

 So, what does it do so the basic tableaux facts are for a prepositional logic there are absolutely 

trivial So, you take this semantic for any truth assignment tau and any formula psi it is these facts 

are obvious. Basically So, the symmetry between truth and false is that I consider both cases. So, 

we say so naught phi is true under tau implies that phi is false under tau and that is as simple as 

that. So, similarly naught phi is falls under tau implies that phi is true under tau 1.  

You take term from phi and psi this if this is true then so I am going to use so now, the colors 

encode language and meta language right. So, black is meta language ok so I use this and this bar 

for and or in the meta language right. So that is why there are black in color so where as this and 

this or are the part of the language of proposition logic. So, in each case you consider both 

possibilities of truth and false under tau. And essentially for a compound formula see how to 

break it up in terms of the truth and false should of its components. So, essentially the truth table 

method you sort of read it in this way right. But, this is only the semantics there is of course what 

happens is the result because of the SMULLYAN of course was only up to these four operators 

we of course got this fifth operator.  

So, and the fifth operator you can see is a little combursive but the bi-conditional is sort of a it 

breaks the symmetry of the rest of the thing. And actually negation also breaks the symmetry of 

the rest of the thing. So, these are basic and obvious tableau facts for proposition logic. But, what 



you actually do remember that any kind of logical deduct or logical reasoning is formal in the 

sense that it is purely symbolic. And it is not it is not really got to do with its semantics but its 

only justified by its semantics. So, what you have are what are known as tableau rules 
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So, initially of course SMULLYAN  use this essentially to mark each formula. So, as true or 

false you know and mark the conditions. But, all occurrences of false can be replaced by 

negations and actually you can come up with this set of rules.   

So, here is a set of nine rules which these are just these are also forms of rewrite rules these rules 

essentially preserves satisfiability in what way. So in case of double negation it is obvious. So, in 

the case of this so if I have a formula of the form phi. And psi then phi must be and if this is 

satisfiable then phi must be satisfiable and psi must be satisfiable. So, there is an here when I 

write psi below phi I am actually creating a path of conjunctions. So, there is an implicit and 

between them, So, if you look at naught. So, now because of the symmetry between both truth 

and false should and false should essentially works out to negation. So, you have rules for each 

of these operators and their negations.  

So, the rule of not and essentially says that this formula naught of phi and psi is satisfiable. 

Provided naught phi is satisfiable or naught phi is satisfiable. So, this bar is the or the meta or 

now what we have. So, similarly so  or here, translates this to this meta or and similarly in this 



case this naught of or actually translates to an and naught phi and naught psi the case of 

implication phi or psi is satisfiable if either naught phi is satisfiable.  

So, there is a so these rules so, we can classify all these rules before that lets look at this last bi-

conditional the bi-conditional both the bi-conditional. And it is negation are branching rules the 

negation of the bi-conditional is just the exclusive or right. So, both of them are branching. 

(Refer Slide Time: 15:33) 

 

So, essentially the rules the structure of the rules is such that. You have elongation rules like 

there are the and rules the and rules also includes naught of or and you have branching rules. So, 

each of these so then double negation also can be regarded as an elongation rule because value it 

does not branch so that is. So, basically what actually the bi-conditional rule actually expands the 

size of formulas we considered. But, all other rules do not expand the size. So, if you think of in 

all the rules you think of the top as a numerator and bottom as the denominator. Then essentially 

the sizes of rules are non increasing I mean the sizes of denominators are non increasing except 

in the case of this bi-condition.  

So, which is good reason, Why smullyan did not consider it because, it had sort of destroyed the 

beauty of tableau. But, we will since we are living with it we will going to live continue to live 

with it. So, what we are going to do so what you are essentially going to do is you apply a rule. 

So, you think of it as plain blank symbol pushing and you apply a rule.  
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So, what you get is elongation and branching along. And maybe for some elongation some 

branching so on so.  So, what you get is a tree so a tableau is a tree I mean actually I myself did 

not know it, was till I learnt of smullyan tableau. So, a tableau is a tree and you take each path in 

this tree of what might be called unbroken formulae.  

So, there is another concept also so there is an implicit concept of a formula being broken up 

which is what the original thing was doing. And when you breakup a formula you can essentially 

discard the original formula because you can you just need to keep the denominator and you do 

discard the numerator is flexing your muscles. So, the point is that see you have you are going to 

break up the formulas in some way. And when you break up one formula by applying a rule. 

Then you can discard the original. So, a part so since it is a tree I can consider the various parts 

of the tree. So, there is this the effect of applying formula is to consume an old formula in the 

creation of new formulae.  

So, a path of the tableau is closed if it contains a complimentary pair. Essentially each path in the 

tableau represents a conjunction of formulae of unbroken formulae. Because I have seen of that 

said of I mean the original formula is satisfiable provided some path is satisfied. So, some 

conjunction of some unbroken formulae is satisfied. If it is but, if it contains the path contains a 

complimentary pair then that path gets closed of course that path might be a branch of 



something. So, only the path gets closed the branch does not get closed. Because they might be 

all so the ancestors which are common to several branches remain they still remain part of the 

unbroken set of formulae different path.  

So, you look at each path and you close the path if it contains a complimentary pair and 

essentially what you saying is if I take all the unbroken formulae in this path. And take their 

conjunction then that is unsatisfied so, contradiction. So, in the case of branching what happens 

is supposing I take some ancestor node. And I have already branched that ancestor is a common 

ancestor of two branches and if I am going to breakup that ancestor then I have to distribute the 

denominator on or I have to replicate the denominator on all the branches. So, this the result of 

applying a tableau rule to an ancestral node has to be distributed in all branches of its 

descendents. 

A tableau is closed if every path in the tableau is closed. Essentially signifying that paths are 

unsatisfiable all possible conjunctions that you taught of are unsatisfiable. So, this is what 

happens so let us just take a the example we did the time and let us look at it so, what I had 

yesterday was.  
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So, I had this so basically I had this lets say this b c naught d b and c arrow a, a and c arrow d. 

So, what I did yesterday was I actually took the conjunctive normal form of this result this set. 

And I did the resolution. 
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 Which so, last time what we had was this right. Which is essentially the same thing how we did 

this resolution last time. So, now we take this essentially for this so it is a different one it is not 

the same one. So, what we will do is as of this what we are going to do this is we are going to 

create a tableau.  
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So, in the creation of the tableau you can think of it this way. I start with let us say a b c naught d 

b and c arrow a, a and c arrow d. So, basically it us a conjunction of all these and based and what 

I want to know is I want to check whether it is inconsistence whether it is consistent whether it is 

satisfiable or not. 
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 So, we apply tableau rules let us so the top three of course there are literals in their basic forms 

there is no breaking up ever possible. So, if you apply a tableau rule you have to apply to one or 

the other rule.  
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So, this rule so if I apply the tableau rule to this one then I essentially get naught b and c. And I 

have this bar all right and I immediately essentially have a branch. Now, actually throughout the 

proof this branch is like the Berlin wall I mean you cannot cross it. And what you have is you 

have a in this, on this side right but, you got this by applying the arrow rule on this formulas. So, 

this formula has been consumed. 
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So, just think of it as this and now my tableau is essentially this formula b and c arrow a can be 

discarded. And now, my tableau consists of all these other rules right. So, now what happens is I 

could actually do a I could have this is a compound rule I could actually apply the and naught of 

and to the this rule to this formula. And what I get is I get naught b naught c. And especially I 

have another branch and I got this from this gets discarded. So, now I have only these of course 

but now, what has happened is that this path has a complimentary pair. And so essentially the 

path is closed and I signify the pressure of the path by using putting a bottom that is it.  
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So, now and actually then what happens is this path is also closed right and so these two paths 

are closed and that leaves only this open path. And therefore it allows me to breakup this formula 

up and when I break this formula up I get a.  
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So, now I have a tableau with just one path on in it but now the breaking up of this formula will 

give me naught of a and c and then or of d. And I have a fresh branching here so this d so fine. 



So, this d is has also gone and therefore I have I can close this path and that leaves only this I 

should also mention that this is being consumed right. So, this can be discarded so what happens 

to this well I get notice this the circled formulae are not consumed they are still unbroken. 

Student:  For instance if (Refer Time: 27:30) or any other path then why (Refer Time: 27:34) a a 

and c would be a boken up along the path. Yes you would have to be distributed along all the 

paths. Otherwise you are have always you would have got into trouble. 
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So, this one would be naught of and so this one would give me naught a naught c and of course it 

is a branching. Here and now this one and firstly this one has got consumed and  secondly this 

one has got closed. And then this one also has got closed because of lack of suitable colors. This 

is got closed along with this c so, this gets closed. Therefore essentially what we are saying is 

that all paths are closed so this tableau is closed and this tableau is closed essentially means. So, 

therefore that you remember that this is something in the case of both resolution and tableau 

what have you actually done. You have taken a set of formulae and proved that there is 

inconsistent let us say. 
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So, this set of formulae was let us say phi one to phi n and a conclusion psi right. And when you 

look at it as a set of formulae there is absolutely no reason why you should rely regarded this 

way I mean there is absolutely no reason why you should think that this has to be only this. It 

could just as well I could choose some phi i for example and I could claim  that phi i minus 1 phi 

i plus 1 naught psi naught phi i right. I mean both these arguments would have yielded the same 

set of formulae right. You are only proving a set of formulae is inconsistent and there could be 

many ways of setting up the argument. So, this could just as well have been another argument.  

Supposing in fact what you can show from the semantics is that if this is this is a valid argument 

if and only if this is valid argument. At the levels of sets I can pervert things in anyway. But I 

can also pull them out on either side of the what is this the models symbol anyway I like right. 

So, it does not matter whether you are looking at this argument or this argument and for any 

argument phi in fact. So, they all I can move things on either side of this doubleton style. And all 

those arguments would give me the same set of formulae. And if this set of formulae is 

unsatisfiable it means all those arguments are valid. So, you take any argument right I can negate 

the conclusion and make that a hypothesis take one of the hypothesis negate it and take it as a 

conclusion right. And either case the proofs are going to be the same. And therefore the 

arguments are equally valid or equally invalid. I mean so, that is why this is that is one thing that 

this symmetry gives us. 
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The other thing of course is as he pointed out the other thing is of course you can create really 

slim tableau by ensuring that you use only elongation rules as far as possible. So, you start with 

this you can with essentially a path of you the starting point of your tableau is a path of formulae. 

So, apply only those choose only those formulae which elongate and postpone the formulae 

which branch to as late as possible. And that is a heuristic which will reduce the size of the tree 

that you created. So, as he said I mean if you had if you had apply the branching rule at the first 

it said then you are already branched. And then you apply an elongation rule to one of the 

ancestors of that branching point. Then you have to distribute the denominators into each of the 

branches and that increase the size of the tree right. And therefore the size of the tableau that you 

have created construction that you have constructed. And if you follow this heuristic of first 

applying only elongation rules to the tableau to the formulae in the tableau. And only after you 

have exhausted all possibilities of elongation do you apply the branching rules and you can have 

essentially a fairly slim tableau.  

And of course it does not matter in either way you are anyway bounded by the size of the 

individual formulas. So, you your tableau anyways has gone to have only a certain fixed size that 

in terms of in terms of the lengths of the paths. What your what this heuristic is essentially 

saying is I can do a factoring of the paths of the common elements of the paths by delaying the 



use of the branching rules and not starting. And applying only elongation rules wherever 

possible.  

So, of course so what happens is so the thing is the tableau so by this is actually the only 

heuristic you require. The other interesting thing about the tableau is that it is syntactic it is based 

on a form on something like structural induction. So, if you look at if you look at so it is not just 

it is like somewhat the SOS rules that you must have done in programming languages they were 

all based on structural induction on the on the operator. I mean you so this is also if you look 

upon naught and naught or and so on as single operators which is fair enough. Because if you are 

looking at this symmetry of 0 and 1 then naught and is also a binary operator naught and is also a 

binary operators. So, you are essentially chosen these operators. And what you have done is 

based on the root operator in the abstract syntax tree you are applying a rule and that is 

deterministic is unique.  

So, there is a unique deterministic way of actually applying these rules the only way the 

determinism gets destroyed. Is because you are starting with some you could you could be 

permuting you could permuting this starting list of formulas in any way. That is the only place 

where there is no determination. And the only other place where there is some non-determinism 

is actually the choice of formula you take for applying a rule. But, once you have chosen a 

formula the results a completely determinist.  

These are important these are important consideration why they affect the complexity of both the 

space and complexity of the tableau method. The other thing you see is that this is what makes 

the tableau rules available to deterministic proof theoretic procedures take the notion of the 

proof. In any typical situation in any branch of mathematics given a certain given a certain 

theorem statement I have. If I have to prove it there are (refer Time: 37:40) number of 

possibilities of how you can go I mean in many proves there is this notion is if you do not get 

this crucial step when you are stuck. You are never going to get the proof but that is because, of 

the extreme amount of non-determinism that is available in the proof procedures in a normal 

reasoning.If you can restrict the reasoning to certain deterministic procedures. And here the 

deterministic procedures are entirely defined by the operators at the root. Then there is a much 

better possibility of actually running in proof procedures. So we will do formal proof theory from 

a logical view point and that time you will actually appreciate.  



Sometimes what happens is one of the reasons is you keep circling without getting the main 

results is because of the fact there is a bewildering variety of possibilities. Iif you do not go in a 

syntactic way structured fashion. Whereas if you have unique rules we will see another proof 

system which has unique rules and from which actually the tableau was inspired. If you have 

unique rules and the number of degree of determinism the degree of non-determinism greatly 

reduces. And you have deterministic and gold directed proof procedures. Which therefore the 

moment the amount of branching reduces your complexity also reduces remember that.  

If the number of possibilities is large initially then, your both your space and time complexity get 

multiplied by that factor of by the branching factor. Whereas if you have deterministic 

procedures then, your space and time complexity get narrowed down only to that determinism. 

So, here that degree of non-determinism is just the in the possibility of what which formula are 

you going to chose for the purpose of elongation for example. 
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So, there are certain other formal things that we need to do which now, that we have done two or 

three methods of proof from a purely implementation point of view. We have to formalize them 

and we have to do them also. We have to prove what is known as soundness and completeness of 

these rules. That will set the setting of it will complete the setting of all the concepts that we 

require before we get on to the first tautology. So we have to so I will do that next week the 



soundness and completeness of both resolution and tableau rules I will not do it for the tautology 

checker. But for these two at least I will and then we will come up with a notion of a calculus 

and the soundness and the completeness of the calculus. And how what are the kinds of proof 

methods that we require in order to prove some soundness and completeness.  

 


